Recent advances on assessing seismic hazard and earthquake probabilities in Italy

Dario Slejko (1) and Gianluca Valensise (2)
with contributions of Salvatore Barba (2), Roberto Basili (2), Alessandro Caporali (3)
Laura Peruzza (1), Mark Stirling (4)

(1) Ist. Naz. di Oceanografia e di Geofisica Sperimentale, Trieste, Italy
(2) Ist. Naz. di Geofisica e Vulcanologia, Roma, Italy
(3) Università di Padova, Italy
(4) GNS Science, Wellington, New Zealand
Seismic zones according to the 1900-1964 seismicity
from “La Domenica del Corriere”
(courtesy Franco Pettenati)
Generations of hazard maps

Yesterday: 1st Generation - Historical Determinism

Approaches

- Historical Determinism
- Historical Probabilism
- Seismotectonic Probabilism
- Non-Poissonian Probabilism
- Earthquake Prediction

(Muir-Wood, 1993)
Generations of hazard maps

Yesterday: 1st Generation - Historical Determinism

Approaches

- Historical Determinism
- Historical Probabilism
- Seismotectonic Probabilism
- Non-Poissonian Probabilism
- Earthquake Prediction

(Muir-Wood, 1993)
The Gumbel approach

Given $I_{\text{max}} = \max X_i$, with $i=1, \ldots, n$ and n large

Type 1: no upper limit of X_i

$P[I_{\text{max}} \geq i] = F_{I_{\text{max}}}(i) = \exp[-e^{-\alpha(i-u)}]$

Type 3: upper limit of X_i

$P[I_{\text{max}} \geq i] = F_{I_{\text{max}}}(i) = \exp\{-[(w-i)/(w-u)]k\}$

Application

Putting $F_X(x) = i/(n+1)$

Introducing the reduced variable

$y_i = -\ln\{-\ln[F_X(x_i)]\}$

$y_i = \alpha(x_i - u)$

Seismic hazard map (CNR, 1979) used as basis of the 1980 Italian seismic zonation
The Cornell (1968) approach

The total probability theorem

\[P[E] = \int P[E \mid S]f_s(s)\,ds \]

where

\[f_s(s) = \frac{\partial F_s(s)}{\partial s} \]

is the PDF of S

and

\[F_s(s) = P[S < s] \]

is the CDF of S

Application

\[\lambda_z = \sum_{i=1}^{N} v_i \int_{m_0}^{m_u} \int_{r=0}^{r=\infty} P(Z > z \mid m, r) f_i(m) f_i(r)\,dr\,dm \]

Mean annual rate of occurrence

for all SZs

Mean annual rate of exceedence

Attenuation model

Attenuation model

GR distribution

SZ geometry

If it is a Poisson process (stationary, independent, non-multiple events)

\[P[Z_T > z] = 1 - e^{-\lambda_z T} \]

\[T = -t / \ln(1 - P(Z_T > z)) \]

where: T=return period; t=period of analysis
Seismic hazard maps (Slejko et al., 1998; Albarello et al., 1999) used as basis of the 2004 Italian seismic zonation.
Seismic hazard map (Gruppo di Lavoro, 2004) used as basis of the present Italian seismic zonation.
Seismic hazard map (Gruppo di Lavoro, 2004) used as basis of the present Italian seismic zonation.
Today 1995: Hybrid approach for Calabria

First application for Italy of characteristic eqs on faults + background seismicity (from Peruzzo et al., 1997)

Major faults + Main events => Non-Poissonian probabilism
Background seismicity => Gumbel statistics
Today 1995: Hybrid approach for Calabria

First application for Italy of characteristic eqs on faults + background seismicity (from Peruzza et al., 1997)

Major faults + Main events => Non-Poissonian probabilism
Background seismicity => Gumbel statistics
Seismic Hazard in Central Italy
475-yr return period PGA (Peruzza, 1999)

