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Abstract

The rationale of lava flow deviation is to prevent major damage, and, among the possible techniques, the opening
of the flow leve¤es has often been demonstrated to be suitable and reliable. The best way to open the leve¤es in the right
point, in order to obtain the required effect, is to produce an explosion in situ, and it is then necessary to map with
the highest precision the temperature field inside the leve¤es, in order to design a safe and successful intervention. The
leve¤es are formed by lava flows due to their non-Newtonian rheology, where the shear stress is lower than the yield
stress. The leve¤es then cool and solidify due to heat loss into the atmosphere. In this work we present analytical
solutions of the steady-state heat conduction problem in a leve¤e using the method of conformal mapping for simple
geometrical shapes of the levee cross-section (triangular or square). Numerical solutions are obtained with a finite-
element code for more complex, realistic geometries.
3 2003 Elsevier B.V. All rights reserved.

1. Introduction

Lava £ows are erupted at the Earth’s surface
during e¡usive volcanic activity, and their mor-
phology and dynamics are mainly ruled by the
typically non-Newtonian rheological behavior of
lava. Field measurements of physical properties of
lavas (e.g. Shaw et al., 1968; Pinkerton and
Sparks, 1978) show their pseudo-plastic behavior,
due to a partial crystallization in the magmatic
suspension, determining a ¢nite yield strength,
which must be exceeded in order to £ow, and

after which the shear stress is proportional to
the strain rate, i.e. a Bingham rheology (Robson,
1967; Hulme, 1974; Dragoni et al., 1986; Drag-
oni and Tallarico, 1994). For a Bingham £uid to
£ow downhill, it must form a layer thick enough
for the shear stress at the base to exceed the yield
strength. At the lateral boundaries of the £ow,
where the lava thickness is not enough to produce
a basal shear stress larger than the yield stress,
increasingly static regions of materials are left
on the sides to form the initial lava £ow leve¤es.
Hulme (1974) demonstrated that the yield
strength, the density and the viscosity of the
lava, together with the e¡usion rate and the ter-
rain slope, control the depth and the width of the
£ow and the width of the initial leve¤es, which are
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observed in both pahoehoe and aa £ows. Further-
more, as found by Sparks et al. (1976), three other
types of leve¤es can be observed in the ¢eld and
modify initial leve¤es. Accretionary leve¤es consist
of piles of clinkers accreted to pahoehoe lava
channels and welded together to form a steep,
solid leve¤e. In fully developed aa lava £ows, rub-
ble leve¤es are formed as the front advances and
the sides expand by debris avalanches. Finally,
over£ow leve¤es are produced by lava £ooding
over already existing rubble leve¤es. Lava £ows
are potentially dangerous if they reach inhabited
or cultivated areas, and in order to avoid or re-
duce damage they can be diverted to sites where
the exposed value is lower (Chester et al., 1985).
The ¢rst attempt of lava £ow deviation docu-
mented in historical chronicles (Gemmellaro,
1858) has been made at Etna, and dates back to
1669, when a group of citizens of Catania opened
a breach in a lava £ow leve¤e using picks and axes.
They succeeded, but made the inhabitants of Pa-
terno' very angry because the £ow was then going
toward their town. The people of Catania were
forced to stop. More recently, many interventions
of lava £ow deviation were made in order to pro-
tect urban settlements, as at Mt. Etna in 1983 and
1992 (Barberi et al., 1993), but much attention is
necessary when opening the leve¤es in order to
avoid even more severe damage. The leve¤e can
be opened using explosives, but because of the
narrow margin of error allowed in locating the
breach, it is often necessary to put the charges
in place by hand. The leve¤e is ¢rst excavated in
order to narrow it, then holes are drilled through
the thinned margin, and the charges are injected.
However, the maximum safe-handling tempera-
ture of the explosives commonly used is around
200‡C, and it is then necessary, in order to work
safely, to know the temperature ¢eld in the lava
£ow leve¤es. A su⁄cient time after their formation,
the temperature in the lava £ow leve¤es is a con-
ductive, steady-state ¢eld which satis¢es the Lap-
lace equation in an isotropic homogeneous me-
dium, with boundary conditions prescribing the
temperature at the interface between the leve¤e
and the air, and between the leve¤e and the £owing
lava. The solution is then depending only on the
boundary conditions and the geometry of the lev-

