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1. Introduction 

Geochemical studies were conducted throughout soil gas and flux surveying for locating both 

permeable zones in buried reservoirs and the presence of possible gaseous haloes linked to active 

geothermal systems.  

In this work we focused our interest on the distribution of soil gas concentrations (Rn, Th, He, H2, O2, 

N2, CO2, CH4 and H2S) in the soil air of the Tetitlan area considered a potential thermal field and 

characterized by scarcity of surface manifestations.  

Radon is used as a tracer gas to provide a qualitative idea of gas transfer (velocity and flux), carbon 

dioxide and methane are believed to act as carriers for other gases (i.e., Rn and He), helium and 

hydrogen are used as shallow signals of crustal leaks along faults (Ciotoli et al., 2005). Methane is also 

considered both a characteristic biogenic indicator of organic matter deposits and a tracer of major 

crustal discontinuity. A total of 154 soil gas samples were collected in an area of about 80 square 

kilometres. The same area was investigated throughout a total of 346 of CO2 and CH4 flux 

measurements. 

 

2. Objectives 

The main object of this work was to perform a geochemical study focused to the characterization of 

geothermal potential of the Tetitlan (Nayarit) area by means flux and soil gas concentration 

measurements. In particular, the location of diffuse degassing structures (Chiodini et al., 1995, 1998, 

2000, 2001) using soil gas geochemistry, will allow to infer the leakage system of gases (such as 

helium, hydrogen and radon) that are considered fault and/or fracture tracers. The Tetitlan area  has 

been considered, on the basis of previous CFE geochemical (water analysis) and geothermal studies, 

an “hidden” geothermal system as there are no superficial thermal evidences such as fumaroles and 

thermal springs.  For this reason, a further study using the knowledge of the potential of gas 

geochemistry applied on the geothermal prospecting, was required. 

  

3. Tectonic signature of soil gas leak and degassing 

Recent works observed anomalous gas concentrations over faults and confirmed these gases as a fault 

indicators (Quattrocchi et al., 1999; Mancini et al., 2000; Baubron et al., 2002; Ciotoli et al., 2005, 

1999, 1998; Zhang and Sanderson, 1996; Lombardi et al., 1996; Klusman, 1993; Zhiguan, 1991). 
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Faults and fractures can favour gas leaks because they usually increase rock and soil permeability, and 

thus the presence of linear soil gas anomalies longer than several meters are often taken as strong 

evidence of tectonic features (Fridman, 1990). It is important to note that faults are typically wide 

fracture zones that can also be crosscut by other structures, thus resulting in diffuse or ‘‘halo’’ 

anomalies, respectively (Matthews, 1985; Sokolov, 1971). Recent research has demonstrated that the 

gas-bearing properties of faults are not necessarily continuous along a tectonic structure (Etiope et al., 

2005; Ciotoli et al., 2005; Baubron et al., 2002; Lombardi et al., 1996; Ciotoli et al., 1998; Salvi et al., 

2000; Pizzino et al., 2004; Voltattorni et al., 2006). In these cases isolated points with high 

concentration values (‘‘spotty anomalies’’), are frequently observed. When multiple ‘‘spot’’ anomalies 

occur along a linear trend, one can infer that they lie along a structural feature which has a spatially 

discontinuous in terms of its gas-bearing properties (Ciotoli et al., 1998; Lombardi et al., 1996). 

Extensive experience in soil gas prospecting by the authors indicates that soil gas anomalies generally 

occur as linear, fault linked, anomalies, as well as in irregularly shaped diffuse or halo anomalies and 

irregularly spaced plumes or spot anomalies (Voltattorni et al., 2005; Beaubien et al., 2002; Lombardi 

and Voltattorni, 2003;  Lombardi et al., 1996). These features reflect gas migration dominated by 

brittle deformation both at macroscale and/or microscale. Therefore spatial patterns of soil gases in 

faulted areas appear to be suitable tools for identifying tectonic structures also in areas characterized 

by thick clay cover whose plastic behaviour could mask the identification of faults by mean of other 

geological (field mapping) and geophysical methods. 