1 - Cornell approach with SZ’s
2 - Cornell approach with faults
3 - characteristic time-dependent eq on faults
Eq probabilities for M6 + in the next 30 yrs since 2001 for: a) individual source zones, b) aggregated into the seismic regions.
Today 2004: Soil seismic hazard for NE Italy (GNDT project Vittorio Veneto 2000-2004)

Logic tree for PSHA in NE Italy

Seismicity models

Zonation - Catalogue

FRI / NT4

3LEV / CPTI 99

ZS9 / CPTI 04

GNDT

ALB

G-R

1SB

KIJ

TEC

Mmax

Attenuation relations

AMB Rk

AMB St

AMB So

S&P Rk

S&P St

S&P So

B&S St

3

9

27

54

81

branches
Today 2004: Seismogenic zonations for NE Italy

FRI = Slejko & Rebez (2002) (from Slejko et al., 2007)
Today 2004: Soil hazard for NE Italy

Aggregate PGA with a 475-yr return period (3 soil types: rock, stiff, and soft soil)

(from Slejko et al., 2007)

a) Seismogenic sources (Valensise and Pantosti, 2001)
b) Occurrence probability of the characteristic eq on the seismogenic sources (from Peruzza, 2006)
PGA with a 90% probability of exceedence in the period 2003-2033:
a) Poisson model; b) time-dependent model (Peruzza, 2006)
The two maps are calculated by using the same statistical procedure (Faenza et al., 2003; Cinti et al., 2004) applied to a seismotectonic zonation (a) and to a regular grid (b). The probability maps are updated every 1st of January and after the occurrence of a new target eq.
Evidence from significant (M=> 6) dip-slip Italian eqs suggests that:

✓ earthquake ruptures tend to mimic geological domains and large landscape features
Do characteristic eqs exist? (2)

Evidence from significant (M => 6) dip-slip Italian eqs suggests that:
✓ earthquake ruptures tend to coincide with singularities of the tectonic fabric

1920 Garfagnana, M 6.5
Evidence from significant (M=> 6) dip-slip Italian eqs suggests that:
✓ eq ruptures tend to be juxtaposed but never overlap
Growing geological evidence shows that the rupture length of Italian dip-slip eqs - and hence their M - coincides with the characteristic length of large-scale geological structures.

The existing geologic fabric exerts a strong control over the fragmentation of active deformation/fault zones, effectively putting a (predictable) upper bound to the \(M_{\text{max}} \) of individual rupture episodes.

Rupture complexity due to fault interaction may make things appear more random than they are. To further confuse this issue, growing historical and instrumental evidence is suggesting that the majority of Italian eqs are complex in one way or the other.

Large-scale geological evidence obviously does not control, nor contain any information on, the timing of subsequent eqs.

The debate on characteristic eqs is dominated by evidence from strike-slip faults and subduction zones. Dip-slip faulting follows different rules.
Most Italian faults are blind and hence hard to investigate. Direct observations of slip rate (e.g. trenching, in red) exist for about 10 faults. 15-20 additional estimates were obtained through indirect observations (deformation of recent geologic horizons, of marine and fluvial terraces, subsurface data, in blue).
Interevent times exist only for very few faults. The causative faults of the 1980 Irpinia (top) and 1915 Avezzano (bottom) eqs yield the most complete records available countrywide. Typical recurrence intervals for the other faults is longer than several centuries (often > 1,000 years), in agreement with historical record.
Progetto S2: Valutazione del potenziale sismogenetico e probabilità dei forti terremoti in Italia

Project S2: Evaluation of the seismogenic potential and occurrence probability of large

Task 1. Construction of a database for the seismogenesis (DISS).
Task 2. Spatial definition of the main seismogenic structures.
Task 3. Geophysical characterization of the main seismogenic structures.
Task 4. Seismic characterization of the main seismogenic structures and assessment of eq occurrence probability.

Deliverables for application
1) Database of the Italian M5.5+ seismogenic sources (SSs and SAs) with all geological and seismological information (DISS);
2) Map of the seismogenic sources with Mmax and, when possible, with recurrence interval;
3) Maps of tsunami wave height along the Italian coasts.