e¤e. In this paper, the steady-state temperature
¢eld is determined analytically by means of the
conformal mapping technique for a triangular
and a square leve¤e, and numerically with a ¢-
nite-element code for arbitrary shapes. The ana-
lytical and numerical solutions are compared, and
the results are discussed, focusing on their poten-
tial application for civil protection purposes,
although for a realistic solution, useful in practi-
cal situations, a more precise knowledge of the
geometry and rock properties would be required.

2. The physical model

Due to the geometry and size of a lava £ow, we
assume that the length of the leve¤e is much larger
than its height and width, and we therefore con-
sider a two-dimensional model on a vertical cross-
section of the leve¤e, in a Cartesian reference sys-
tem, with the origin at the inner bottom of the
leve¤e. Assuming that the material forming the lev-
e¤e can be modeled as a thermally isotropic, ho-
mogeneous medium, endowed with properties
that are not dependent on the temperature, the
steady-state equation for conduction is the La-
place equation:

D
2T
Dx2

þ D
2T
D y2

¼ 0 ð1Þ

where T is the temperature, x and y are the hor-
izontal and vertical coordinates. The lava £ow
leve¤e, i.e. the portion of material where the crys-
tallization in the magmatic suspension is su⁄cient
to inhibit the motion, can be identi¢ed as the
region where the temperature is below a certain
value, above the solidus, which should be mea-
sured experimentally. However, due to the lack
of data, the thermal model is applied here only
to the solid portion, which we call ‘leve¤e’ in the
following. The boundary conditions then pre-
scribe that the temperature is ¢xed at the leve¤e/
lava interface, equal to the solidus temperature of
magma Ts, as well as the leve¤e/air interface, equal
to the air temperature Ta. In this paper, we as-
sume Ts = 900‡C, appropriate to basaltic lava, and
Ta = 30‡C. The assumption of steady-state tem-
perature distribution implies that the model can
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be applied only for times large enough after the
leve¤e emplacement. If d is the leve¤e width and M is
the thermal di¡usivity of lava, steady-state condi-
tions are achieved approximately after a time
t= d2/(8M) (Osizik, 1968), which is in the order
of 1 day, for d equal to about 1 m and M equal
to about 1036 m2 s31. In the ¢eld, the inner mar-
gins of the leve¤es are observed to be very abrupt
and steep, very seldom subvertical, and the chan-
nel £oor nearly £at, while the outer geometry
shows more variability (Kilburn and Guest,
1993). We then assume an inner rectangular
shape and take into account di¡erent outer geo-
metries.

3. The analytical solution

The analytical solution of Eq. 1 is a harmonic
function which must satisfy the given boundary
conditions. Conformal mapping is a mathematical
technique used to convert (or map) one mathe-
matical problem and solution into another, and,
under some very restrictive conditions, we can
de¢ne a complex mapping function that will
take every point in one complex plane and map
it onto another complex plane. More precisely, a
transformation w= f(z) is said to be conformal at
a point z0 if f is analytic there and the derivative
at z0 is non-zero. Thus, a transformation de¢ned
on a set is called a conformal mapping when it is
conformal at each point in that set. Conformal
mappings preserve magnitude and direction,
with scaling given by the derivative. The Riemann
theorem demonstrates that there exists a confor-
mal mapping which allows to transform a domain
D into a domain DP, provided that D has more
than one frontier point.
Our aim is then to ¢nd a conformal mapping

which transforms the leve¤e cross-section into a
half-space, and then to ¢nd the solution of Eq.
1 as a function of the complex variable z= x+iy
with the following boundary conditions:

