GEOSTAR deep seafloor missions: magnetic data analysis and 1D geoelectric structure underneath the Southern Tyrrenian Sea

Sergio Vitale (1), (2), Angelo De Santis (3), (4), Domenico Di Mauro (5), Lili Cafarella (1), Paolo Palangio (1), Laura Benenzioli (1) and Paolo Favali (6)

(1) Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
(2) Università degli Studi «G. D’Annunzio», Chieti Scalo (CH), Italy
(3) Università degli Studi «La Sapienza», Roma, Italy
(4) Now at Eni s.p.a., San Donato Milanese (MI), Italy

Abstract
From 2000 to 2005 two geophysical exploration missions were undertaken in the Tyrrenian deep seafloor at depths between -2000 and -3000 m in the framework of the European-funded GEOSTAR Projects. The considered missions in this work are GEOSTAR-2 and ORION-GEOSTAR-3 with the main scientific objective of investigating the deep-seafloor by means of an automatic multiparameter bathymetric observatory station working continuously from around 5 to 12 months each time. During the two GEOSTAR deep seafloor missions, scalar and vector magnetometers acquired useful magnetic data both to improve global and regional geomagnetic reference models and to infer specific geoelectric information about the two sites of magnetic measurements by means of a forward modelling.

Key words GEOSTAR – Tyrrenian Sea – deep seafloor – electrical conductivity – lithosphere

1. Introduction
Variations of the magnetic fields produced in the ionosphere and magnetosphere generate electromagnetic (EM) waves that penetrate in the Earth’s interior down to the crust and the mantle, inducing electric currents which, in turn, produce their magnetic counterpart at the Earth’s surface. Magnetovariational (MV) techniques, which make use of the effects of induction magnetic fields from such sources over an appropriate magnetometric stations distribution, disclose some geoelectric properties that characterize subsurface structures (e.g. Banks, 1969; Parkinson, 1983; Gough, 1989; Armadillo et al., 2001).

During recent years it has also been possible to adapt such land based techniques directly to seafloor observations (e.g. Filloux, 1987). GEOSTAR (GEophysical and Oceanographic Station for Abyssal Research) missions belong to a series of European Projects, led by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), having as main target some long-term deep-sea geophysical investigations. The automatic multidisciplinary station was designed to
meet the restrictive requirements of a standard land-based observatory, in spite of the extremely harsh environmental operating conditions. In Europe, the series of GEOSTAR projects is a unique approach and it has been implemented since 1995 in two successive steps (GEOSTAR and GEOSTAR-2), and then integrated in 2002-2005 by the ORION-GEOSTAR-3 (Ocean Research by Integrated Observation Network) project with the purpose of developing a prototype for a network of seafloor observatories. Here, we describe the validation of the prototype in the batalhial plains of the Tyrrenian Sea (Marsili Basin). Further information on all GEOSTAR projects and other seafloor projects can be found in a recent review (Favali and Beranzoli, 2006). This work presents the analysis of magnetic data from the two deep-sea floor missions: GEOSTAR-2 and ORION-GEOSTAR-3, with a short description of the GEOSTAR Observatory and mission plans.

1.1. The magnetic purposes of GEOSTAR Projects

During the GEOSTAR missions some of the Earth's tectonic processes (such as seismicity, geomagnetic and gravity fields) and physical, geochemical and biological processes which occur on the seafloor environment with potential impact on geo-hazards and global changes were monitored.

The measurements of the geomagnetic field on the sea bottom are fundamental to complement land recordings in order to have a full analysis of the Earth's magnetic field (EMF).

Measuring the EMF on the deep seafloor has some evident advantages:

1) the temperature stability over time, since any change of temperature can affect the three-component magnetometer performance causing some artificial drifting;

2) the improvement of the knowledge of the EMF itself through a better measurements coverage;

3) slowly varying fields are practically unperturbed while rapidly varying external coverage magnetic fields are screened by the seawater layer.

