Anisotropic permeabilities evolution of reservoir rocks under pressure: New experimental and numerical approaches

Dautriat J.¹-²*, Gland N.², Dimanov A.¹, Youssef S.², Vizika O.²

* Corresponding author: jeremie.dautriat@ifp.fr

© IFP
Context of our study:

Reservoir permeability drop due to compaction during the production

- Primary recuperation → Pore Pressure P_p decreases
- Effective stress increases
 \[\sigma_{eff} = \frac{2\sigma_h + \sigma_v}{3} - P_p \]
- Effective vertical stress increases (dependent of the distance to the borehole)
- Horizontal permeability dependency of the production

Motivations:
Relation between the evolution of the stress field anisotropy and the transport properties anisotropy?
Effects of the stress path on reservoir compressibility? → Reservoir simulation
EXPERIMENTAL SET-UP

Triaxial cell specially designed to directional permeabilities measurements

P_max = 69 MPa
T_max = 130°C
Anisotropic permeabilities evolution of reservoir rocks under pressure

Special Core sleeve equipment

Tridirectional Permeabilities:

Axial permeability measurements: $k_{az,FL}$ & $k_{az,ML}$
- Classical between inlet and outlet of the sample
- Pore pressure sampling at the mid-length of the sample

Radial permeability measurements: k_{rx} & k_{ry}
- 2 pairs of injector/receptor at the contact of lateral sample surface.
Anisotropic permeabilities evolution of reservoir rocks under pressure

Special Core sleeve equipment

Tridirectional Permeabilities:

Axial permeability measurements: $k_{az,FL}$ & $k_{az,ML}$
- Classical between inlet and outlet of the sample
- Pore pressure sampling at the mid-lenght of the sample

Radial permeability measurements: k_{rx} & k_{ry}
- 2 pairs of injector/receptor at the contact of lateral sample surface.

Complementary measurements:

Sample strains:
- Axial displacement of the upper piston: external LVDT
- Radial strains: Cantilever fixed on the core sleeve

Porosity Evolution:
- ΔV_p recorded by ISCO Pump during each confining pressure increase.
Anisotropic permeabilities evolution of reservoir rocks under pressure

Modified Darcy law:
Geometric Factor Calculation using Finite Elements Method

Modified Darcy law: \[\frac{Q}{A_a} = -G \frac{k_r \Delta P}{\mu D} \]

True radial flow
Equivalent Darcy flow

\[Q_n = A_n \frac{k_n \Delta P_n}{\mu D} \]
\[Q_a = A_a \frac{k_a \Delta P_a}{\mu D} \]

Effective cross-section Area
Injector Area

Considering an isotropic permeability case:

Geometric factor \[G = \frac{A_a}{A_n} = \frac{\Delta P_n}{\Delta P_a} \]

FEM simulation \[G = 0.18 \]

Bai & al. SPE#78188 (2002)
EXPERIMENTAL RESULTS
Anisotropic permeabilities evolution of reservoir rocks under pressure

Tested Samples

Fontainebleau Sandstones:

Porosity: 5.4 to 8% Permeability: 2.5 to 30mD

→ Hydrostatic loading

Bentheimer Sandstones:

Porosity: 24% Permeability: 3000 mD

→ Hydrostatic and Deviatoric loading at low confining pressure

Estaillades Limestones:

Porosity: 27% Permeability: 150mD

→ Hydrostatic and Deviatoric loading at low confining pressure
Anisotropic permeabilities evolution of reservoir rocks under pressure

Experimental results: Low permeability sandstone (Fontainebleau)

HYDROSTATIC LOADING

SAMPLE 1: $\phi = 5.4\%$

Anisotropic permeabilities evolution of reservoir rocks under pressure

Experimental measurements validation on Fontainebleau sandstones

Confrontation of measured $k-\phi$ and a model of diagenetic compression of Quartz aggregates

Grain Pore Throat Model*

$$k \propto \left(\phi^{1-u} - \phi_r^{1-u} \right)^4$$

ϕ_r: Residual Porosity; U: Geometrical Exponent

defined as $S \propto \phi^U$

Verified for 3 Fontainebleau Samples (low porosity and low permeability)

* Chauveteau G. (2002) SPE#73736
Anisotropic permeabilities evolution of reservoir rocks under pressure

Experimental results: High permeability sandstone (Bentheimer)

HYDROSTATIC LOADING

- $k_{0az,FL} = 1840 \text{ mD}$
- $k_{0az,ML} = 2900 \text{ mD}$
- $k_{0ry} = 2825 \text{ mD}$
Anisotropic permeabilities evolution of reservoir rocks under pressure

« UNIAXIAL » LOADING

Brittle failure: \(\sigma_a = 53.5 \text{ MPa} \)

Effective Elastic moduli calculated in the range of axial stress [20:40] MPa:

\[
E = 10.3 \text{ GPa} \\
\nu = 0.2
\]

Rupture influence on 3D permeabilities

<table>
<thead>
<tr>
<th>Axial</th>
<th>(k_{az,FL \text{ before failure}} = 1185 \text{ mD})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(k_{az,FL \text{ after failure}} = 1560 \text{ mD})</td>
</tr>
<tr>
<td>Radial</td>
<td>(k_{rx \text{ before failure}} = 2139 \text{ mD})</td>
</tr>
<tr>
<td></td>
<td>(k_{rx \text{ after failure}} = 631 \text{ mD})</td>
</tr>
</tbody>
</table>