Tðx; y ¼ 0þÞ ¼
Ta for x60

T s for xs0
ð2Þ

The harmonic function which satis¢es Eqs. 1
and 2 is :

Tðx; yÞ ¼ TðzÞ ¼ T s3
T s3Ta

Z

arg z ð3Þ

where z is a complex variable.
The conformal mapping which realizes the

transformation of a half-space delimited by a po-
lygonal-shaped surface into a half-space bounded
by a plane surface is the Schwarz^Christo¡el
transformation (e.g. Floryan, 1987):

dw
dz

¼ Aðz3x1ÞK 1=Z31 ðz3x2ÞK 2=Z31Tðz3xnÞK n=Z31 ð4Þ

where A is a constant that may depend on xi, xi

are the points of the real axis of the z plane where
the n vertices of the polygonal surfaces are
mapped, and Ki are the corresponding internal
angles. Integrating Eq. 4, one obtains:

wðzÞ ¼ f ðzÞ ¼ A
Z z

0
ðj3x1ÞK 1=Z31ðj3x2ÞK 2=Z31T

ðj3xnÞK n=Z31dz þ B ð5Þ

where B is a constant. A and B are calculated
from the size, orientation, and position of the po-
lygonal curve. It can be demonstrated that if one
of the vertices of the polygonal surface is mapped
to in¢nity, there exists an appropriate choice of
the constant A that allows to cancel the corre-
sponding term in Eqs. 4 and 5. The temperature
¢eld in the physical plane w can then be calculated
as:

TðwÞ ¼ Tðf31ðwÞÞ ¼ TðzÞ ð6Þ

3.1. Triangular leve¤e

Let us ¢rst consider a triangular-shaped leve¤e,
as it is sketched in Fig. 1A, with the vertices in the
points Q(0,0), P(0,3vP), and R(3uP,0) in the
plane w. The conformal mapping has to trans-
form the point P of the w plane into the origin
PP of the plane z, and the origin Q of the plane w
into the point QP of coordinates (vP/2,0) in the
plane z. The point R of the plane w is mapped
in the point RP(3r,0) in the plane z. The vertices
P and Q that have to be transformed by Eqs. 4
and 5 are then n=2, and the corresponding inter-
nal angles are L and 3Z/2. The derivative of the
Schwarz^Christo¡el mapping is then:
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dw
dz

¼ kzL =Z31 ð13zÞ1=2 ð7Þ

where k is a constant. The conformal mapping is
obtained by integrating Eq. 7:

wðzÞ ¼ f ðzÞ ¼ k
Z z

0
j

L =Z31 ð13j Þ1=2dj þ B ð8Þ

The integral of Eq. 8 can be calculated analyti-
cally for L= Z/3, for L= Z/6, and for L= Z/4, and
the constants are determined by requesting the
mapping of the points P and Q into PP and QP,
¢xing for the present study vP = 2 m:

f ðzÞ ¼ 4
y ð11=6Þi
y ð1=3Þ

ffiffiffi
Z

p
� �

6
5
z1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð13zÞ

p
þ

�

9
5
z1=3F

1
3
;
1
2
;
1
3
; z

� ��
32i for L ¼ 3

2
Z

2y ð5=3Þi
3y ð7=6Þ

ffiffiffi
Z

p
� �

3
2
z1=6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð13zÞ

p
þ

�

9
2
z1=6F

1
6
;
1
2
;
1
6
; z

� ��
32i for L ¼ Z

6

y ð7=4Þi
y ð5=4Þ

ffiffiffi
Z

p
� �

4
3
z1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð13zÞ

p
þ

�

8
3
Eðsin31ðz1=4Þ;31Þ

�
32i for L ¼ Z

4
ð9Þ

where F(a,b,c,z) is the hypergeometric Gaussian
function of the variable z with the parameters a,
b and c, and E is the elliptic integral of the ¢rst
kind.

