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Volcanic hazard assessment is a basic ingredient for
risk-based decision-making in land-use planning
and emergency management. Volcanic hazard is
defined as the probability of any particular area
being affected by a destructive volcanic event
within a given period of time (Fournier d’Albe
1979). The probabilistic nature of such an important
issue derives from the fact that volcanic activity is a
complex process, characterized by several and
usually unknown degrees of freedom that are
often linked by nonlinear relationships (e.g. Bak
et al. 1988). Except in sporadic cases, the result
of this complexity is an intrinsic, and perhaps
unavoidable, unpredictability of the time evolution
of the volcanic system from a deterministic point
of view.

In reality, current volcanic hazard assessment is
even more entangled by scarce data and relatively
poor knowledge of the physical processes. Cumu-
latively, these difficulties prevent a solution of
the hazard or risk problem from a rigorous scienti-
fic perspective. Nevertheless, the potential for
extreme risk pushes us to be pragmatic and to
attempt to solve the problem from an ‘engineering’
point of view. Because of the devastating potential
of volcanoes close to urbanized areas, the scientific
community must address the issue as accurately
and precisely as possible with the currently avail-
able methods and based on our current understand-
ing of volcanic systems. This assessment is best
done by treating scientific uncertainty in a fully
structured manner. In this respect, Bayesian stat-
istics provides a suitable framework for producing
a volcanic hazard or risk assessments in a rational,
probabilistic form (e.g. UNESCO 1972; Gelman
et al. 1995). To illustrate the general philosophy
of the approach, we quote Toffler (1990) who
stated that ‘it is better to have a general and incom-
plete map, subject to revision and correction, than
to have no map at all’. In other words, the risk
(hazard) assessment process implies that a limited
database and knowledge is no excuse for not con-
ducting sound hazard and risk assessment. On the
contrary, with less knowledge of a system, the
need for assessment and management of

hazards and risk becomes more imperative
(Haimes 2004).

In this paper we present and further develop the
method proposed by Marzocchi et al. (2004)
based on the event tree (Newhall & Hoblitt 2002)
scheme to estimate the probability of all the rel-
evant possible outcomes of a volcanic crisis and,
in general, to quantify volcanic hazard and risk.
Marzocchi et al. (2004) emphasized the volcanolo-
gical aspects of hazard assessment, dividing the
problem into three consequential steps that encom-
pass (1) the logical sequence of acquisition of infor-
mation, (2) use of past data to assess long-term
volcanic hazard (from years to decades), and
(3) use of monitoring observations to assess mid-
to short-term volcanic hazard (from hours to a
few years). Here, we provide a more formal and
generalized description of the use of this infor-
mation in a Bayesian statistical framework to
assess long-term volcanic hazard. In particular, we
describe the use of data and specific probability
density functions in the prior and posterior statisti-
cal distributions to calculate transition probabilities
on the event tree. Overall, this Bayesian approach
provides a robust treatment of uncertainty that is
crucial in the estimation of hazards and risks
using event trees.

There are three important points about the
general approach. First, the scheme can take all
available information into account, from theoreti-
cal models to past data and monitoring measure-
ments. Second, the use of these different types of
data in a Bayesian framework provides a mechan-
ism for continuously updating probabilities, and
therefore both the long- and mid- to short-term vol-
canic hazard may be continuously revised if
necessary. For example, long-term volcanic
hazard assessments are often used to compare
different kinds of hazards (e.g. volcanic, seismic,
industrial, floods) that may affect the same area.
Results of long-term hazard assessments are very
useful for cost–benefit analysis of risk mitigation
actions, and for appropriate land-use planning,
such as location of settlements. As data and
models related to hazards are continually changing,
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and risks may change rapidly with population
growth, easy update of event trees is essential. In
contrast, mid- to short-term hazard assessment in
a Bayesian framework assists with actions for
immediate vulnerability (and risk) reduction, for
instance through evacuation of people from
dangerous areas (Fournier d’Albe 1979). The
third point is more technical, and probably the
most innovative one from a volcanological per-
spective. With our scheme, giving a prior distri-
bution to the probability of risky events, we deal
in a formal way with two different types of uncer-
tainty: aleatoric and epistemic.