 

4. Activities  

4.1 Soil gas sampling and analysis 

Soil gas surveying consists of the collection and analysis of gas samples from the unsaturated, possibly 

dry, zones. In the present study samples were collected using a stainless steel probe driven into the 

ground to a depth of 0.5 m; this depth is considered below the major influence of meteorological 

variables (Hinkle, 1994; Segovia et al.,1987). Furthermore, the collection of a large number of samples 

statistically minimizes sampling/analytical error and bias caused by individual samples (Beaubien et 

al., 2003; Annunziatellis et al., 2003; Lombardi et al., 1996; Hinkle, 1994; Reimer, 1990). Radon and 

thoron are analyzed immediately in the field, due to their half-life (respectively of 3.8 days for radon 

and 55 sec for thoron), using a RAD7 Durridge® alpha spectrometry instrument.  

Radon (222Rn) and thoron (220Rn) values were measured every 15 minutes (third cycle reliable for the 
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final reading of the two components) pumping from the steel probe. The ionization chamber of the 

detector is protected by the > 10% humidity by a “drierite” trap and a “gasoline” type pre-filter. Radon 

and thoron particles generate positive charged 218Po and 216Po ions after entering the chamber and they 

are collected on the detector by electrical high-Voltage field sources. Radon calculation is based on the 

sum of 218Po and 214Po peaks, and thoron calculation is based on 216Po only because of the slow 

response of 212Bi/212Po.  

A 50 ml gas sample was placed in a previously evacuated, 25 ml volume, stainless-steel canister for 

transport and storage. Once in the laboratory, each gas sample was also analyzed for major (N2, O2, 

CO2) and minor (C1–4 hydrocarbon, He, H2, H2S) gas species using a Perkin-Elmer AutoSystem XL 

packed-column gas chromatograph. 

A soil gas survey was performed over the Tetitlan area (about 80 km2) according to a regional 

sampling with a density of 4–6 samples km2 (100 samples, Figure 1, black dots). Furthermore, some 

high-resolution surveys (54 samples) were performed within detailed zones (Santa Isabel, Valle Verde 

and Tetitlan villages) across the area to enhance the chances of properly (on the basis of the radon and 

flux measurements results achieved directly on the field) recording the fault gas signal and to study 

fault influence on shallow soil gas distribution.  
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Figure 1 – Sampling distribution: soil gas 
sampling and radon measurements in black 
dots, flux measurements in red dots. 
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4.2 Flux measurements  

In order to have a semiquantitative idea of the gas leakage in the faulted and unfaulted zones, 346   

measurements of soil gas exhalation (CO2 and CH4, Figure 1, red dots) were made by using a speed-

portable “closed dynamic” accumulation chamber “time 0” (West System™ instrument). The 

instrument is equipped of two sensors with different detection limit: 0.01 gr/m2day for methane and 

0.2 gr/m2day for carbon dioxide. Accumulation chamber measurement techniques and flux-calculation 

methods have been widely described by many authors: Werner et al. (2000), Bergfeld et al. (2001) 

Chiodini et al., 1995, 1998, 2000, 2001, Chiodini and Frondini, 2001, Cardellini et al., 2003. 
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 Figure 2 -  Flowchart of the statistical and geostatistical techniques used for soil 
gas data elaboration and mapping procedure. 
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4.3 Data interpretation  

Geostatistical techniques were applied for the study of spatially correlated data. The flowchart of the 

general steps followed in this study is shown in Figure 2. Exploratory data analysis (EDA) was first 

performed to evaluate the basic characteristics of the data (i.e., summary statistics and statistical 

distribution of each variable). Univariate and bivariate statistical and graphical methods were used to 

study each variable independently, the relationship between variable pairs, as well as to highlight the 

presence of multiple populations. Exploratory spatial data analysis (ESDA) consisted of preliminary 

spatial data representation by using classed post maps to show value distribution and to visualize the 

intersample distance, which is useful to determine the grouping intervals for experimental 

semivariogram calculation and to choose search radii in estimation routines (kriging). Variogram 

analysis is performed to check spatial continuity of the data values and the presence of anisotropies. 

Once spatial continuity is characterized it is modelled with variogram functions that form the basis for 

kriging. 

Collected data were computer processed by using the following software: Statistica 6.0 (StatSoft, Inc.), 

Geostatistical Software for Environmental Science (Gamma Design Software, LLC) and Surfer 8 

(Surface Mapping System, Golden Software, Inc,). 