3.2. Square leve¤e

For a leve¤e endowed with a square cross-
section, as it is sketched in Fig. 1B, the number of
vertices to be transformed is n=3. The
transformation requiring that the points
S(3uP,3vP),P(0,3vP), and Q(0,0) are mapped
into RP(3uP,0), SP(3uP/2,0), PP(0,0), and QP(uP/
2,0), while the point R(3uP,0) is mapped into
RP(3r,0), can be written as:

wðzÞ ¼ f ðzÞ ¼

Fig. 1. Sketch of half of the real integration domain, i.e. the leve¤e cross-section, in the w plane and of the conformal mapping to
the z plane, for a triangular (panel A) and square (panel B) leve¤e. The light-shaded area in the w plane represents the region oc-
cupied by the £owing lava.
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k
Z z

0
ðj þ uP=2Þ31=2j 31=2ðj3uP=2Þ1=2dj þ B ð10Þ

The integral is solved numerically for uP = 2 m
and vP = 2 m.

4. Results and discussion

The temperature ¢eld calculated with Eq. 9 for
a triangular leve¤e forming an internal angle at the
top of Z/6, Z/3, Z/4, and for a square leve¤e are
shown in Figs. 2^5, respectively. The height of
the lava channel is 2 m in all the cases considered.
From the solutions shown, we can infer a security
depth at which the explosives can be placed, de-
pending on the height above the lava £ow basis.
The analytical method described in this paper

allows one to calculate the temperature ¢eld rap-
idly, but only for simple geometrical shapes of the
leve¤e cross-section. Furthermore, the width of the
lava £ow is not accounted for in the conformal
mapping method, since it is not possible to im-
pose the existence of a central symmetry axis on
the lava £ow. Due to the lack of symmetry in
Figs. 2^5 the horizontal temperature gradient
does not vanish in the middle of the lava £ow.

Fig. 3. Temperature ¢eld (in ‡C) obtained from the analytical model for a triangular leve¤e with an internal angle at the top
L=Z/4.

Fig. 2. Temperature ¢eld (in ‡C) obtained from the analytical
model for a triangular leve¤e with an internal angle at the top
L=Z/6.
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In order to account for the width of the lava
£ow, and to ¢nd the temperature ¢eld in an arbi-
trarily shaped leve¤e, we worked out a numerical
model, solving the thermal conduction problem

by a ¢nite-element method. The thermal analysis
is therefore performed with the ¢nite-element soft-
ware MARC (2001). The grid used for ¢nite-ele-
ment calculations is obtained by meshing the in-

Fig. 4. Temperature ¢eld (in ‡C) obtained from the analytical model for a triangular leve¤e with an internal angle at the top
L=Z/3.

Fig. 5. Temperature ¢eld (in ‡C) obtained from the analytical model for a square leve¤e.
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tegration domain with two-dimensional, eight-
node, iso-parametric, arbitrary quadrilateral and
triangular elements written for planar heat trans-
fer applications, which use biquadratic interpola-
tion functions to represent the coordinates and
displacements. Hence the thermal gradients have
a linear variation, which allows for an accurate
representation of the temperature ¢eld. The ele-
ment conductivity is formed using nine-point
Gaussian integration. As in the analytical model,
the boundary conditions prescribe that the tem-

perature at the leve¤e/lava interface is Ts = 900‡C,
and that at the leve¤e/air interface is Ta = 30‡C.
Figs. 6 and 7 show the temperature ¢eld calcu-

lated from the ¢nite-element thermal analysis for
a triangular (with a base angle of Z/4) and square
leve¤e cross-section; the height of the lava channel
is 2 m, as in the cases treated with the analytical
model, and the width of the channel is 4 m. The
cases shown in Figs. 6 and 7 have to be compared
with the analogous analytical solutions displayed
in Figs. 4 and 5 respectively. The comparison be-