The magnetic data acquisition on the seafloor is much more difficult than inland. The main problems arise from the increase in pressure with depth (about 0.1 atm/m), corrosion (especially for long periods of running, such as more than a few months), difficulties on vector instrument orientation according to the geographical directions and possible EM disturbances due to dynamo actions of the sea water motion (mean conductivity $\sigma = 3-6 \text{ S/m}$) within the EMF.

In spite of the above considerations, in terms of EMF observations, the GEOSTAR projects have given significant contributions to demonstrate: 1) the potential of an almost equal-area distribution of long-term points of observations all over the world to improve the reliability of geophysical models (e.g. IGRF) and regional magnetic field models; 2) the study of the magnetic field temporal variations from short to long periods (seconds to years), even in marine extreme environment where it is not easy to install a traditional observatory; 3) the investigation of the conductivity structures within the Earth by means of MV techniques; 4) the study of the EMF radial variation in correspondence with the oceanic (1999-2000), CHAMP (2000-present) and future SWARM satellite missions.

1.2. Structure of GEOSTAR Observatory

The whole idea behind the GEOSTAR project's concept took inspiration from the experience of NASA during Apollo and Space Shuttle missions, where the "two-body" system was a winning approach. Analogously, the architecture of GEOSTAR Observatory includes a mobile seafloor vehicle (called MODUS - Mobile Docking for seafloor vehicles) and a bottom station. The latter module can run autonomously for long periods (over one year) and it can be employed for abyssal depths (up to 4000 meters). MODUS, properly manoeuvred onboard a ship, allows the deployment and the recovery of the bottom station directly from the surface (ship facilities), and it is used for the system check and bi-directional communication between ship and bottom station, when it is connected to the station. The bottom station, with a tubular cube shaped structure in aluminum alloy, was designed to host all the acquisition and control systems of the observation system and the power supply.

For its multidisciplinary role it can be equipped with different instruments (to be chosen according to the location of the station). The standard configuration foresees a standard acoustic modem, CTD, conductivity-temperature-depth (CTD), transmissometer, current meter, temperature, and scalar magnetometers, a hydrophone, a drogue, and a current meter. The magnetometers are distributed at the bottom station, while the temperature, current, and CTD sensors are located at the top of the station. The drudge is extended to the horizontal and vertical components of the station, and the CTD measures the temperature of the water, the conductivity and the salinity. The magnetometers are distributed in the three components of the seafloor station, and the CTD measures the temperature of the water, the conductivity and the salinity. The magnetometers are distributed in the three components of the seafloor station, and the CTD measures the temperature of the water, the conductivity and the salinity. The magnetometers are distributed in the three components of the seafloor station, and the CTD measures the temperature of the water, the conductivity and the salinity. The magnetometers are distributed in the three components of the seafloor station, and the CTD measures the temperature of the water, the conductivity and the salinity.

The Communication System allow three different transmission channels: a) the first is to communicate with the CEOS (Communication Equipment Operation System) which is the heart of the system to communicate data to the station. (GEOSTAR-2) - the CEOS establishes a satellite communication link; the recorded data are transmitted to the CEOS; b) the second communication channel is a bi-directional acoustic communication link. This channel allows the communication between the CEOS and the station. The second communication channel is a bi-directional acoustic communication link. This channel allows the communication between the CEOS and the station.

2. GEOSTAR deep seafloor missions

2.1. Locations

Both GEOSTAR deep sea missions, namely GEOSTAR-2 and ORION-GEOSTAR-3, are selected in the Tyrrenian Sea (Marsili Basin).
Designed to host all the acquiring instruments, acquisition and control systems, the communication system and the power supply of the station.

