Conception, verification and application of innovative techniques to study active volcanoes

Warner Marzocchi and Aldo Zollo (Editors)
Conception, verification and application of innovative techniques to study active volcanoes

Edited by
Warner Marzocchi
Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy

Aldo Zollo
Dipartimento di Scienze Fisiche, Università Federico II, Napoli, Italy
Contents

Preface
13

Introduction
15

Task 1

ESTIMATION OF THE VOLCANIC HAZARD BASED ON PROBABILISTIC TECHNIQUES, AND ERUPTIONS FORECASTING
17

Joint inversion of geodetic data in a layered medium: a preliminary application to the Campi Flegrei caldera (Italy)
A. Amoruso, L. Crescentini
19

- Introduction
 19
- Methods
 22
- Data
 26
- Modeling
 27
- Conclusions
 28
- References
 29

Dynamical and stochastic techniques
31

R. Carniel, O. Jaquet, M. Tárraga
31

- Introduction
 31
- The stochastic approach
 31
- Failure forecast method
 32
- Dynamical systems approach
 34
- Conclusions
 36
- References
 37

ANGELA: a new package for the near-real-time inversion of geodetic data in layered media
39

L. Crescentini, A. Amoruso, M. Carpentieri
39

- Introduction
 39
- Configuration (requested resources)
 40
- Code basics
 41
- The ANGELA package
 44
- Examples
 44
- References
 48
Contents

Tremor source location based on amplitude decay
S. Falsaperla, G. Di Grazia, H. Langer

- Introduction .. 49
- Data .. 50
- Method and results .. 53
- Discussion and conclusions 55
- Acknowledgments ... 56
- References .. 56

Can flank instability at Stromboli volcano provide insights into precursory patterns of eruptions?
S. Falsaperla, M. Neri, E. Pecora, S. Spampinato

- Introduction .. 57
- Data and analysis ... 58
- Discussion and conclusions 63
- Acknowledgments ... 65
- References .. 65

Automatic classification of volcanic tremor using Support Vector Machine
M. Masotti, S. Falsaperla, H. Langer, S. Spampinato, R. Campanini

- Introduction .. 67
- Data: The Case Study of Volcanic Tremor Recorded During Mt Etna’s 2001 Eruption .. 69
- Features: Averaged Spectrograms 69
- Classification: Support Vector Machine 70
- Results and Discussion 72
- References .. 75

Probabilistic volcanic hazard assessment and eruption forecasting: the Bayesian Event Tree approach
W. Marzocchi, J. Selva, L. Sandri

- Purpose .. 77
- General features of Probabilistic Volcanic Hazard Assessment (PVHA) .. 77
- The Bayesian Event Tree (BET) applied to PVHA 81
- Final Remarks on BET 87
- References .. 88

Monitoring the source evolution of volcanic seismic swarms through a Nonstationary ETAS modeling (NETAS)
J. Selva, W. Marzocchi, A.M. Lombardi

- Purpose .. 91
- NETAS modeling ... 91
- Exploring the origin of volcanic seismic swarms 93
- Final remarks .. 96
- References .. 96
Task 2

HIGH RESOLUTION SEISMIC IMAGING OF VOLCANIC STRUCTURES

Combining active and passive data for velocity reconstruction

J. Battaglia, D. Dello Iacono, A. Zollo, J. Virieux

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>Data</td>
<td>101</td>
</tr>
<tr>
<td>The tomographic inversion procedure</td>
<td>103</td>
</tr>
<tr>
<td>Merging of the two sets of data</td>
<td>103</td>
</tr>
<tr>
<td>Inversion settings</td>
<td>105</td>
</tr>
<tr>
<td>Tomography results</td>
<td>107</td>
</tr>
<tr>
<td>Resolution tests</td>
<td>108</td>
</tr>
<tr>
<td>Conclusion and discussion</td>
<td>108</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>110</td>
</tr>
<tr>
<td>References</td>
<td>110</td>
</tr>
</tbody>
</table>

A shear wave analysis system for semi-automatic measurements of shear wave splitting above volcanic earthquakes: descriptions and applications

L. Zaccarelli, F. Bianco

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>Volcanic stress monitoring</td>
<td>114</td>
</tr>
<tr>
<td>SPY: Splitting Parameter Yield</td>
<td>114</td>
</tr>
<tr>
<td>Applications</td>
<td>118</td>
</tr>
<tr>
<td>Conclusions</td>
<td>123</td>
</tr>
<tr>
<td>References</td>
<td>123</td>
</tr>
</tbody>
</table>