Fig. 6. Temperature ¢eld (in ‡C) obtained from the ¢nite-element thermal analysis for a triangular leve¤e with an internal angle at
the top L=Z/4.
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tween the analytical and numerical temperature
¢eld shows a good agreement for the solutions
in the leve¤e, while it can be observed that the
symmetry (£at isotherms beneath the center of
the lava channel) is satis¢ed by the numerical re-
sults.
Fig. 8 shows the temperature ¢eld obtained

from the numerical model for a trapezoidal leve¤e,
with height of 2 m, top basis of 1 m, and bottom
basis of 2 m, which represents in a more realistic
manner the shape of a leve¤e. The isotherms exhib-
it a trend very similar to the case of the square

leve¤e near the base, while the e¡ect of the geom-
etry becomes more evident near the top. A trape-
zoidal leve¤e is also considered, but with a longer
basis of 4 m, in order to mimic an excavated
leve¤e. The numerical solution for the thermal ¢eld
is displayed in Fig. 9, where it can be observed
that the safety depth for placing the explosives at
the bottom is larger than in the previous cases,
while smaller di¡erences can be noticed at the top.
The results from the ¢nite-element thermal

analysis are summarized in Figs. 10^12, where
the temperature is plotted across the leve¤e as a

Fig. 7. Temperature ¢eld (in ‡C) obtained from the ¢nite-element thermal analysis for a square leve¤e.
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function of distance from the external boundary
normalized to the leve¤e thickness, at 0.25, 1, and 2
m below the top of the leve¤e. These curves pro-
vide the safety depth for placing the explosives for
the four cross-section shapes considered.

5. Concluding remarks

In this paper we calculate the steady-state tem-
perature ¢eld in a lava £ow leve¤e, assuming that
the leve¤e cools by conduction, losing heat into the

atmosphere. The main purpose is to provide a
model which can be applied, using a realistic ge-
ometry and rock properties, for civil protection
purposes, providing information on the depth at
which explosives can be safely placed inside the
leve¤e in order to deviate the lava £ow.
The analytical model worked out in this paper

is shown to provide reliable solutions for the
steady-state temperature ¢eld in the leve¤e,
although the solutions lose their accuracy beneath
the center of the lava channel, where the symme-
try condition is not satis¢ed.

Fig. 8. Temperature ¢eld (in ‡C) obtained from the ¢nite-element thermal analysis for a trapezoidal leve¤e with a bottom basis of
2 m.
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The ¢nite-element thermal analysis allows one
to calculate the temperature ¢eld in an arbitrarily
shaped leve¤e, satisfying the symmetry condition
beneath the center of the lava channel, and ac-
counting for the lava channel width.
The solutions obtained provide the safety

depth at which the explosives can be placed
to deviate a lava £ow in order to prevent
major damage: although we show here the bench-
mark cases of triangular, square, and trapezoidal
leve¤e cross-sections, this ¢nite-element thermal
model can be directly applied to any arbitrary,

irregular shape, and then used in practical situa-
tions.
The next objective of our future work is to

provide transient solutions, in order to study the
thermal evolution in a newly formed leve¤e, as well
as in a recently excavated leve¤e.
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Fig. 9. Temperature ¢eld (in ‡C) obtained from the ¢nite-element thermal analysis for a trapezoidal leve¤e with a bottom basis of
4 m.
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from the external boundary normalized to the leve¤e thick-
ness, at 0.25 m below the top of the leve¤e, for a triangular,
square and for the two trapezoidal shapes of the leve¤e cross-
section considered.

Fig. 11. Temperature (in ‡C) as a function of the distance x
from the external boundary normalized to the leve¤e thick-
ness, at 1 m below the top of the leve¤e, for a triangular,
square and for the two trapezoidal shapes of the leve¤e cross-
section considered.

Fig. 12. Temperature (in ‡C) as a function of the distance x
from the external boundary normalized to the leve¤e thick-
ness, at 2 m below the top (i.e. at the base) of the leve¤e, for
a triangular, square and for the two trapezoidal shapes of
the leve¤e cross-section considered.
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