The Italian strong motion data base: design, data input and web distribution

L. Luzi1, F. Sabetta3, F. Mele2, S. Hailemikael3, D. Bindi1, F. Pacor1, M. Massa1, S. Lovati1, A. Gorini3 and S6 project working group

1 Istituto Nazionale di Geofisica e Vulcanologia, sezione Milano-Pavia, Milano, Italy
2 Istituto Nazionale di Geofisica e Vulcanologia, Centro nazionale Terremoti, Roma, Italy
3 Dipartimento della Protezione Civile, Ufficio Valutazione Prevenzione e Mitigazione del Rischio Sismico ed Attività ed Opere Post-Emergenza, Roma, Italy

ABSTRACT

A new Italian strong-motion data base was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian civil protection).

The aim of the project was the collection, homogenization and distribution of strong motion data acquired in the time span 1972-2004 in Italy by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC with different purposes, such as permanent strong motion monitoring and temporary monitoring during seismic sequences or before permanent installation.

The data base contains 2182 three component waveforms generated by 1004 earthquakes with a maximum moment magnitude of 6.9 (1980 Irpinia earthquake) and can be accessed on-line at the site \url{http://itaca.mi.ingv.it}, where a wide range of search tools enables the user to interactively retrieve events, recording stations and waveforms with particular characteristics, whose parameters can be specified, as needed, through user friendly interfaces. A range of display options allows users to view data in different contexts, extract and download time series and spectral data.

This article describes the data base structure and the working steps which led to the completion of the project.
1. Introduction

The effort of building an Italian strong motion data base is motivated by the increasing demand of strong motion data from the scientific community and by the lack of a updated national data base. Scientific research in the seismological and engineering fields requires strong motion data for several purposes, such as evaluation of GMPE (Ground Motion Prediction Equations), verification of shaking scenarios and probabilistic hazard maps and the formulation of seismic codes. The correct use of the accelerometric data implies a strong background on the origin of the data, such as details on the instrumentation which recorded the time series, the recording site and the seismic event, for which the correct attribution of earthquake parameters, such as location and magnitude, should be done. Therefore, the data base construction not only implies a mere collection of waveforms, but also a careful attribution of event, station and instrument metadata.

For this purpose a joint project was established between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian Civil Protection) in the time span 2004-2006.

The aim of the project was bringing up to date an earlier Italian strong motion data base updated to 1993 and making a considerable effort to improve the metadata associated to seismic events and recording stations in order to facilitate data accessibility to the scientific community. These characteristics should make this data base different from the European strong motion data base by Ambraseys at al. (2002), whose most recent Italian data pertain to the Umbria-Marche sequence of 1997-1998.

In order to fulfil these requirements four main activities were developed:

1 – Definition of the data base structure
2 – Collection and processing of waveforms
3 – Review of seismic event, station and instrument metadata
4 – Dissemination of data through a web portal
This paper describes the working steps and the decisions made to fulfil the project requirements and the capabilities of the web data base.

2. Definition of the data base structure

The data base contains 48 tables, created in order to store the information concerning the seismic events, the recording stations, the installed instrumentation and the strong-motion parameters, which are connected through a relational structure in order to avoid data redundancy. Figure 1 exemplifies the relations existing among tables for the data base block relevant to recording stations. The complete data base structure is described at http://esse6.mi.ingv.it/, where the fields relevant to all tables are described in detail, together with the technical requirements for data input.

The data base is handled through two different relational data base management systems: Ms Access® 2003 for data input and DVD release, and MySQL for the web distribution. The selection of the former product is driven by the simplicity of the software, the worldwide diffusion and the interface capability with software for the management of spatial data, such as ESRI® products, or software for scientific implementations such as Matlab®. The two data bases communicate through a protocol which allow to transfer the data base tables, locally stored in the MS Access format, to the web data base, in order to update the information as soon as they become available.

Only authorized personnel has access to the data base and to the web server in order to modify the data.
Figure 1: Example of the relations existing among database tables for the stations.
3. Collection and processing of waveforms

Raw recordings obtained by different institutions were collected and homogenized in a unique format. A standard was established for the strong motion file name composed of 33 characters which include: event date and origin time, recording network, recording site, component, correction flag and time series type (acceleration, velocity, displacement or spectral acceleration). This standard was chosen in order to exemplify file organization and management with simple operative system commands. The waveform files in ASCII format contain a metadata header of 43 rows which describes event, recording site and instrument metadata, together with processing information for a correct use of the data. The waveforms are also available in SAC format, mainly used by the seismological community. They are distributed both in processed and raw format, so that expert users can re-process data according to their needs.

In order to obtain reliable estimates of acceleration and velocity time-series and acceleration response spectra, the strong motion data were processed in a rather homogeneous way, although they were recorded by different instrument types. Before 1997 most of the accelerometers were analogue, while, after 1997, they were progressively substituted with digital ones. The heterogeneity of the records drove us to a one-by-one waveform processing instead of an automatic processing.