For its multidisciplinary nature, GEOSTAR can be equipped with different instruments in relation with to purpose of the mission. The standard configuration foresees a gravimeter, vector and scalar magnetometers, seisimeter, hydrophone, acoustic Doppler current profiler (ADCP), conductivity temperature depth sensor (CTD), transmissometer, currentmeter, and water sampler. The magnetometers installed in two benthic spheres at the ends of two 2-m long booms. These «arms» are positioned at the two opposite corners of the Bottom Station and they are kept in vertical position during the descent phase. When the Bottom Station reaches the seafloor, the booms extend along the horizontal position upon operator command. This separation is essential to minimize the effects of induced current of the Bottom Station in the magnetic records.

The Communication System is designed to allow three different transmission methods. The first is committed to some special capsules (named «messengers») which are periodically released by the station to the sea surface (GEOSTAR-2 configuration) and here they establish a satellite communication, to notify their position; the recorded data are stored in these «messengers». Data are also fully stored in on-site hard-disks, recoverable at the end of the mission. The second communication method is a bi-directional acoustic transmission. This latter technique provides a real-time communication of the station with the «mother» ship. In this way an operator can periodically download the acquired data and can also change some parameters of the station according the necessities of the mission. Additionally, a surface buoy serves as radio/satellite bridge communications between the underwater observatory and an inland station (see e.g. Favali et al., 2006).

2. GEOSTAR deep seafloor missions

2.1. Locations

Both GEOSTAR deep seafloor missions, namely GEOSTAR-2 and ORION-GEOSTAR-3, were undertaken in the Tyrrenhenian Sea. Locations are shown in fig. 1 and geographical coordinates in its caption.

GEOSTAR-2 had a duration of about seven months (from September 25, 2000 to April 16, 2001). The station was deployed at 1950 m depth in an abyssal plain SW of the Ustica Island.

ORION-GEOSTAR-3 had a double duration in comparison to the preceding mission. It lasted about fifteen months in total but divided in two legs: the first from December 14, 2003 to April 24, 2004 and the second from June 13, 2004 to May 23, 2005. The station was deployed in an abyssal plain, NW of the Marsili seamount, reaching a depth of 3320 m. This paper uses only the three-component magnetic data acquired during the second part of the mission.

2.2. Southern Tyrrenhenian Sea

The Tyrrenhenian Sea represents a back-arc basin and its evolution, still in progress, has developed since the Upper Cretaceous in a complex geodynamic frame within the collisional system between the European and African Plates (Dewey et al., 1989) and has been increasingly involved in the Alpine-Apennines Orogenesis since the Eocene (Scandone, 1980; Malinverno and Ryan, 1986; Sartori, 1990; Gueguen et al., 1998).

The southern part of the Sea, of our interest, is characterized by a great stretch process that caused the formation of the two main sub-basins: Vavilov (7.3-5 Ma) and Marsili (1.7-1.2 Ma) (Bigi et al., 1989; Celli et al., 1998), with their respective volcanic structures.

In the Southern Tyrrenhenian Sea we find two main gravimetric anomalies centered in the two major sub-basins (Rehault et al., 1986), where the lithospheric thickness is about 50 km and the Moho depth reaches about 10 km. In a surrounding regional heat flow of about 120 mW/m², there are two heat flow anomalies greater than 200 mW/m² (e.g. Mongelli and Zito, 1994) placed within the Vavilov and Marsili basins; also magnetic data taken at sea surface show strong anomalies within the whole basin.
meet the restrictive requirements of a standard land-based observatory, in spite of the extremely harsh environmental operating conditions. In Europe, the series of GEOSTAR projects is a unique approach and it has been implemented since 1995 in two successive steps (GEOSTAR and GEOSTAR-2), and then integrated in 2002-2005 by the ORION-GEOSTAR-3 (Ocean Research by Integrated Observation Network) project with the purpose of developing a prototype for a network of seafloor observatories. Here, we describe the validation of the prototype in the bathyal plain of the Tyrrenhenian Sea (Marsi Basin). Further information on all GEOSTAR projects and other seafloor projects can be found in a recent review (Favali and Beranzoli, 2006). This work presents the analysis of magnetic data from the two deep-sea missions: GEOSTAR-2 and ORION-GEOSTAR-3, with a short description of the GEOSTAR Observatory and mission plans.