Anisotropic permeabilities evolution of reservoir rocks under pressure

Experimental results: intermediate permeability limestone (Estaillades)

Porosity evolution - hydrostatic loading

Homogeneous Pore Collapse

$P^* = 30$ MPa

Permeability evolution - hydrostatic loading

$k_{0az,FL} = 152$ mD
$k_{0az,ML} = 162$ mD
$k_{0ry} = 70$ mD

$k_{0az,FL} = 20$ mD
$k_{0az,ML} = 20$ mD
$k_{0ry} = 13$ mD
Anisotropic permeabilities evolution of reservoir rocks under pressure

Experimental results: Intermediate permeability limestone (Estaillades)

High Resolution Micro-Scanner Slides (3 μm resolution)

BEFORE LOADING

AFTER LOADING
Anisotropic permeabilities evolution of reservoir rocks under pressure

Experimental results: Intermediate permeability limestone (Estaillades)
CONCLUSIONS #1

• Simultaneous radial and axial permeability measurements are feasible.
• Classical axial permeability measurements may be affected by end effects.
• The pressure dependency of permeabilities is well captured.

ON GOING EXPERIMENTAL WORK:

- Investigation of the influence of strains localization on flow properties (In-situ Observations)
- Focus on stress paths more representative of reservoir conditions.
Anisotropic permeabilities evolution of reservoir rocks under pressure

PORE SCALE MECHANISMS MODELISATION
Anisotropic permeabilities evolution of reservoir rocks under pressure

Modelisation of pore-scale mechanisms

Equivalent Pore Network extraction*:

- Pores: Equivalent Volume spheres
- Throats: Cylindrical channels

Output data:
- Throats dimension: L_T, r_T & AR
- Equivalent pores volumes: ϕ
- Network connectivity

* Youssef et al. (2007) SCA
Transport properties simulation

- **Individual channel conductance:**
 \[
g = \frac{\pi r^4}{8 L}
\]

Problem formulation:

- In the throat between pores i and j:
 \[
 q_{ij} = g_{ij} (P_i - P_j)
 \]

- In the Pores:
 \[
 \sum_{i \to j} q_{ij} = 0
 \]

- Matrix formulation:
 \[
 G \cdot \bar{P} = \bar{S}
 \]

- → Resolution of network effective hydraulic conductivity

Network compaction implementation

Spherical Pores:

- \[
 r_p \approx r_{p,0} \left(1 - \gamma_p (p - p_0)\right)^* \\
 \gamma_p = \frac{(1 + \nu)}{2E}^{**}
 \]

Cylindrical Pore Throats:

- \[
 r_T \approx r_{T,0} \left(1 - \gamma_T (p - p_0)\right)^* \\
 \gamma_T = \frac{(1 + \nu^2)}{E}^{**}
 \]

\(l_T\) pressure dependency neglected

\[
G_T(P) \rightarrow G(P) \rightarrow k(P)
\]

Anisotropic permeabilities evolution of reservoir rocks under pressure

Modelisation of pore-scale mechanisms: Bentheimer Sandstone Example

Extracted equivalent pore network
Volume = 500x500x500 x 6 µm

\[\phi_{\text{exp}} = 24.5\% \quad \leftrightarrow \quad \phi_{\mu CT} = 24.4\% \]
Anisotropic permeabilities evolution of reservoir rocks under pressure

Modelisation of pore-scale mechanisms: Bentheimer Sandstone Example

Extracted equivalent pore network
Volume = 500x500x500 \times 6 \mu m

\[
\begin{align*}
 k_{\text{exp}} &= 3000 mD \\
 k_{\mu CT} &= 847 mD \\
 A_{k, \mu CT} &< 10\%
\end{align*}
\]

Discrepancy lies to the definition of \(r_T \)
(minimum local pore throat radius)

\[
g_h = \frac{\pi r_T^4}{8 L}
\]
CONCLUSIONS #2: MICRO-TOMOGRAPHY CONTRIBUTION

• Simple pressure dependency model can be applied on the equivalent pore network.

ON GOING NUMERICAL WORK:

- Alternative description of throats dimensions
- Investigation of the anisotropic distribution of the channels
- FEM simulation of the coupled effects of deforming matrix and fluid flows (TRUE GEOMETRY OF THE POROSITY)
THANKS FOR YOUR ATTENTION
Anisotropic permeabilities evolution of reservoir rocks under pressure

New Experimental Set-up:
Triaxial cell specially designed to directional permeabilities measurements

\[P_{\text{max}} = 69 \text{ MPa} \]
Max Using Temperature = 130°
Anisotropic permeabilities evolution of reservoir rocks under pressure

Experimental results: Low permeability sandstone (Fontainebleau)

Sample 2: $\phi = 8\%$

Directional permeability evolution SAMPLE 2

Preliminary Experimental Conclusions:
- Radial and axial permeabilities values differences due to G calculation
- Intermediate axial permeability measurements looks more consistent than classical measurements