Converted phases analysis of the Campi Flegrei caldera using active and passive seismic data

T.M. Blacic, D. Latorre, J. Virieux

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>125</td>
</tr>
<tr>
<td>Methods</td>
<td>126</td>
</tr>
<tr>
<td>Data</td>
<td>128</td>
</tr>
<tr>
<td>Analysis of converted phase focusing</td>
<td>130</td>
</tr>
<tr>
<td>Discussion and conclusions</td>
<td>133</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>136</td>
</tr>
<tr>
<td>References</td>
<td>136</td>
</tr>
</tbody>
</table>

Seismic wave simulation in Campi Flegrei Caldera based upon Spectral Element Methods

E. Casarotti, A. Piersanti, J. Tromp

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>Methods</td>
<td>137</td>
</tr>
<tr>
<td>Modelling</td>
<td>146</td>
</tr>
<tr>
<td>Discussion and conclusion</td>
<td>157</td>
</tr>
<tr>
<td>References</td>
<td>157</td>
</tr>
</tbody>
</table>
Methodological advances in source and attenuation studies from the inversion of rise times of P pulses recorded at a local scale
S. de Lorenzo, E. Boschi, M. Filippucci, E. Giampiccolo, D. Patanè

Preface 161
Inversion technique 161
Data analysis 163
Data inversion 164
Fault plane resolution and a posteriori validation of results 166
Application to Mt. Etna microearthquakes 167
References 168

QP and QS of Campi Flegrei from the inversion of rayleigh waves recorded during the SERAPIS project
S. de Lorenzo, A. Zollo, M. Trabace, M. Vassallo

Summary 169
Data analysis 169
Data inversion 174
Conclusion 180
References 180

Multi-scale decomposition of velocity structure and application to first-arrival travel-time tomography
M. Delost, J. Virieux, S. Operto

Introduction 181
Wavelet Transformation 183
Travel-time tomography 183
Synthetic examples 186
Resolution analysis for defining the binary M operator 188
Application to a synthetic real date configuration 189
Conclusion 191
References 192

An EGF technique to infer the rupture velocity history of a small earthquake: a possible solution to the tradeoff among Q and source parameters
M. Filippucci, S. de Lorenzo, E. Boschi

Introduction 195
The technique 195
Testing the EGF technique on synthetic seismograms 198
Testing the EGF technique on real seismograms 202
References 205

Fresnel or finite frequency approach
S. Gantier, G. Nolet, J. Virieux

Methodology 209
Application to the western part of the Corinth rift 211
Contents

Results 214
Discussion and conclusion 216
Acknowledgments 217
References 218

Elastic full waveform inversion in the frequency domain 221
C. Gélis, J. Virieux, S. Operto
 Introduction 221
 Frequency-domain full-waveform inversion 222
 Simple canonical example 224
 Construction of a 2D profile from the 3D SERAPIS experiment 225
 Perspective and conclusions 229
 Acknowledgments 230
 References 231

Numerical simulation of seismic experiments in volcanic areas: development of a technique based on the Pseudo-spectral Fourier method and its application to the build up of synthetic data sets for the Campi Flegrei area 233
P. Klin, E. Priolo
 Introduction 233
 Method 234
 Modelling 242
 Discussion and conclusion 246
 References 246

Converted phases analysis for passive/active seismic data 249
D. Latorre, T. Blacic, J. Virieux, T. Monfret
 Method 251
 Discussion and conclusion 257
 Acknowledgments 258
 References 258

Seismic scatterer imaging using shot array beamforming: method and application to the Campi Flegrei caldera 261
N. Maercklin
 Introduction 261
 Imaging method 262
 Application to the Campi Flegrei caldera 264
 Discussion and conclusions 266
 References 266

Analysis of PS-to-PP amplitude ratios for seismic reflector characterisation: method and application 269
N. Maercklin, A. Zollo
 Introduction 269
Contents

Analysis method 270
Application to the Campi Flegrei caldera 274
Discussion and conclusions 278
References 279

Iterative tomographic analysis based on automatic refined picking 281
C. Satriano, A. Zollo, C. Rowe

Introduction 281
Picking refinement based on cross-correlation 283
Iterative Tomographic Imaging 285
Application to the active seismic data of the SERAPIS experiment 286
Discussion and conclusions 291
References 293