1.1. The magnetic purposes of GEOSTAR Projects

During the GEOSTAR missions some of the Earth’s tectonic processes (such as seismicity, geomagnetic and gravity fields) and physical, geochemical and biological processes which occur on the seafloor environment with potential impact on geo-hazards and global changes were monitored.

The measurements of the geomagnetic field on the sea bottom are fundamental to complement land recordings in order to have a full analysis of the Earth’s magnetic field (EMF).

Measuring the EMF on the deep seafloor has some evident advantages:

1) the temperature stability over time, since any change of temperature can affect the three-component magnetometer performance causing some artificial drifting;

2) the improvement of the knowledge of the EMF itself through a better measurements coverage;

3) slowly varying fields are practically unperturbed while rapidly varying external coverage magnetic fields are screened by the seawater layer.

The magnetic data acquisition on the seafloor is much more difficult than inland. The main problems arise from the increase in pressure with depth (about 0.1 atm/m), erosion (especially for long periods of running, such as more than a few months), difficulties on vector instruments orientation according to the geographical directions and possible EM disturbances due to dynamo actions of the sea water motion (mean conductivity \(\sigma_w = 3-6 \, \text{S/m} \)) within the EMF.

In spite of the above considerations, in terms of EMF observations, the GEOSTAR projects have given significant contributions to demonstrate: 1) the potential of an almost equal-area distribution of long-term points of observations all over the world to improve the reliability of global (e.g. IGRF) and regional magnetic field models; 2) the study of the magnetic field temporal variations from short to long periods (seconds to years), even in marine extreme environment where it is not easy to install a “traditional” observatory; 3) the investigation of the conductivity structures within the Earth by means of MV techniques; 4) the study of the EMF radial variation in correspondence with Oersted (1999 - present), CHAMP (2000 - present) and future SWARM satellite missions.

1.2. Structure of GEOSTAR Observatory

The whole idea behind the GEOSTAR project’s concept took inspiration from the experience of NASA during Apollo and Space Shuttle missions, where the “two-body” system was a winning approach. Analogously, the architecture of GEOSTAR Observatory includes a mobile dock-er vehicle (called MODUS – Mobile Dock-er for Underwater Sciences) and a bottom station. The latter module can run autonomously for long periods (over one year) and it can be employed for abyssal depths (up to 4000 meters). MODUS, properly manoeuvred onboard a ship, allows the deployment and the recovery of the bottom station directly from the surface (ship facilities), and it is used for the system check and bi-directional communication between ship and bottom station, when it is connected to the station. The bottom station, with a tubular cube shaped structure in aluminium alloy, was designed to host all the acquisition and control systems of the station system and the power supply.

For its multidisciplinary role, the system can be equipped with different complementary instrumentation with the purpose of obtaining both magnetic and scalar magnetometers, hydrophones, acoustic Doppler current profilers (ADCP), conductivity temperature depth (CTD), transmissometer, current meter and sampler. The magnetometers in the two magnetic spheres at the ends of two “arms” are positioned in the corners of the Bottom Station and the vertical position during deployment of the Bottom Station reaches the horizontal position during the deployment of the Bottom Station. These two “arms” are fitted with two top “arms” (named “messengers”) which are released by the station to reach the geophysical field, and to establish a satellite communication link between the “messengers”. The recorded data are also sent to the bottom station through the same link.

The Communication System allows three different transmission channels: the first is committed to some of the “messengers” (named “messengers”) which are equipped with satellite communication infrastructure; the second channel is assigned to the acquisition system of the station with the station itself for the “messengers” (named “messengers”). Data are also sent to the satellite communication link between the underwater observation station and the surface station (see e.g. Favali et al., 2006).