Research Deliverables
• Monographs of the SSs and SAs;
• Code Boxer (for treatment of macroseismic data);
• Database EMMA of focal mechanisms of the Mediterranean region;
• Maps of velocity and strain-rate from GPS data;
• Maps of velocity and strain-rate from 3D numerical modelling.
Tomorrow: Task 1 & 2 - the DISS database

- 1908, Messina (Mw 7.2)
- 2002, Molise (Mw 5.7)
- 1980, Irpinia (Mw 6.9)
- 1930, Senigallia (Mw 5.9)
- 1998, Bovec-Krn (Mw 5.7)
- 1976, Friuli (Mw 6.4)
- 1997, Colfiorito (Mw 5.7; 6.0)
- 2003, Jabuka (Mw 5.5)
- 1915, Avezzano (Mw 7.0)
- 1976, Friuli (Mw 6.4)
- 1997, Colfiorito (Mw 5.7; 6.0)
- 2002, Molise (Mw 5.7; 5.7)
- 2002, Palermo (Mw 5.8)
- 1908, Messina (Mw 7.2)

Seismogenic Area (SA)
- polygon that encloses the projection at the ground surface of an entire fault system
- branches of the fault system known or thought to exist at depth
- This is a branching point, NOT a segment boundary

Individual Seismogenic Source (SS)
- Fault projection to ground surface
- Top edge
- Bottom edge
- Fault plane
- Rake
- Strike
- Length
- Width
- Top of fault
- Dip
- Bottom of fault

Map showing the locations and magnitudes of several significant earthquakes in Italy, including:
- 1908, Messina (Mw 7.2)
- 2002, Molise (Mw 5.7)
- 1980, Irpinia (Mw 6.9)
- 1930, Senigallia (Mw 5.9)
- 1998, Bovec-Krn (Mw 5.7)
- 1976, Friuli (Mw 6.4)
- 1997, Colfiorito (Mw 5.7; 6.0)
- 2003, Jabuka (Mw 5.5)
- 1915, Avezzano (Mw 7.0)
- 1976, Friuli (Mw 6.4)
- 1997, Colfiorito (Mw 5.7; 6.0)
- 2002, Molise (Mw 5.7; 5.7)
- 2002, Palermo (Mw 5.8)
- 1908, Messina (Mw 7.2)
Tomorrow: The DISS database
Faulting mechanisms of the seismogenic sources and areas
Tomorrow: The DISS database

Average focal mechanisms in the SAs

Average focal mechanism in the SA

P and T axes from moment tensor summation of eqs in the SA
Tomorrow: The DISS database
Stress and strain regime in the SAs

Smoothed Shmin orientation and stress regime

Horizontal strain rates
Tomorrow: Task 3
Obtaining strain rates for all Italian fault zones
Tomorrow: Task 3
Obtaining strain rates for all Italian fault zones

Three strategies:
1) regional measurements;
2) national strain map;
3) geodynamic modelling.

Main result:
Estimation of the strain rate for all sources (SSs or SAs) in the Italian peninsula
Tomorrow: Task 3
National strain map

Velocities measured by permanent and additional stations
Tomorrow: Task 3
Geodynamic modelling

The best fitting model has been selected using:
- GPS displacements;
- SHmin orientation from break-out and eqs;
- tectonic regime in DISS SAs

Finite elements numerical modelling
Software SHELLS (Bird, 1999)
Boundary conditions:
blue = Adria rotation;
red = Africa compression;
violet = basal tractions
black = fixed

Triangular grid (black) and faults (red) of the physical model
With this model, anelastic slip rates and moment rates are computed.

The behaviour of areas that do not include large faults or where M<5.5 eqs dominate must be derived from the strain-rate directly.