Acoustic full waveform inversion in the frequency domain 295
F. Sourbier, S. Operto, J. Virieux

Introduction 295
Frequency-domain finite-difference waveform modelling 297
Frequency-domain full-waveform inversion 298
Perspective and conclusions 306
Acknowledgments 307
References 307

Development of a multi-phase dynamic ray-tracing code 309
T.A. Stabile, R. De Matteis, A. Zollo

Introduction 309
Method 310
Method validation 313
Structure of the Comrad.f code 316
Conclusions 318
References 319

Pore pressure prediction based on passive seismic and rock physics modeling 321
T. Vanorio, J. Virieux, D. Latorre

Introduction 321
Geophysical outline of the area 322
Methods 324
Results 331
Conclusion and perspectives 332
Acknowledgments 333
References 334
Contents

Depth and morphology of reflectors from the 2-D non-linear inversion of arrival-time and waveform semblance data: method and applications to synthetic data
M. Vassallo, A. Zollo

Introduction 337
Method 338
Synthetic data modelling 340
Discussion and conclusion 344
References 347

Converted phase identification and retrieval of Vp/Vs ratios from move-out reflection analysis: application to the Campi Flegrei caldera
M. Vassallo, A. Zollo, D. Dello Iacono, N. Maercklin, J. Virieux

Introduction 349
Method 350
Application to a synthetic dataset 351
Application to the SERAPIS data 353
Conclusion 357
References 359

Task 3
REAL TIME OBSERVATIONS AND MEASUREMENTS 361

PLINIO: an interactive web interface for seismic monitoring of Neapolitan volcanoes
L. D’Auria, R. Curciotti, M. Martini, G. Borriello, W. De Cesare, F. Giudicepietro, P. Ricciolino, G. Scarpato

Introduction 363
General overview of PLINIO 363
Real-time earthworm processing and WBSM database 364
Manual processing and GeoVes database 366
PHP interface and JpGraph libraries 366
Example queries 369
References 374

A unified 3D velocity model for the Neapolitan volcanic areas
L. D’Auria, M. Martini, A. Esposito, P. Ricciolino, F. Giudicepietro

Introduction 375
Starting velocity models 375
Unification of velocity models 381
Relocation of seismic events 385
Conclusions 388
Acknowledgments 389
References 389
Contents

RS-485 interface for external use of the GPS receiver of the Kinemetrics® dataloggers

S. Guardato, G. Iannaccone

Summary 391
Functioning principles 391
Interface description 393
The datalogger-side board 394
The GPS receiver-side board 396
Electrical interconnections 398
References 398

Automatic analysis of seismic data by using Neural Networks: applications to Italian volcanoes

F. Giudicepietro, A. Esposito, L. D’Auria, M. Martini, S. Scarpetta

Introduction 399
Neural Networks 400
Feature extraction stage 404
Application areas and results 405
References 414

CUMAS (Cabled Underwater Module for Acquisition of Seismological data): a new seafloor module for geohazard monitoring of the Campi Flegrei volcanic area

G. Iannaccone, S. Guardato, M. Vassallo, L. Beranzoli

Introduction 417
The features of CUMAS 418
Technical characteristics of the buoy 422
Power requirements 422
Expected results 424
References 425

Use of Forward Looking InfraRed thermal cameras at active volcanoes

L. Lodato, L. Spampinato, A.J.L. Harris, J. Dehn, M.R. James, E. Pecora, E. Biale, A. Curcuruto

Introduction 427
Thermal camera installation at La Fossa crater, Vulcano (Aeolian Archipelago) 428
References 434

A multiparametric low power digitizer: project and results

M. Orazi, R. Peluso, A. Caputo, M. Capello, C. Buonocunto, M. Martini

Introduction 435
System architecture and project 436
The main connection board 442
Firmware description 443
Conclusions and results 452
Contents

Thermal gradiometer’s array: mechanical and electrical design and first field test results
G. Romeo, S. Bello, P. Benedetti, M. Mari, G. Urbini

- 1-wire design 461
- Gradiometer prototypes: electrical and logic design 461
- Mechanical design 463
- Gradiometers connection 466
- Data logging 466
- Hardware implementation 469
- Field tests 473
- References 473

Thermal gradiometer: purposes, design and performance
G. Romeo, G. Chiodini, F. Pongetti