2. GEOSTAR deep seafloor mission

2.1. Locations

Both GEOSTAR deep sea missions, namely GEOSTAR-2 and 01...
magnetic data acquisition on the seafloor difficult than inland. The main from the increase in pressure with depth (1 atm/m), corrosion (especially of running, such as more than a few tenths of a millimeter), and fractures on vector instruments defining the geographical direction of EM disturbances due to dynamo-generated sea water motion (mean conductivity varying from 3.5–6 S/m) within the EMF.

The GEOSTAR-3 mission is a significant contribution to the potential of an almost unlimited long-term points of view over the world to improve the local (e.g., IGRF) and regional models; 2) the study of the magnetostratigraphic variations from short to long time scales; 3) even in marine environments where it is not easy to install ocean observatories; 4) the investigation of conductivity structures within the ocean; and 5) the study of the marine equivalent of SWARM satellite missions.

In brief, the GEOSTAR Observatory idea behind the GEOSTAR project is to incorporate inspiration from the experiments with Apollo and Space Shuttle missions, where the "two-body" system was a critical component. Analogously, the architecture of the GEOSTAR Observatory includes a mobile platform (MODUS - Mobile Observatory Device) and a bottom station (module that can run autonomously for a few years), which is recoverable from the ocean floor by remote control. The platform is designed to host all the acquiring instruments, acquisition and control systems, and the communication system, and the power supply of the station.

For its multidisciplinary nature, GEOSTAR can be equipped with different instruments in relation to the purpose of the mission. The standard configuration foresees a gravimeter, vector and scalar magnetometers, seismometer, hydrophone, acoustic Doppler current profiler (ADCP), conductivity temperature depth sensor (CTD), transmissometer, current meter, and water sampler. The magnetometers installed in two benthic spheres at the ends of two m-long booms. These "arms" are positioned at the two opposite corners of the bottom station and they are kept in vertical position during the descent phase. When the Bottom Station reaches the seafloor, the booms extend along the horizontal position upon operator command. This repositioning is essential to minimize the effects of induced current of the Bottom Station in the magnetic records.

The Communication System is designed to allow three different transmission methods. The first is committed to some special capsules (named "messengers") which are periodically released by the station to reach the sea surface (GEOSTAR-2 configuration) and therefore establish a satellite communication system, to notify their position; the recorded data are stored in these "messengers". Data are also fully stored on-site hard-disks, recoverable at the end of the mission. The second communication method is a bi-directional acoustic transmission. This latter technique provides a real-time communication of the station with the "mother" ship. In this way an operator can periodically download the acquired data and can also change some parameters of the station according to the necessities of the mission. Additionally, a surface buoy serves as radio/satellite bridge communications between the underwater observatory and an in situ station (see e.g., Favali et al., 2006).

2. GEOSTAR deep seafloor missions

2.1. Locations

Both GEOSTAR deep seafloor missions, namely GEOSTAR-2 and ORION-GEOSTAR-3, were undertaken in the Tyrrenian Sea. Locations are shown in fig. 1 and geographical coordinates are given in its caption.

GEOSTAR-2 had a duration of about seven months (from September 25, 2000 to April 16, 2001). The station was deployed at 1950 m depth in an abyssal plain SW of the Ustica Island.

ORION-GEOSTAR-3 had a double duration in comparison to the preceding mission. It lasted about fifteen months in total but divided in two legs: the first from December 14, 2003 to April 24, 2004 and the second from June 13, 2004 to May 23, 2005. The station was deployed in an abyssal plain, NW of the Marsili seamount, reaching a depth of 3320 m. This paper uses only the three-component magnetic data acquired during the second part of the mission.

2.2. Southern Tyrrenian Sea

The Tyrrenian Sea represents a back-arc basin and its evolution, still in progress, has developed since the Upper Cretaceous in a complex geodynamic frame within the collisional system between the European and African Plates (Dewey et al., 1989) and has been increasingly involved in the Alpine-Apennines Orogenesis since the Eocene (Scandone, 1980; Malinverno and Ryan, 1986; Sartori, 1990; Gueguen et al., 1998).