The linear trend of each raw analogue record was removed and the obtained signal was corrected for the instrument response. Then, the time series was band-pass filtered, selecting the high pass frequency by visual inspection of the record Fourier spectrum. The low-pass frequency has been generally selected close to the instrument upper cut-off frequency, usually centred on 20-25 Hz. Convolution of digital records with the instrument response was not performed, as the instrument response is generally flat from 0 to frequencies higher than 50 Hz. As few records have a usable pre-event, we removed the linear trend fitting the entire record. A band pass filter was applied selecting the high pass frequency similarly to the analog records, while the low-pass frequency was generally applied in the range 25-30 Hz.
The filter type was selected in order to avoid phase shifts in the signal, which can alter the calculation of velocity and displacement time-histories and the shape of the elastic response spectra at frequencies higher than the applied low-cut (Boore and Bommer, 2005). A raised cosine filter was used for the analog records, often triggered on the S-phase, and an acausal 4th order Butterworth filter was used for the digital signals, after applying a cosine taper at either side of the record in order to avoid the filter transients. The processing was devoted to preserve the low frequency content. Figure 2 shows an example of the data processing steps for the time series recorded at Conegliano Veneto relevant to the 1976, Mw 6.4, Friuli earthquake.

Figure 2: Data processing steps applied to the 1976-05-06 20:00:12 event recorded at Conegliano Veneto (NS component): a) linear baseline correction, b) Fourier spectrum of the uncorrected data for high pass frequency selection, c) convolution with the instrument response, d) processed acceleration after band pass filtering, e) velocity time series and f) displacement time series.
4. Review of seismic event, station and instrument metadata

The review of seismic event, station and instrument metadata, required the biggest effort of the project, as the data were extremely inhomogeneous.

The earthquake parameters have an accuracy which reflects the network and instrument evolution during the 30 year time-span covered by the strong-motion data-base.

Different catalogues were used to retrieve the hypocentral parameters and magnitudes for different periods:

- ING Catalogue (internal data base of INGV) for the events in the period range 1972 – 1982;
- Catalogue of Italian Seismicity - CSI, version 1.1. (Castello et al., 2006) and version 2.0 (R. Di Stefano, personal communication) for the events subsequent to 1982;
- Bollettino Sismico italiano (Istituto Nazionale di Geofisica e Vulcanologia – CNT, 2007) for some events subsequent to 1982;
- Catalogo Parametrico dei Terremoti Italiani CPTI04 (Gruppo di lavoro CPTI , 2004) used only for some surface wave magnitude values and as a reference for alternative hypocenters.

The CSI catalogues were preferred because the hypocentral parameters are instrumentally determined by integrating the Italian seismomeric network with regional and non-Italian networks. Complex events, localised offshore or showing large horizontal errors in this catalogues, were relocated using the IPOP procedure (Mele et al. 2002).

One or more magnitude estimates were attributed to each earthquake. The moment magnitude is evaluated from the solution of the parameters of the Centroid Moment Tensor, CMT, or from the Regional Centroid Moment Tensor, RCMT, (Pondrelli et al., 2006) and Earthquake Mechanisms of the Mediterranean Area (EMMA version 2, Vannucci and Gasperini, 2004), while the Mb and Ms were attributed on the base of the ISC Bulletin or the NEIC catalogue. For earthquakes with low magnitude values (< 4), the reference is the local magnitude, Ml, obtained from INGV instrumental catalogues.
The geographic distribution of the seismic events indicates their location along the Apennines and the eastern Alps (figure 3a). Only 38 events have local magnitude equal to or higher than 5, which represents a small percentage of the total (about 4%), as shown in figure 3b.

In few cases it was possible to assign a focal mechanism estimation. The classification of Zoback (1992) was adopted, which discriminates among 5 types, namely: normal faulting, predominately normal with strike-slip component, strike-slip faulting (with eventual minor normal or thrust component), thrust faulting and predominately thrust faulting with strike-slip component.

The fault geometry, strike, dip and rake were reported for relevant events and were obtained from the DISS catalogue, version 3.0.2 (DISS Working Group, 2006).

Figure 3 (a) geographic distribution of the events and (b) local magnitude distribution.

The metadata regarding 620 strong motion stations are relevant to both pre-existing data and new field investigations. Station metadata are organized in different formats. The geographic distribution of the recording stations reflects the distribution of major earthquakes since 1972: they are mainly located along the Apennines, eastern Alps and Sicily (Figure 4). The descriptive level includes the
synthetic information regarding the site, such as name, code, address, coordinates, topographic map location, ground type according to the EC8 classification, type of installation, etc. The map format includes the station location on a topographic map or an aerial photograph and/or a geological map, while the table format is used for the geotechnical parameters, such as: stratigraphic logs, NSPT logs, Vs/Vp profiles, dispersion curves, fundamental frequencies, site response functions, etc. As an alternative to the on-line data base, station metadata have been stored in specific documents, which can be downloaded at http://itaca.mi.ingv.it.