- Introduction 475
- Temperature measurements 475
- Thermal gradiometer assembly 477
- 1-wire thermometers 477
- Prototype test 479
- References 480

The permanent thermal infrared network for the monitoring of hydrothermal activity at the Solfatara and Vesuvius volcanoes
G. Vilardo, G. Chiodini, V. Augusti, D. Granieri, S. Caliro, C. Minopoli, C. Terranova

- Introduction 483
- Experiment design and system development 484
- The TIR remote monitoring station 485
- The TIR acquired scenes 487
- The portable TIR monitoring station 489
- Analysis of the Solfatara TIR image series 490
- Conclusions 495
- Acknowledgments 496
- References 496
Can flank instability at Stromboli volcano provide insights into precursory patterns of eruptions?

S. Falsaperla, M. Neri, E. Pecora, S. Spampinato

Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Catania, Italy

Abstract: By 30 December, 2002 a flank collapse affected the Sciara del Fuoco on the western slope of Stromboli volcano, Italy. To characterize this landslide-prone area for hazard mitigation purposes, Falsaperla et al. [2006] followed a multidisciplinary approach, merging geo-structural observations with visual images (taken by a video-camera surveillance network and vertical ortho-photos) and seismic data recorded throughout the continuous monitoring of the volcano. The study combined these different data types in a complementary framework to assess how and where the Sciara del Fuoco morphology changed. The time span investigated ranged from 2002 to 2004. We present here the results of that study, which identified the zones affected by sliding episodes and highlighted their changes in time. The evidence of the regression of the upper landslide scarp toward the summit craters over the years leads us to speculate about precursory patterns of eruptive activity linked to the progression of flank instability.

INTRODUCTION

The 28 December, 2002 marked the beginning of one of the most peculiar eruptive episodes at Stromboli over the last decades [Ripepe et al., 2005]. A flank collapse occurred two days after the onset of the lava emission [Bonaccorso et al., 2003; La Rocca et al., 2004; Calvari et al., 2005; Acocella et al., 2006], and affected both the subaerial and submarine part of the Sciara del Fuoco (hereafter SDF), a deep scar located in the western side of the Stromboli island. The collapse yielded two huge landslides associated with tsunami waves, which ravaged part of the island and swept the coasts of Sicily and Calabria. The landslides involved over 30 X 10^6 m^3 of material, ~2/3 of which below sea level [Bonaccorso et al., 2003; Pino et al., 2004]. Minor sliding episodes continued throughout the lava emission, which lasted 206 days. Landslides, flowing debris, and rockfalls commonly occur in several volcanic areas. A compelling question which rises when similar exogenous phenomena occur is whether they can cause changes that affect the magma feeder. This
question is the subject of intensive studies on andesitic volcanoes, such as for example Soufrière Hills, Montserrat [e.g., Calder et al., 2002]. Nevertheless, even for a basaltic volcano like Stromboli, the potential high risk of large failure events [e.g., Tibaldi, 2001] poses a significant hazard for the local population. SDF is prone to phenomena of flank instability, and therefore the possibility that events similar to or even larger than those of 30 December, 2002 might affect the volcano feeder became one of the major concerns of Italian Civil Defense and volcanologists ever since.

We present here the results of a multidisciplinary study by Falsaperla et al. [2006], which took into account geostructural data, ortho- and video-images, and seismic records at Stromboli volcano. The study provided an overview of the sliding phenomena at SDF between 2002 and 2004. In the light of the results obtained, we outline potential links between flank instability and endogenous changes, which might impinge upon volcanic activity.

