Coupled Thermo-Poro-Mechanical Effects in Earthquakes and Slow Slip Events

Paul Segall
Stanford University

Allan Rubin (Princeton)
Takanori Matsuzawa (NIED, Tokyo), Stuart Schmitt (Stanford)
Episodic Tremor and Slip

Dragert et al, Science, 2001
Obara, Science, 2002
Rogers and Dragert, Science, 2003
Cascadia Slow Slip Events

Szeliga et al, in review
Figure Courtesy of Tim Melbourne

Slip rate $\sim 10 \times$ plate-rate
Kilauea Silent Earthquakes

Mechanics of Slow Slip?

- Change in frictional behavior at high slip speed [e.g., Shibazaki and Iio, 2003].

- Rate-state friction near neutral stability [Liu and Rice, 2007].

- Dilatant stabilization of slip [this study].

Under what circumstances might a deep slow slip event trigger a damaging megathrust earthquake?
Dilatant Strengthening

- Frictional sliding causes dilatancy
- Fault zone pore pressure decreases if dilatancy rate exceeds rate of fluid influx
- Increases effective normal stress inhibiting slip

[Rice 1975; Rice and Simons, 1976; Rudnicki, 1979; Martin, 1980]
Dilatancy and Slow Slip

Equation of motion:
\[
\frac{G}{2\pi} \int_{-\infty}^{\infty} \frac{\partial u/\partial \xi}{\xi - x} d\xi - \mu(v, \theta)(\sigma - p) = \frac{\rho v_s}{2} v
\]

Friction law:
\[
\mu = \mu_0 + a \ln \left(\frac{v}{v_0} \right) + b \ln \left(\frac{\theta v_0}{d_c} \right)
\]

Evolution law:
\[
\frac{d\theta}{dt} = 1 - \frac{\theta v}{d_c} \quad \frac{d\theta}{dt} = -\frac{\theta v}{d_c} \ln \left(\frac{\theta v}{d_c} \right)
\]

Pore pressure diffusion:
\[
\frac{\partial p}{\partial t} = \frac{1}{\eta \beta} \frac{\partial}{\partial y} \left(\kappa \frac{\partial p}{\partial y} \right) - \frac{1}{\beta} \frac{d\phi}{dt}
\]
\[
\frac{dp}{dt} = p^\infty - p - \frac{1}{\beta} \frac{d\phi}{dt}
\]

Dilatancy law:
\[
\frac{d\phi}{dt} = -\epsilon \frac{\dot{\theta}}{\theta}
\]
Effect of Dilatancy on **Slip-rate**

No Dilatancy

Dilatancy

Two dimensional elasticity, rate-state friction with dilatancy (Segall and Rice, 1995), and one dimensional membrane diffusion.
Slow Slip in Subduction Geometry
The maximum pore pressure change is

\[\Delta p_{\text{max}} = \frac{\epsilon}{\beta} \ln \left(\frac{v \theta_i}{d_c} \right) \left(\frac{v t_f}{d_c} \right)^{-\frac{d_c}{v t_f - d_c}} \]

which in the limit \(vt_f / d_c \to \infty \) is

\[\lim_{vt_f / d_c \to \infty} \Delta p_{\text{max}} = \frac{\epsilon}{\beta} \ln \left(\frac{v \theta_i}{d_c} \right) \]

Thus the ratio of dilatant strengthening to frictional weakening is

\[E \equiv \frac{-f_0 \Delta p_{\text{max}}}{\Delta \tau^f} = \frac{f_0 \epsilon}{\beta b (\sigma - p^\infty)}. \]

The degree of drainage is given by

\[\frac{v \infty t_f}{d_c}. \]
Without Dilatant Strengthening, W/h^* is limited

Courtesy Allan Rubin
Moment Rate

\[\frac{W}{h^*} = 25 \quad \text{and} \quad \frac{W}{h^*} = 7 \]

Critical crack dimension \(h^* \) for nucleation (Ruina, 1983)
With Dilatancy \(W/h^* \) appears to be essentially unbounded.
QuickTime™ and a decompressor are needed to see this picture.
Thermal Pressurization

- Frictional sliding generates heat
- Pore fluid expands more than rock
- Pore pressure increases if rate of heat production exceeds rate of fluid and heat transport
- Reduces effective normal stress

Sibson (1973), Lachenbruch (1980); Mase and Smith (1985, 1987); Lee and Delaney (1987); J. Andrews (2002); Noda and Shimamoto (2005); Wibberly and Shimamoto (2005); Rempel and Rice (2006); Rice (2006); Bizzari and Cocco (2006); Segall and Rice (2006)
1. At what point do shear heating effects dominate frictional weakening?

- “Since the thermal process is important only for large earthquakes …” Kanamori and Heaton, 2000
- Andrews [2002] also suggests thermal pressurization effects important at ~ M 3-4.

- How does thermal pressurization influence earthquake slip and slip rate?
- Will an increase in pore-pressure limit the temperature rise and inhibit melting?
Shear Heating Induced Thermal Pressurization

Coupled Temperature and Pore-Pressure Fields Rice [2006]

\[
\frac{\partial T}{\partial t} = c_{th} \frac{\partial^2 T}{\partial y^2} \\
\frac{\partial p}{\partial t} = c_{hy} \frac{\partial^2 p}{\partial y^2} + \Lambda \frac{\partial T}{\partial t}
\]

Boundary Conditions

\[
\frac{\partial T}{\partial y} \bigg|_{y=0} = -\frac{\tau_f v}{2\rho c_p c_{th}} \\
\frac{\partial p}{\partial y} \bigg|_{y=0} = 0
\]
Influence of Thermal Pressurization on Nucleation Dimension