 

5. Results achieved 

3.1 Soil gas concentrations 

The exploratory data analysis (EDA) shows that CO2, He, H2,  N2 and O2 have low dispersed 

distributions, as highlighted by the low value of the variance (Table 1). Otherwise, the wide ranges, as 

well as the high skewness values, for CH4  and Rn indicate the presence of outliers. The mean and 

median values for CH4 (30.32 ppm and 2.54 ppm), and Rn (2702.38 Bq/m3 and 2180.00 Bq/m3) 

highlight that the frequency distribution of these gases are positively skewed (4.96 and 3.18, 

respectively), indicating an exponential or lognormal distribution.  

These preliminary considerations indicate that active gas-bearing faults present in the area favour gas 

leakage. In particular, the high median values of Rn and CH4 would confirm the presence of high gas 

microseeps. The low median values of He, H2, CO2 concentrations could be due to dilution by major 

atmospheric components, i.e., nitrogen and oxygen. Furthermore, dilution by surface gases of 

biological origin may also alter CO2 and CH4 signatures. In this case the shallow distribution of fault-
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related anomalies of these minor and trace species can be shown by spot values that could show a 

linear pattern. These soil gas anomalies, however, may display a complex character, both in space and 

time. For example, anomalies may differ according to the structure of the faults, such as fault gouges 

versus intensely sheared zones, resulting in a different shallow pattern due to the low gas permeability 

of fault gouge materials compared to high permeability of fractured rocks in the adjacent shear zones 

(King et al., 1996; Sugisaki et al., 1980). On this basis gas anomalies in correspondence of active faults 

can be either ‘‘direct leak anomalies’’ indicating a deep gas origin, or ‘‘secondary anomalies’’ linked 

to the shallower chemical-physical nature of the fault-constituting rocks. 

 

Table 1 -  Main Statistics of Soil Gas Data 

Samples Mean Median Min
Value

Max
Value

Lower
Quartile

Upper
Quartile

Variance Standard
 Deviation

Skewness

Radon
(Bq/m3)
Thoron
(Bq/m3)
He (ppm)
H2 (ppm)
O2 (%)
N2 (%)
CH4 (ppm)
CO2 (%)

154 2702,38 2180,00 0,00 19200,00 1080,00 3490,00 5979312,66 2445,26 3,18

154 6830,84 5120,00 289,00 24100,00 2960,00 9770,00 27268498,20 5221,92 1,11

154 5,62 5,55 4,19 8,20 5,47 5,64 0,21 0,46 3,25
154 1,66 1,29 0,54 7,42 1,11 1,70 1,03 1,02 2,94
154 19,88 19,90 19,22 20,56 19,75 20,01 0,04 0,21 -0,39
154 77,38 77,30 76,77 78,68 77,14 77,57 0,13 0,36 1,03
154 30,32 2,54 0,17 653,39 0,85 17,63 8340,08 91,32 4,96
154 0,19 0,17 0,02 0,87 0,10 0,24 0,02 0,13 2,31

The main statistics of soil gas data show that CO2, He, H2,  N2, and O2 have low dispersed 
distributions as highlighted by the low value of the standard deviation. Otherwise, the wide ranges, as 
well as the high values of the skewness, for CH4 and Rn concentrations indicate the presence of 
outliers. The mean and the median values for CH4 and Rn highlight that the frequency distribution of 
these gases are positively skewed, indicating an exponential or lognormal distribution of these 
variables. In the case of skewed distributions, the median of CH4 and of Rn, are better than the mean 
and the standard deviation to provide data dispersion and to highlight values that may be considered 
as anomalous. 
 

Because soil gases have a different abundance with respect to the atmospheric air, (0.01 kBq m3 for 
222Rn, 0.036 for CO2, 1.4 ppm for CH4, 5.20 ppm for He, 78.08% for N2, 19.4% for O2, 0.5 ppm for 

H2), the detection of an anomaly threshold constitutes a fundamental step in the exploratory statistical 

analysis for further discussion about the possible sources of the studied gases. Various statistical 

methods can be applied to assess the anomalies relative to background (Ciotoli et al., 2005; Beaubien 

et al., 2003; Sinclair, 1991). In general, our experience highlights a strong correspondence between the 
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upper quartile and the anomaly threshold. It should be remembered, however, that soil gas anomalies 

cannot be fixed absolutely, but rather must be defined locally due to their complex origins.  

According to Sinclair (1991) the normal probability plot (NPP) provides a good method to distinguish 

different, often overlapping, populations (i.e., background, anomalous values, and outliers) and a more 

objective approach to statistical anomaly threshold estimation. As an example, Figure 3 highlights how 

the anomaly threshold is calculated on the basis of achieved He results.  