DATA AND ANALYSIS

In the multidisciplinary study proposed by Falsaperla et al. [2006], structural field surveys and aerial, digital ortho-photos (courtesy of M. Marsella) allowed reconstructing the morpho-structural evolution of SDF between 2002 and 2004. Figure 1 depicts the changes over these years. The landslide phenomena of 30 December, 2002 deeply eroded the SDF, creating a depression that in some points reached depths of several tens of meters. Afterwards, a reshape process began through other minor erosive episodes and the deposition of lavas. The latter were erupted within a part of the collapsed/eroded zone, until the end of the eruption on 21 July, 2003. The lava effusion contributed to fill the depression, stabilizing a wide portion (more than 50 percent) of it and approaching a new gravitational equilibrium. Conversely, erosive phenomena continued in the zone of the landslides not reached by the lavas, as evident from the progressive regression of the erosive rim, which approached the crater zone (Figure 2). These phenomena yielded several rockfalls and flowing debris, which involved a rock volume estimated at ~ 5 X 10^5 m^3 [Falsaperla et al., 2006]. A comparative analysis of these sliding processes was based on seismic signals and video images covering the time span from March to October, 2004. The seismic signals were recorded at three seismic stations (Table 1) in continuous acquisition mode. The stations belonged to the permanent seismic network of *Istituto Nazionale di Geofisica e Vulcanologia* (INGV), and were located between a few hundreds meters and 1.8 km from SDF (ISTR, STR3 and STR8 in Figure 1). The images came from two live-cams, which recorded in the visible and IR band. The live-cams were set up in October, 2003 at 374 m a.s.l., and at a distance of 1042 m from SDF (LC in Figure 1). For the thermal live-cam, vertical and horizontal viewing was 18° and 24°, respectively. Video signals were digitalized to 640 X 480 pixels, and a GPS time-code added date.
and time to each frame. Both seismic and live-cam equipment was run by INGV, and continuously monitored the volcano in the framework of surveillance activities to reduce volcanic hazard.

![Figure 1](image)

Fig. 1. Morpho-structural evolution of SDF between 2002 and 2004 (modified from Falsaperla et al., 2006). (a) Location of the studied area and ortho-photo in August 2004, with projection of the landslide margins, main displaced materials, lava flows, and SDF rim. AVA = Aeolian volcanic arc; LC = Thermal and visual live-cameras; ISTR, STR3, STR8 = seismic stations. (b) Morphological details of the landslide area.

Tab. 1. Instrumental characteristics of the seismic stations.

<table>
<thead>
<tr>
<th>Station</th>
<th>Seismometer</th>
<th>Sampling frequency</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISTR</td>
<td>Geothech S-13</td>
<td>100 Hz</td>
<td>38N47.04</td>
<td>15E11.58</td>
<td>70</td>
</tr>
<tr>
<td>STR3</td>
<td>Guralp CMG40T</td>
<td>50 Hz</td>
<td>38N47.57</td>
<td>15E13.50</td>
<td>236</td>
</tr>
<tr>
<td>STR8</td>
<td>Guralp CMG40T</td>
<td>50 Hz</td>
<td>38N47.58</td>
<td>15E13.07</td>
<td>569</td>
</tr>
</tbody>
</table>

The data set consisted of 49 episodes, which were taken in daytime (Table 2). In so doing, the comparative analysis of video images and seismic records provided the opportunity to detect the sliding episodes in space and time. The search of each episode was fixed from the beginning of the digital readings on the seismic records.

Landslides, rockfalls, and flowing debris have a typical seismic signature [e.g., McNutt, 2000], which allowed a simple identifications of these signals from events of other origin, such as earthquakes and explosion quakes (Figure 3a). Their frequency content was characteristic as well (Figure 3b), and ranged bet-
ween 1 Hz and 20 Hz with small differences from station to station. Amplitude and duration of the episodes analyzed on the seismic records had no linear relationship. Consequently, no estimate of the source volume involved in the sliding process could be done from seismograms.

Overall, 23 out of 49 episodes had a documented visual record (Table 2). The remnant 26 episodes were not distinguishable as: i) they occurred during cloudy and/or bad weather conditions which might have hindered their occurrence (22 cases); ii) the weather conditions were fine, but there was no trace of them (4 cases). It is likely that the four unseen episodes stemmed from a zone outside the visual field of the video cameras, which covered only the upper-medium slope of SDF. The comparison between seismic records and timing of the images for the 23 documented episodes highlighted that the start of the visual phenomenon was almost concurrent with the beginning of the seismic record (Figure 4). The delay was of the order of a couple of seconds, i.e., within the scale of the resolution on the frames.

Fig. 2. Close-up view of an aerial snapshot taken on 4 August, 2004, showing the zone of SDF affected by 23 sliding episodes documented by visual images. The red circle and white dashed lines mark the position and visual field of the INGV live-cams. The red line marks the upper landslide scarp close to the summit craters. Image credit: M. Marsella, University of Rome 1.
The 23 episodes documented by images shed some light on trigger mechanisms of seismic shaking. In spite of the absence of earthquakes preceding the sliding processes, the comparative analysis allowed documenting explosion quakes and Strombolian explosions conducive to shaking instability. There were 14 out of 49 episodes preceded by an explosion quake in a time span around two minutes before the onset on seismogram. An example is given in Figure 5, which includes a thermal image of the live-cam in IR band. The thermal image shows a typical Strombolian explosion at the summit craters – with ejection of ash, lapilli, and hot gas – followed by a rockfall episode. It is worth noting that the inspection of the thermal images excluded the presence of hot components within the material involved in the rockfalls.