Anelastic slip rates can be compared with observed (geological) slip rates.
Anelastic slip rates are averaged within the SAs in order to gain stability. This first-order picture can ideally be checked against patterns of occurrence of large earthquakes. White areas are not determined.
1) Probability of an imminent earthquake using instrumental data-sets of events

2) Occurrence probabilities supported by physical model

3a) Probabilities of main events based on inter-times derived from areas

3b) Probabilities of main events based on fault data
1) Probability of an imminent earthquake using instrumental data-sets of events

2) Occurrence probabilities supported by physical model

3a) Probabilities of main events based on inter-times derived from areas

3b) Probabilities of main events based on fault data

Occurrence rate increment before San Giuliano mainshock (ETAS model)
1) Probability of an imminent earthquake using instrumental data-sets of events

2) Occurrence probabilities supported by physical model

3a) Probabilities of main events based on inter-times derived from areas

3b) Probabilities of main events based on fault data
1) Probability of an imminent earthquake using instrumental data-sets of events

2) Occurrence probabilities supported by physical model

2a) Contribution of fault interaction

3a) Probabilities of main events based on inter-times derived from areas

3b) Probabilities of main events based on fault data

<table>
<thead>
<tr>
<th></th>
<th>Ovindoli-Pezza</th>
<th>Sulmona Basin</th>
<th>Fucino Basin</th>
<th>Aremogna-Cinquemiglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_0_{Poisson}</td>
<td>6.25e-04</td>
<td>1.18e-03</td>
<td>7.14e-04</td>
<td>4.67e-04</td>
</tr>
<tr>
<td>R_0_{cond}</td>
<td>4.29e-03</td>
<td>1.33e-04</td>
<td>5.00e-04</td>
<td>4.07e-03</td>
</tr>
<tr>
<td>R_0_{mod}</td>
<td>5.90e-03</td>
<td>1.32e-04</td>
<td>5.00e-04</td>
<td>4.40e-03</td>
</tr>
<tr>
<td>Delta_t (anni)</td>
<td>+63.00</td>
<td>-53.00</td>
<td>0.00</td>
<td>+21.30</td>
</tr>
<tr>
<td>$P(30)_{\text{Poisson}}$ (DISS 3.0.1)</td>
<td>1.90%</td>
<td>3.50%</td>
<td>2.10%</td>
<td>1.40%</td>
</tr>
<tr>
<td>$P(30)_{\text{cond (Peruzza, comm. pers.)}}$</td>
<td>12.10%</td>
<td>0.40%</td>
<td>1.50%</td>
<td>11.00%</td>
</tr>
<tr>
<td>$P(30)_{\text{mod}}$</td>
<td>16.20%</td>
<td>0.39%</td>
<td>1.50%</td>
<td>12.30%</td>
</tr>
</tbody>
</table>

Ro = seismicity rate (1/T), if it increases next eq approaches and probability increases; cond = characteristic eq; mod = cond modified by contribution of Coulomb stress
Probability in the next 30 yrs on updated DISS faults (seismogenic areas are reported only for information)

BPT model
blue = dispersion of the ch eq magnitude
green = slip rate dispersion

Sensitivity to time passed since last eq (missing for 1/3 of the faults)
Statistical parametrization of the SAs

The SAs are occupied by SSs only partly: we can fill the empty space by fictitious SSs defined statistically according to the actual SS distribution in the region.

Once we have defined (statistically) the rupture length, width, and slip rate of the fictitious SSs, we can derive all their seismic parameters and assigned them proportionally the total moment rate of the SA.
Things to be done before the end of the project

1) release of the updated version of the DISS database;

2) release of the final version of the geodynamic model and an updated set of slip rates derived from it;

3) release of the map of the occurrence probability of the characteristic earthquake for the individual SSs (actual or fictitious faults).
This is
THE END

Thanks for your attention
Task 4
3b) Probabilities of main events based on fault data

Slip rate bilancing
Task 4
3b) Probabilities of main events based on fault data

Slip rate balancing

- Historical seismicity limits the SR value
- Bayes approach for slip rate distribution: posterior = prior * likelihood
- Likelihood from misfit

Slip rates from geodesy modelling (on ZS9 basis taking into account the fault geometry) and slip rates in DISS

Geodetic slip rates much lower than seismic slip rates