Several field investigations were promoted during the project in order to characterize the sites which recorded the strongest Italian events (i.e. Irpinia 1980, Lazio-Abruzzo 1984, Umbria-Marche 1997). Borehole logs were obtained for few selected sites from drillings purposely performed during the project. Different geophysical techniques were applied, depending on the subsoil nature, characteristics of data recorded, and logistic considerations: downhole, cross-hole, seismic refraction, seismic reflection, SASW, noise measurements (single station or array).

![Figure 4: distribution of the recording stations (On = operational on 2007; Off = inoperative on 2007)](image-url)
5. Dissemination of data through a web portal

The dissemination of the Italian strong motion data base is performed through the web portal http://itaca.mi.ingv.it.

Here a fully relational data base is stored, which can be accessed through user friendly interfaces which allow the user to perform queries to select station, seismic event and waveform parameters, in order to download the strong motion data, as exemplified in figure 5.

![Diagram of web data base](image)

Figure 5. Structure of the web data base.

The data base can be explored through searchable key fields: 10 for the stations, 8 for the seismic events and 9 for the waveforms. The basic idea is that separate queries can be performed for three distinct data base blocks (stations, events and waveforms) and, as an alternative, a progressive search can be performed starting with the selection of seismic event parameters and progressively constraining the results with station and waveform parameters, keeping memory of the choices made. Each query (event, station, waveform or progressive search) returns a list and the single outcome can be explored in detail. Figure 6 shows the user interface for the selection of a seismic event. From the list of outcomes the details relative to a single event can be retrieved. Both
recording stations and events are mapped through the Google-Map data©, which allows to display point data alternatively on a satellite image or a basic map (or both), as shown in figure 7.

![Figure 6. User interface for the event search (selection criteria are: Date >= 1980 and Date < 1981, Magnitude ≥ 6).]

<table>
<thead>
<tr>
<th>Date (YYYY-MM-DD)</th>
<th>Event name</th>
<th>Lat</th>
<th>Long</th>
<th>Depth [km]</th>
<th>Mj</th>
<th>I0</th>
<th>Event detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-11-23 18:34:53</td>
<td>IRPINIA EARTHQUAKE</td>
<td>40.760</td>
<td>15.309</td>
<td>15.0</td>
<td>6.5</td>
<td>10.0</td>
<td></td>
</tr>
</tbody>
</table>
Figure 7. Example of event mapping through Google–Map data; the epicentre is shown together with triggered stations. Each station can be selected in order to display the recorded waveform.

In the same way, a single station can be searched, as shown in figure 8, and the geotechnical information can be retrieved from the station detail (stratigraphy, NSPT or Vs/Vp profile, etc.), as shown in figure 9a and 9b.
When a progressive search is made, the user can start with the event characteristics and gradually constrain the search specifying station and the waveform parameters (figure 10). In this case only the selected waveforms can be downloaded in a compressed file format which contains unprocessed and processed acceleration, velocity, displacement time-series and acceleration response spectra.
Figure 9. Colfiorito recording station: a) example of station detail and mapping through Google–Map data© and b) detail on the Vs profile
Figure 10. Example of data query with the following constraints: earthquake date from 1972 to 2000, station name contains colfiorito and absolute PGA between 100 and 200 gals.

The waveforms that satisfy the required conditions can be displayed with the aid of a Java applet (figure 11), which allows the user to perform simple operations like zoom in/out, modify display options (axis labels, axis limits, background and foreground colour, etc.) and plot saving or printing.

The strong-motion recordings selected through a query can be downloaded by the web clients in raw and processed format, together with the velocity and displacement time-series and acceleration response spectra.
6. Conclusions and future developments

The Italian strong motion data base has been designed to be a useful tool for scientific research in the seismological and engineering fields and in particular for data analysis focused on seismic risk assessment. The main features of the relational data base and the web portal for data dissemination have been illustrated. The web data base can be accessed at the site http://itaca.mi.ingv.it, where a wide range of search tools enables the user to interactively retrieve events, recording stations and waveforms with particular characteristics, whose parameters can be specified, as needed, through user friendly interfaces. A range of display options allows users to view data in different contexts, extract and download time series and spectral data.

Several decisions have to be made in order to keep the data base constantly updated in the future and improve the amount of information regarding recording sites, waveforms and seismic events. One of the most important future challenges will be to perform a correct evaluation of the transfer functions of most of the recording sites, in order to improve the knowledge on the site response.
This goal can be reached through the analysis of the recorded waveforms and detailed geotechnical site characterization.

Acknowledgements

This work was supported by grants from the understanding between Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento della Protezione Civile (Italy) in the time span 2004-2006, project S6.

REFERENCES