Flowing debris and rockfalls yielded no evident distinction on the seismic record. On the other hand, since the video footage was limited, the mechanism of motion could not be wholly traced by the images. The boost of the

Fig. 3. Seismogram (a) and relative spectrogram (b) of a time series recorded at the vertical component of STR8 on 27 August, 2004. An explosion quake shortly precedes a rockfall episode. The spectrogram is calculated applying the Fast Fourier Transform to successive time series of 2.56 s with an overlap of 50%, and depicting the results as consecutive spectra. The frequency content of the rockfall is outstandingly higher than that of the explosion quake.
<table>
<thead>
<tr>
<th>Date and time (yyyyymmdd hh.mm.ss)</th>
<th>Visual observations and index (I) of resolution from 1 (poor) to 5 (good)</th>
<th>Time onset of: visible explosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>20040329 09.39.38</td>
<td>Cloudy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040329 12.27.52</td>
<td>Cloudy, hard to distinguish anything</td>
<td>12.26.55</td>
</tr>
<tr>
<td>20040401 12.08.38</td>
<td>Cloudy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040403 17.41.36</td>
<td>Fine weather, no event</td>
<td></td>
</tr>
<tr>
<td>20040410 05.33.16</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>20040413 15.56.35</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td>15.55.04</td>
</tr>
<tr>
<td>20040413 17.03.40</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td>17.03.19</td>
</tr>
<tr>
<td>20040414 07.35.06</td>
<td>Foggy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040414 08.32.49</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040414 12.20.14</td>
<td>Foggy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040415 07.43.55</td>
<td>I3</td>
<td>07.43.39</td>
</tr>
<tr>
<td>20040415 10.07.58</td>
<td>I4</td>
<td></td>
</tr>
<tr>
<td>20040415 15.48.19</td>
<td>Foggy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040417 06.38.07</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040610 14.05.31</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td>14.05.12</td>
</tr>
<tr>
<td>20040628 09.44.56</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040630 13.09.55</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040722 17.35.29</td>
<td>Fine weather, no event</td>
<td></td>
</tr>
<tr>
<td>20040723 16.02.31</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040723 16.21.33</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040723 16.29.34</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td>16.28.37</td>
</tr>
<tr>
<td>20040724 17.22.26</td>
<td>Strong wind and ash, hard to distinguish anything</td>
<td>17.21.22</td>
</tr>
<tr>
<td>20040725 09.26.14</td>
<td>I3</td>
<td>09.24.28</td>
</tr>
<tr>
<td>20040725 09.37.38</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>20040725 13.58.33</td>
<td>Cloudy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040727 13.44.02</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>20040727 14.47.20</td>
<td>Foggy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040802 07.24.31</td>
<td>I1</td>
<td></td>
</tr>
<tr>
<td>20040802 17.19.27</td>
<td>I4-5</td>
<td>17.17.49</td>
</tr>
<tr>
<td>20040806 17.04.59</td>
<td>Fair visibility, no event</td>
<td>17.17.23</td>
</tr>
<tr>
<td>20040807 06.37.58</td>
<td>Fair visibility, no event</td>
<td>06.37.26</td>
</tr>
<tr>
<td>20040810 18.12.28</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>20040811 07.38.57</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>20040813 16.18.29</td>
<td>I4</td>
<td>16.17.29</td>
</tr>
<tr>
<td>20040813 17.44.41</td>
<td>I5</td>
<td></td>
</tr>
<tr>
<td>20040816 09.20.23</td>
<td>I5</td>
<td></td>
</tr>
<tr>
<td>20040816 09.42.49</td>
<td>I5</td>
<td></td>
</tr>
<tr>
<td>20040827 16.30.50</td>
<td>I4</td>
<td>16.30.08</td>
</tr>
<tr>
<td>20040827 16.48.01</td>
<td>I3</td>
<td>16.30.06</td>
</tr>
<tr>
<td>20040830 08.55.03</td>
<td>I3</td>
<td></td>
</tr>
<tr>
<td>20040830 13.45.49</td>
<td>I2</td>
<td>13.43.40</td>
</tr>
<tr>
<td>20040830 14.55.07</td>
<td>I2</td>
<td></td>
</tr>
<tr>
<td>20040830 15.12.47</td>
<td>Cloudy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20040830 15.31.42</td>
<td>I3</td>
<td></td>
</tr>
<tr>
<td>20040906 07.57.41</td>
<td>I3</td>
<td>07.56.34</td>
</tr>
<tr>
<td>20040906 11.43.31</td>
<td>I3</td>
<td>07.56.04</td>
</tr>
<tr>
<td>20040906 11.57.49</td>
<td>I3</td>
<td></td>
</tr>
<tr>
<td>20041010 09.04.49</td>
<td>Cloudy, hard to distinguish anything</td>
<td></td>
</tr>
<tr>
<td>20041013 11.02.49</td>
<td>Cloudy, hard to distinguish anything</td>
<td></td>
</tr>
</tbody>
</table>
DISCUSSION AND CONCLUSIONS