In order to study spatial patterns, data were visualized using classed-post maps (Figure 4). Anomalous 

carbon dioxide values agree well with the radon activity suggesting a fit with supposed local fault 

systems (Ferrari et al., 2003). 
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Figure 3 – Normal Probability Plot is used to evaluate the normality of the 
distribution of a variable, that is, whether and to what extent the distribution of 
the variable follows the normal distribution (in this last case, all values should 
fall onto a straight line). Data refer to He gas results achieved during the 
present study. 

 

This correlation supports the presence of buried gas-bearing channels in the area where the migration 

of CO2 acts as carrier for trace species, suggesting a potential deep origin of these gases. This 

hypothesis is strengthened where methane and helium anomalies are also measured (particularly in the 

eastern sector, between Santa Isabel and Tetitlan villages and in the north-western sector, in proximity 

of Cerro San Pedro). However, to reinforce the hypothesis about the origin of CO2, carbon isotopic 

analyses are required. 
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Figure 4 - Classed post maps show that radon and carbon dioxide anomalous values prevail in the 
eastern as well as in the north-western side of the studied area. Helium and methane distribution 
locally also corresponds a spot preferential pathway of degassing, although highest values are 
spready distributed between Valle Verde-Tetlitan-Santa Isabel villages. 
 

The interpretation of CH4 data is generally complex because this gas can be biologically produced in 

an-oxic sediments which are commonly rich in organic matter but can be biologically consumed in 

oxic soils. Figure 4 shows that anomalous values are located mostly in the southern side of the area in 

correspondence of Valle Verde village. The origin of methane can be interpreted based on isotopic 

signatures (δ13C and associations with other gases, e.g., heavier hydrocarbons). Anomalous values of 

H2  often overlap methane ones suggesting a direct chemical correlation between the two soil gas 

species.  The presence of  thoron anomalous values spreading almost all over the sampled area 

suggests an interesting diffusion in the lower layers of the atmosphere. 
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Figure 5 – Soil gas concentration maps show a different 
distribution for each gas specie excepting in the north-western 
sector of the area where radon and carbon dioxide anomalous 
values are more concentrated. He, H2 and CH4  have a more spotty  
distribution in the south- eastern sector. 
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Figure 6 – Methane and radon contour maps elaborated on the basis 
of modelled experimental variograms. The methane map highlights a 
major anomaly both in the southern and northern sector north 
oriented. On the contrary, the radon anomalies are evident along the 
western part of the studied area. 

 
Figure 5 shows the concentration maps of the analysed soil gas species. Excepting O2 and N2 having 

atmospheric values and for this reason not included in the discussion, it is well evident the distribution 

of anomalies for the other gas species. Rn and CO2 anomalies are present mainly in the north-western 

sector of the area, while the other gas species (He, H2 and CH4) are more spotty distributed in the 

eastern and southern sector. 

In order to study the different contribution of direction-specific versus random phenomena a 

geostatistical analysis was performed constructing experimental variograms in different direction for a 

better interpretation of anisotropies. In fact, directional variograms can differ in total sill value, 

highlighting a false ‘‘zonal anisotropy.’’ For this reason it is recommended to remove the proportional 
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effect by calculating ‘‘relative variograms,’’ where each pair difference is divided by the average of 

the individual pair of samples. 

In linear geostatistics, as in conventional statistics, a normal distribution for the variable under study is 

desirable. Even though normality may not be strictly required, high skewness and outliers can impair 

the variogram structure and the kriging results. For this reason, the variographic study was performed 

only for Rn and CH4, because they constitute a typical carrier/trace gas association and because they 

show a less skewed data distribution than the other gases.  

Figure 6 shows the contoured radon and methane values in sampled area using the parameters of the 

selected variogram models. The experimental variograms of CH4 and Rn for the northern sector 

confirm the presence of anisotropy as they reach the same sill value at different ranges while, for the 

eastern sector, they highlight a quite different spatial domain showing a more complex structure. 

 
5.2 Soil gas fluxes 

Carbon dioxide and methane  fluxes were measured at 346 locations. Measurement spacing varied 

between 100 and 250 m including locations where soil gas concentration measurements were made at 

the same time. Data achieved directly on the field, were treated and calculated considering the 

variation of barometric pressure and temperature measured during the survey. Fluxes were analyzed 

using experimental variograms computed and modelled both for methane and carbon dioxide. 

