Simulating seismicity in a fault network model:
the effect of interaction on event statistics

Sandy Steacy, Alison Hetherington,
and John McCloskey

Geophysics Research Group, University of Ulster
Coleraine, N. Ireland
Motivation

- Examine large earthquake recurrence in models with varying degrees of fault complexity
 - Do simple fault systems show greater relaxation and hence more regular recurrence than complex networks?
Motivation

• Examine large earthquake recurrence in models with varying degrees of fault complexity
 – Do simple fault systems show greater relaxation and hence more regular recurrence than complex networks?
• Investigate effect of fault interaction on event statistics
 – Does interaction affect large event recurrence?
Motivation

• Examine large earthquake recurrence in models with varying degrees of fault complexity
 – Do simple fault systems show greater relaxation and hence more regular recurrence than complex networks?
• Investigate effect of fault interaction on event statistics
 – Does interaction affect large event recurrence?
• Directly observe evolution of a “population of nucleation sites”
 – To what extent does interaction affect this population and how similar are subsequent events with and without stress perturbations?
Motivation

• Examine large earthquake recurrence in models with varying degrees of fault complexity
 – Do simple fault systems show greater relaxation and hence more regular recurrence than complex networks?
• Investigate effect of fault interaction on event statistics
 – Does interaction affect large event recurrence?
• Directly observe evolution of a “population of nucleation sites”
 – To what extent does interaction affect this population and how similar are subsequent events with and without stress perturbations?
• Provide data for testing statistical techniques
Motivation

• Examine large earthquake recurrence in models with varying degrees of fault complexity
 – Do simple fault systems show greater relaxation and hence more regular recurrence than complex networks?

• Investigate effect of fault interaction on event statistics
 – Does interaction affect large event recurrence?

• Directly observe evolution of a “population of nucleation sites”
 – To what extent does interaction affect this population and how similar are subsequent events with and without stress perturbations?

• Provide data for testing statistical techniques
Seismicity simulation model

- Contains a user-defined network of 3D faults

- Cells assigned heterogeneous (usually fractal) distribution of strength
Stress in model
Stress in model

- Model loaded with appropriate tectonic forcing
Stress in model

• Model loaded with appropriate tectonic forcing
 – Assumes that tectonic stress is homogeneous over region of interest
Stress in model

• Model loaded with appropriate tectonic forcing
 – Assumes that tectonic stress is homogeneous over region of interest
 – Tectonic stress resolved properly onto each cell according to its orientation
Stress in model

- Model loaded with appropriate tectonic forcing
 - Assumes that tectonic stress is homogeneous over region of interest
 - Tectonic stress resolved properly onto each cell according to its orientation
- Stress transferred in two ways
Stress in model

• Model loaded with appropriate tectonic forcing
 – Assumes that tectonic stress is homogeneous over region of interest
 – Tectonic stress resolved properly onto each cell according to its orientation
• Stress transferred in two ways
 – Via nearest-neighbor interactions during event occurrence
Stress in model

• Model loaded with appropriate tectonic forcing
 – Assumes that tectonic stress is homogeneous over region of interest
 – Tectonic stress resolved properly onto each cell according to its orientation
• Stress transferred in two ways
 – Via nearest-neighbor interactions during event occurrence
 • Rules formulated to give realistic stress concentrations
Stress in model

• Model loaded with appropriate tectonic forcing
 – Assumes that tectonic stress is homogeneous over region of interest
 – Tectonic stress resolved properly onto each cell according to its orientation

• Stress transferred in two ways
 – Via nearest-neighbor interactions during event occurrence
 • Rules formulated to give realistic stress concentrations
 – Via Coulomb stress transfer using boundary element routine
Stress in model

- Model loaded with appropriate tectonic forcing
 - Assumes that tectonic stress is homogeneous over region of interest
 - Tectonic stress resolved properly onto each cell according to its orientation

- Stress transferred in two ways
 - Via nearest-neighbor interactions during event occurrence
 - Rules formulated to give realistic stress concentrations
 - Via Coulomb stress transfer using boundary element routine

- Fault interaction can be “turned off” to investigate its effects
B-values

- Both models produce power-law magnitude frequency distributions
- B-value lower than actually observed due to lack of small faults

SFBA
B-values

- Both models produce power-law magnitude frequency distributions
- B-value lower than actually observed due to lack of small faults

SFBA

NAF
SFBA

No interaction

Max = 7.44

Interaction

Max = 7.2
SFBA

No interaction

Max = 7.44

Interaction

Max = 7.2

NAF

No interaction

Max = 8.38

Interaction

Max = 8.25
Map of North Anatolian Fault Region

Northing (km)

Easting (km)

3 B = 0.375
B = 0.500

2 B = 0.381
B = 0.513

1 B = 0.382
B = 0.520
No interaction: 204,349 events

Interaction: 305,569 events
No interaction: 85,306 events
Interaction: 258,979 events
No interaction: 85,306 events
Interaction: 258,979 events
Recurrence times of events on fault 1 (SFBA)

No interaction

Interaction

$M \geq 6.5$
Recurrence times of events on fault 1 (SFBA)

No interaction

Interaction

\[M \geq 6.5 \]

\[M \geq 5.5 \]
Recurrence times of events on fault 2 (NAF)

No interaction

\[M \geq 6.5 \]

Interaction

\[M \geq 5.5 \]
Seismic rates – Northern California

NC 87, average number of events per day, M3
The graph shows the probability of exceedance for NC-M>=3 events against the number of events per day on a logarithmic scale. The slope of the best-fit line is -1.59.
Conclusions

• In comparison to models in which interaction is not allowed, the effect of interaction is to:
 – Increase the b-value both regionally and on all faults
 – Increase the total number of events
 – Increase the percentage of events occurring on subsidiary (and even misaligned) faults.
Conclusions

• In comparison to models in which interaction is not allowed, the effect of interaction is to:
 – Increase the b-value both regionally and on all faults
 – Increase the total number of events
 – Increase the percentage of events occurring on subsidiary (and even misaligned) faults.

• Our interpretation is that interaction roughens the stress field and hence makes large events less likely.
Conclusions

• In comparison to models in which interaction is not allowed, the effect of interaction is to:
 – Increase the b-value both regionally and on all faults
 – Increase the total number of events
 – Increase the percentage of events occurring on subsidiary (and even misaligned) faults.

• Our interpretation is that interaction roughens the stress field and hence makes large events less likely.

• Following immediate triggering, interaction models have longer recurrence times for large events
 – Does triggering “use up” nucleation sites?
Conclusions

• In comparison to models in which interaction is not allowed, the effect of interaction is to:
 – Increase the b-value both regionally and on all faults
 – Increase the total number of events
 – Increase the percentage of events occurring on subsidiary (and even misaligned) faults.

• Our interpretation is that interaction roughens the stress field and hence makes large events less likely.

• Following immediate triggering, interaction models have longer recurrence times for large events
 – Does triggering “use up” nucleation sites?

• Only models with interaction produce seismic rate patterns consistent with those observed in natural fault systems.