are embedded in the summit paleo-landscape and are placed at different elevations. In the intermontane basin margins as well as on the slopes of their tributary valleys; geomorphological/stratigraphic evidence clearly indicates that, in these stages, the intermontane basins hosted closed lakes fed by a centripetal drainage network. This second group, characterized by tectonically defomed Roccu-Quaternary lacustrine/alluvial deposits fill up the intermontane basins, testifying their contemporaneous activity. In some cases (e.g. Fucino and Sulmona basins) the spatial distribution of sediments indicates that the ancient lakes were topographically related to the present depressions; other basins (e.g. Sato and Turano basins) were definitely inconsistent in their development as a consequence of intense tectonic deformation and/or erosion.

The integrated geomorphological/stratigraphic analysis of the Abruzzo Appennines, indicates that the lacustrine basins were drained off by progressive erosion, induced in the different areas by the large scale uplift which affected the Appennines during the Quaternary and the contemporaneous activity of the vertical NTO (2007). In 2005, the Appennines underwent an intense episode of tectonic activity leading to the migration of tectonic basins (Gabellini & Messina, 2009), and may undertake intense tectonic migration in the Abruzzo Appennines: the Quaternary Tectonics, 15 (1), 55-77.

T40-8 Orale Gori, Stefano
10.1474/Eptimo.02.0824.Geotalia2007
ACTIVE FAULTING ACROSS THE MT. MORRONE SOUTHWEST- SLOPE (CENTRAL APPENNINES, ITALY)
GORI Stefano, GIACCO Blaiga1, GALADINI Fabrizio1, FALCUCCI Emanuela1, SPADOLI Andrea1, PIZZI Alberto1, MESSINA Paolo1, Istituto di Geofisica e Vulcanologia, CNR - Roma; 2 Università di Sulmona; 3 Università di Roma "Sapienza"; 4 Dipartimento di Scienze della Terra, Campus Universitario, Università "G. D'Annunzio" Chieti-Pescara
Presenter e-mail: gori@ingv.it
Key terms: central Appennines; active faulting; earthquake; slip rate
Activo

T40-9-ORAL Pace, Bruno
10.1474/Eptimo.02.0825.Geotalia2007
THE MAELIA EARTHQUAKES (ABRUZZO, ITALY): SOME INSIGHTS OBTAINED FROM GEOLGICAL AND MACROSEISMIC DATA FOR SEISMIC SOURCE IDENTIFICATION
Pace Bruno
Presenter e-mail: b.pace@unirch.it
Key terms: seismotectonics; historical earthquakes; scenario; Maiella; central Italy
The nature and distribution of the seismicity and of the active structures in central Italy show that the active and seismogenic deformation field of central Italy is mainly characterized by a complex 3D network of seismogenic structures and by a co-axial contraction on the frontal part of the belt, close to the Adriatic sea border. In this tectonic context become crucial, from the seismic hazard point of view, the seismotectonic characterization of the major earthquake localized between the two seismogenic provinces with different kinematics. The major earthquakes of the Maiella region (Abruzzo, central Italy), like the 1707 (7-18-1707), the 1772 (24-11-1772), the 1773 (1773), the 1874 (8-18-1874) and the 1971 (20-11-1971) events, are just localized in this intermediate position, outward of the easternmost active NW-SE normal fault alignment and inward of the NTO thrust striking fault of the Coastal Adriatic confluential province. These earthquakes have been attributed by some Authors (e.g. Pace et al., 2006) to mid crust thrust faulting along the deep projection of the SW-dipping Adriatic Basilic Bay Thrust, but the discussion about a possible upper crust normal faulting is still open. The analysis of the distribution of the macroseismic data of the Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.

Maiella earthquakes may greatly help to define the geometry and depth of the seismogenic source and, therefore, to discriminate between the different interpreted potential of the event.