Emission rates for each realization were calculated by summing the simulated flux across the grid and 

multiplying by the grid area. The average and standard deviations of the emission rates reported in 

Table 2 are calculated from the  flux realizations. 

Carbon dioxide and methane fluxes ranged from not detectable (<3 g/m2 d1) to 45,14 g/m2 d1 and to 

9,00 g/m2 d1 respectively. The means of the entire CO2 and CH4 flux data set were 2.19  and 0,83 g/m2 

d1, respectively. The data set had a coefficient of variation (CV: the standard deviation divided by the 

mean) of 2,02 for CO2 and 1,24 for CH4, where CV values greater than 1 indicate a non-normal, 

potentially log-normal, population distribution (Singh and Engelhardt, 1997).  

The distributions of fluxes within the area were skewed suggesting that CO2 and CH4 fluxes are 

spatially variable across the study area. 

The contour maps (Figure 8) elaborated on the basis of the calculated experimental variograms, 

demonstrate that gas emission at the surface is not spatially heterogeneous within studied area. It is 

possible to infer that the variability of gas emissions is controlled by geological structures.  
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A comparison between the radon concentration map and the CH4 flux distribution map (Figure 9) 

highlights an overlapping of the anomalous values: the methane flux acts as carrier gas for the radon 

rising along preferential pathways both in the north-western sector and in the central part of the area as 

well as the north-eastern.  

 

Table 2 -  Main Statistics of Soil Gas Fluxes 

Flux  Samples Mean Median Min value Max Value Std. Dev. CV* 
CO2 (g/m2day) 346 2,18 1,34 0,00 45,14 4,39 2,02 
CH4 (g/m2day) 346 0,83 0,55 0,00 9,00 1,02 1,24 

*CV, coefficient of variation (standard deviation divided by the mean). 
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Flux CO2 (g/m2day ) = 346*5*normal(x; 2,1768; 4,3874)
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Figure 7 -  Histograms of the CO2 and CH4 fluxes (g/m2 d1). The distributions are skewed 
indicating that gas emissions at the surface are not spatially heterogeneous within the studied area. 
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Figure 8 – CO2 and CH4 flux concentration maps (on the left) and contour maps (on 
the right) elaborated on the basis of calculated experimental variograms. According to 
the latter maps, the methane flux is more evident in the north-western sector and in the 
central part of the area as well as the north-eastern. The carbon dioxide flux follow 
almost the same directions but has a more diffusive behaviour. 

 

  
Figure 9 - A comparison between the CH4 flux distribution map (at the 
right) and the radon concentration map (at the left). There is a good 
overlapping of the gas anomalous values to NW of Las Guasimas and in 
the central part of the area as well as in the north-eastern (between Santa 
Isabel and Tetlitan villages) sector of the studied area.  
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6. Conclusions 

The soil gas and flux geochemical surveys performed in the Tetitlan area highlighted a general upflow 

patterns of the local system, with the important implication that the highest CO2 and CH4  fluxes could 

be used in undeveloped geothermal systems to identify main upflow regions and areas of increased 

permeability due to structural control.  

The largest areas of degassing were observed to the north-western of Las Guasimas village and in a 

large area surrounding the Santa Isabel village. Furthermore, some spot anomalies were found in 

proximity of Tetitlan and Valle Verde villages.  

The spatial pattern of the main CO2, CH4 flux anomalies as well as Rn, CO2,  CH4 and He soil gas 

anomalies suggests a structural control on degassing. Further investigations including a more detailed 

soil gas and flux surveys (e.g., local transects with a major spatial sampling density) are suggested in 

order to better understand the nature of spot anomalies. Moreover, it is strictly recommended to  

collect samples for isotopic analysis (in particular, δ13C) both for methane and carbon dioxide so as to 

understand and define the origin of such gas species and, consequently, to give a more detailed 

interpretation of achieved data.  

Furthermore, we stress the importance to compare the soil gas collected (fluxes and concentration) 

data with the data coming from the shallow aquifers (dissolved gases, CO2 partial pressure, etc...) to 

discriminate the different behaviour of both the soluble and insoluble gasosus species as well as their 

ratio in the different sectors of the studied area to better constrain the observed anomalies in the 

studied area. 
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