Without Thermal Pressurization With Thermal Pressurization

Aging Law, $a/b = 1/3$; Dieterich (1992), Rubin and Ampuero (2005)
Weakening Mechanisms

Change in $\mu(\theta,\nu)(\sigma - p_0)$

Change in $\mu_0(\sigma - p)$

10^{-4} m/s
Conclusions and Speculations

1. Dilatancy capable of stabilizing against rapid slip.
2. Slip rates and repeat times plausibly in the range of observed slow-slip events.
3. In the absence of dilatancy thermal pressurization becomes important well before seismic slip-rates.
4. Slow vs. fast slip may be controlled by competition between dilatant strengthening and
Full Diffusion Normal to Fault

Full Diffusion Normal to Fault Plane

Normalized Pore Pressure

Distance Along Fault

Distance From Fault Plane

Normalized Pore Pressure

Distance From Fault Plane
For step change in slip speed

$$\Delta p(t) = -\frac{\epsilon}{\beta} \ln \left(\frac{v\theta_i}{d_c} \right) \frac{vt_f}{d_c - vt_f} \left(e^{-vt/d_c} - e^{-t/t_f} \right)$$
Lockner, Naka, Tanaka, Ito and Ikeda, “Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake”, USGS Open File Rpt. 00-129, 2000
These are spring slider models

General Case with Rate-State Friction

- Thermal pressurization causes large displacement, slip velocity, and low frictional stress.
Thermal Pressurization limits temperature and inhibits melting.
Slow Slip Events World Wide

- Southwest Japan [Hirose et al, 1999; Miyazaki et al, 2006; Ozawa et al, 20002].
- New Zealand [Douglas, 2005,]

S.W. Japan, Obara, 2004

Boso, Japan, Ozawa (2003).
Seismicity Triggered by Slow Slip

8km Deep Fault Fits GPS Data

2005 Slow Slip Event with fault plane at 8 km
Relocated Earthquakes

Membrane diffusion and slip law

$$\frac{d\Delta p}{dt} + \frac{\Delta p}{t_f} = -\frac{\epsilon}{\beta} \frac{v}{d_c} \ln \left(\frac{\theta v}{d_c} \right)$$

For step change in slip speed

$$\Delta p(t) = -\frac{\epsilon}{\beta} \ln \left(\frac{v \theta_i}{d_c} \right) \frac{vt_f}{d_c - vt_f} \left(e^{-vt/d_c} - e^{-t/t_f} \right)$$
Shear Heating Induced Thermal Pressurization

Rate state friction Ruina [1983]; Dieterich [1979]

\[
\tau = (\sigma - p)[f_0 + a \log \frac{v}{v_0} + b \log \frac{\theta v_0}{d_c}]
\]
\[
\frac{d\theta}{dt} = 1 - \frac{\theta v}{d_c} \quad \text{or}
\]
\[
\frac{d\theta}{dt} = -\frac{\theta v}{d_c} \ln \left(\frac{\theta v}{d_c} \right)
\]

Equations of Motion, with Radiation Damping Rice [1993]

\[
\frac{\mu}{2\pi(1-\nu)} \int_{-\infty}^{\infty} \frac{\partial \delta / \partial \xi}{\xi - x} \, d\xi - f(v, \theta)(\sigma - p) = \frac{\rho v_s}{2} v
\]
Earthquakes Lag Slip

Segall et al., Nature, 2006

2005 Slow Slip Event
Dilatancy Constitutive Law (Segall and Rice, 1995), based on Marone lab data

50 MPa

<table>
<thead>
<tr>
<th>Coefficient of Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.68</td>
</tr>
<tr>
<td>0.66</td>
</tr>
<tr>
<td>0.64</td>
</tr>
<tr>
<td>0.62</td>
</tr>
<tr>
<td>0.60</td>
</tr>
</tbody>
</table>

(hold)

<table>
<thead>
<tr>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
</tr>
<tr>
<td>0.128</td>
</tr>
<tr>
<td>0.126</td>
</tr>
<tr>
<td>0.124</td>
</tr>
<tr>
<td>0.122</td>
</tr>
</tbody>
</table>

Detrended

Displacement (mm)

(a) Porosity

Displacement (mm)

Observed

Modeled

(b) Coefficient of Friction

Displacement (mm)

Observed

Modeled
Test of Finite Difference: Const μ and ν

Comparison with Analytical Result: Thermal Field

\[
T(y,t) - T_0 = \left(1 + \sqrt{\frac{c_{th}}{c_{hy}}}(\sigma_n - p_0)\right) \left[\text{erfc}\left(\frac{Y}{2\sqrt{D}}\right) - \exp(Y + D)\text{erfc}\left(\frac{Y}{2\sqrt{D}} + \sqrt{D}\right)\right]
\]

\[
Y = \frac{|y|}{\sqrt{c_{th}L^* / \nu_c}}
\]

Analytical Result, Rice (2006)

\[
p(y,t) - p_0 = \sqrt{c_{th}} + \sqrt{c_{hy}}(\sigma_n - p_0) \left\{ \sqrt{c_{hy}} \left[\text{erfc}\left(\frac{Y'}{2\sqrt{D}}\right) - \exp(Y' + D)\text{erfc}\left(\frac{Y'}{2\sqrt{D}} + \sqrt{D}\right)\right] \right. \\
\left. -\sqrt{c_{th}} \left[\text{erfc}\left(\frac{Y}{2\sqrt{D}}\right) - \exp(Y + D)\text{erfc}\left(\frac{Y}{2\sqrt{D}} + \sqrt{D}\right)\right]\right\}
\]

\[
Y' = \frac{|y|}{\sqrt{c_{hy}L^* / \nu_c}}
\]