The southern part of the Sea, of our interest, is characterized by a large stretch process that caused the formation of the two main sub-basins: Vavilov (7.3–5 Ma) and Marsili (1.7–1.2 Ma) (Bigi et al., 1989; Cella et al., 1998), with their respective volcanic structures.

In the Southern Tyrrenian Sea we find two main gravimetric anomalies centered in the two major sub-basins (Rehault et al., 1986), where the lithospheric thickness is about 50 km and the Moho depth reaches about 10 km. In a surrounding regional heat flow of about 120 mW/m², there are two heat flow anomalies greater than 200 mW/m² (e.g., Mongelli and Zito, 1994) placed within the Vavilov and Marsili basins; also magnetic data taken at sea surface show strong anomalies within the whole basin.
The Marsili basin is characterized by a stretch process in ESE direction, with a seafloor depth of about 3500 m. The rocks types are basalts and andesites, depth of the Moho of about 11 km, with lithosphere's thickness less than 30 km, heat flow rate more than 200 mW/m² and magnetic anomalies typical of expansion basins (Marani and Trua, 2002). An important aspect concerns the volcanic structure of the basin, since Marsili seamount is a morphologic anomaly that rises from the seafloor for about 3000 m. Its shape is lengthened for about 50 km in NNE-SSW in an axial direction and the perpendicular minor axis extends for about 16 km in WNW-ESE direction. This structure shows the main middle oceanic ridge (MOR) features, typical for axial or periaxial zones: magnetic anomalies are positive in the axial zone and negative along the flanks (Marani and Trua, 2002).

3. Magnetometers and preliminary data calibration

In both GEOSTAR deep seafloor missions, a couple of magnetometers were used: a scalar magnetometer and a vector (three-component) magnetometer. The scalar mag Overhauser proton type. For transmissions, this instrument was the commercial model GSM-1 (TEM Inc.). It was characterized by 0.1 nT, accuracy of ±1 nT, a power of 1 W, and a sampling rate of 1 Hz. The vector magnetometer with three-axis fluxgate magnetometer (NGV). It was characterized by 0.1 nT, accuracy of 5-10 nT, a power of 2 W, and a sample rate of 2 samples/minute/axis.

During the GEOSTAR-2 magnetometer recorded almost expected amount of data, but the magnetometer recorded only about...
magnetometer. The scalar magnetometer was an Overhauser proton type. For the purpose of the missions, this instrument was an adaptation of the commercial model GSM-19L by GEM System Inc. It was characterized by a resolution of 0.1 nT, accuracy of 1 nT, a power consumption of 1 W and a sampling rate of 1 sample/minute. The vector magnetometer was a suspended three-axis fluxgate magnetometer, developed by INGV. It was characterized by a resolution of 0.1 nT, accuracy of 5-10 nT, a power consumption of 2 W and a sampling rate of 6 samples/minute/component.

During the GEOSTAR-2 mission, vector magnetometer recorded almost 100% of the expected amount of data, but the scalar magnetometer recorded only about 8% because an electronic device failure reduced the sampling rate from 1 sample/minute to only 1 sample every 12 minutes.

In ORION-GEOSTAR-3, the expanding booms were damaged during the deployment operation, preventing storage of X, Y, Z measurements from the vector magnetometer, while the scalar magnetometer worked properly all the time. In the second part of the mission, the vector magnetometer recorded data for 100% of the time while the scalar magnetometer returned data corresponding to the first 42% of this part of the mission.