Apart from the two huge landslides and concurrent tsunami on 30 December, 2002 – two days after the renewal of effusive activity – the island of Stromboli was not affected by as large sliding episodes ever since. However, whilst the lava flows emplaced along the slope of SDF had a stabilizing effect, numerous flowing debris and rockfalls continued in the zones which were not covered by lavas during and well after the end of the lava effusion in July, 2003. This evidence supported the hypothesis that the flank collapse of 30 December enhanced the latent instability of SDF [Falsaperla et al., 2006]. The observation that 14 out of 49 sliding episodes shortly (about 120 s) occurred after moderate explosion quakes / Strombolian explosions (Figure 5) further corroborated this hypothesis.

Can flank instability at Stromboli volcano provide insights into precursory patterns of eruptions?

Fig. 4. Seismogram of a rockfall episode at the Sciara del Fuoco and concurrent snapshots (1-8) at the INGV live-cam in the visible band. The yellow arrow marks the beginning of the rockfall in the snapshots. The numbered red triangles from 1 to 8 on the seismogram match the sequence of video frames, which are a close-up view of the red dashed rectangle in frame 1.
Falsaperla et al. [2006] identified the zones affected by the sliding episodes between 2002 and 2004 (Figure 1). The most active zone was located in the upper part of the SDF, close to the niche of detachment of the landslides of 30 December, 2002 (Figure 2). In August, 2004 this niche was only 125 m distant from the summit craters, showing to be still active. Reporting this finding, Falsaperla et al. [2006] concluded that if progressive degradation continued toward the craters, then a change in eruptive behavior cannot be excluded due to a possible sudden depressurization of the volcano feeder. In this light, even neglecting the hypothesis of large failure events, unrelenting sliding episodes close to the craters might represent a potential hazard due to the consequences of the impinging eruptive activity. On the other hand, there is a mutable remodeling process of the SDF slopes, which is the result of contraposed actions between the welding effect of new lava flows and erosive phenomena. For example, the renewal of lava effusions in spring 2007 once again changed the morpho-structural characteristics of the SDF, leading the balance of the two actions in favor of the stabilizing effect. In that occasion, an effusive frac-

Fig. 5. Thermal image (a) and snapshots (b-d) taken from the INGV video cameras for a rockfall episode of our data set, which was shortly preceded by a Strombolian explosion. The red arrow marks the beginning of the rockfall in the snapshots. The frame in (a) is a close-up view of the black rectangle in (b).

64
ture propagated downslope in the SDF, reaching a minimum elevation of about 400 m asl. During the propagation of the dike, the highest portion of the fracture system collapsed, forming a graben (Neri et al., 2007). But the major morpho-structural changes happened in the summit area: the internal walls of the central conduit collapsed, causing the enlargement of the summit crater area and the partial obstruction of the conduit which triggered some explosive events due to the overpressure inside the system. Therefore, only a continuous multidisciplinary monitoring of the volcano can provide valuable information to evaluate the on-going assessment and contribute in reducing the hazard of this landslide-prone area.

ACKNOWLEDGMENTS

This work was funded by grants from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Dipartimento per la Protezione Civile, Italy, project INGV-DPC V4/02. We are grateful to the coordinators of the project V4 Warner Marzocchi and Aldo Zollo for their encouragement and support.

REFERENCES