The recorded data cannot be directly used for analysis, because the acquired magnetic data are affected by magnetic disturbances caused by induced currents from external magnetic

Fig. 2. Apparent Resistivity as given by the forward models for GEOSTAR-2 (left) and ORION-GEOSTAR-3 (right) missions.
field variations (mainly due to the GEOSTAR structure), and by the non-perfect orientation of the GEOSTAR frame. Some calibration and orientation corrections were applied on the recorded magnetic data, with respect to a ground station used as reference (De Santis et al. 2006a).

4. Magnetic data analysis and forward models

To consider the ionospheric effects as polarising fields, the usable periods in magnetic data analysis at the sea bottom at depths of 2-3 km are in the band 5h>\tau>3 min. This because variations with smaller periods are screened while those with greater periods do not satisfy the condition \(\kappa^2 < 2\mu_0\sigma/T\), where \(\kappa \) is the spatial wavenumber and \(\mu \) is the magnetic permeability; in addition for greater periods sea tides and water motions can be significant and produce disturbing local magnetic fields.

A forward model which takes the behaviour of the electrical conductivity in depth (or its reciprocal, the resistivity) into consideration was obtained by using software named "IXTD3" by Interpex (www.interpex.com). First of all, we calculated the apparent resistivity values by means of the apparent electrical conductivity profiles for each mission. We then imported these values of resistivity in the software and tried to build a more realistic behaviour of the resistivity profiles. At the end we succeeded in developing two models that took into account the conductivity variations.

As we can see in fig. 2, a lower resistivity appears under the first 5 km of GEOSTAR-3 site, probably due to the more complex tectonic and volcanic processes in the Marsili area. Regarding the lithospheric bottom under the two sites, it can be located from 15 to 45 km for GEOSTAR-2 mission and from 10 to 12.5 km for ORION-GEOSTAR-2 mission, with values of resistivity of 30 \(\Omega \)m and 10 \(\Omega \)m respectively, clearly less than the values of surrounding resistivity. Values of lithospheric depth found by means of the forward models confirm those found from previous magnetic data analyses (De Santis et al., 2006b) and from seismic data (Calcagnile and Panza, 1981).

5. Conclusions

The deep seafloor GEOSTAR-2 and ORION-GEOSTAR-3 missions have provided an important magnetic dataset, useful both for the definition of conductivity structures underneath the seafloor and for improving the geomagnetic models. Starting from the three geomagnetic components, we have been able to provide 1D geoelectric models under the two deep seafloors of GEOSTAR-2 and GEOSTAR-3 missions in the Southern Tyrrhenian Sea, in particular the identification of the bottom of the EM lithosphere under the two sites. Moreover, our estimations on the identified depths are in accordance with the literature based on independent data, mostly seismic data.

In future, more analyses will be needed to uncover more details and properties of the Tyrrhenian crust and mantle to confirm the current results and possibly improve them in time, space and frequency domains.

Acknowledgements

The GEOSTAR and ORION projects were funded by the EC under the Marine Science and Technology Programme. We are very grateful to Christopher Turbitt of British Geological Survey for his suggestions to improve the paper. Discussions with Patrizio Signanini, Bruno Di Sabatino of Chieti University helped some parts of the work. We thank also all the people who were involved directly or indirectly in both projects: without them no possible result or work would have been found or realized.

REFERENCES

SEAFLOOR GEOSTAR-2 and ORION missions have provided an extensive dataset, useful both for improving the geomagnetic field from the three geomagnetic models and for providing 1D models under the two deep seafloors and GEOSTAR-3 missions in the Tyrrhenian Sea, in particular the area corresponding to the bottom of the EM lithosphere at both sites. Moreover, our estimated depths are in accordance with literature based on independent geophysical data.

More analyses will be needed to verify the depth and properties of the under-thetale and confirm the results that have been obtained so far.

Acknowledgements

The GEOSTAR and ORION projects were funded under the Marine Science and Geoscience programs. We are most grateful to the British Geological Survey for their support and to Patrizio Signanini, Bruno Denti University, for some parts of the work. We also thank all those who, directly or indirectly, contributed to the success of the project.