The concept of aleatoric (stochastic) and episte-
mic (data- or knowledge-limited) uncertainties is
of primary importance in hazard and risk studies
(see, e.g. Woo 1999). Aleatoric uncertainty arises
from the impossibility of predicting deterministi-
cally the evolution of a system because of its intrin-
sic complexity. Epistemic uncertainty is associated
with limitations in our knowledge of the system. In
general, aleatoric uncertainty produces an irreduci-
ble stochasticity (randomness) in outcomes, regard-
less of our physical knowledge of the system. In
contrast, epistemic uncertainty is, in principle, redu-
cible by increasing the number or quality of data
and/or improving our knowledge of the physical
system.

The remainder of this paper is divided into two
parts. The first part describes the mechanics of
implementing Bayesian methods in the event tree
scheme. This is intended to provide a statistical fra-
mework for application in volcanic hazard assess-
ment. The second part briefly provides a pragmatic
example related to a hypothetical event tree, with
the goal of giving the reader a sense of how
to apply these methods at specific volcanoes to
assess long-term volcanic hazard.

The event tree scheme

The event tree is a branching graph representation
of events in which individual branches are alterna-
tive steps from a general prior event, state or con-
dition, and that evolve through time into
increasingly specific subsequent events. Even-
tually the branches terminate in final outcomes
representing specific hazards or risks that may
transpire in the future. In this way, an event tree
attempts to graphically display all relevant poss-
ible outcomes of volcanic unrest in progressively
higher levels of detail. Points on the graph at
which new branches are created are referred to
as nodes.

As this definition is mainly driven by the practi-
cal utility of the event tree, the branches at each
node point to the whole set of different possible

events, regardless of their probabilistic features. In
other words, the events at each node need not be
mutually exclusive or exhaustive. Here, however,
we consider only the first nodes of a generic event
tree (see Fig. 1), where the events at each node
are mutually exclusive and exhaustive. In this
case, definitions are constructed so that no sequence
of events can proceed along more than a single
branch of the event tree. This property makes the
event tree comparable with the event trees usually
reported in statistical literature (Smith 1988). In
Fig. 1 we show the first four nodes of a general
event tree for an explosive volcano (see Marzocchi
et al. 2004): Node 1, unrest occurs within a given
time interval (t); Node 2, the unrest is due to
magma, given that unrest is detected; Node 3, the
magma will reach the surface (i.e. it will erupt) in
a given time interval (t), provided that the unrest
has a magmatic origin; Node 4, the eruption will
be of a certain magnitude (characterized by the vol-
canic explosivity index; VEI), given that there is an
eruption.

Here, we describe a statistically meaningful
approach to the estimation of the probability
density function (pdf) of the probability of events
at each node of the event tree, taking into
account all of the information available. We con-
sider only the long-term volcanic hazard that is
assessed during a quiet period of the volcano. In
this case, monitoring data are used only to watch
for unrest, and we estimate a posterior pdf by
using data related to past episodes of volcanic
activity. When unrest is detected, we may revise
the event tree to assess mid- to short-term volcanic
hazards (see Marzocchi et al. 2004). Information
used for long-term volcanic hazards may not be
particularly useful. Instead, monitoring data
becomes more important. Because these pdfs are
determined, their combination allows us to
evaluate the probability of any desired event (e.g.
Aspinall et al. 2003; Marzocchi et al. 2004). As
described in the following, use of these pdfs
allows aleatory and epistemic uncertainties to be
estimated.

Posterior density function at the nodes for

the long-term volcanic hazard

Here, the objective of a Bayesian analysis is to esti-
mate the posterior pdf at the nodes, through the
Bayes rule (Bernardo & Smith 2000). That is, the
Bayes rule is used to update the a priori belief
about the probability at each node by including
available past data. The evaluation of the long-
term volcanic hazard is based on these posterior
distributions.
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At this point, we specify the data and the par-
ameters used to calculate transition probabilities
in the event tree node by node.

Node 1

The first node has two possible outcomes: ‘occur-
rence of unrest’ and ‘not occurrence of unrest’ in
a given time window t. These outcomes can be
treated as ‘success’ and ‘failure’, respectively, in a
binomial model.

(1) Let Y1 be the variable that counts the number
of (non-overlapping) time windows containing
onset of unrest that occur in a set of n1 inspections,
the total number of non-overlapping time windows
investigated (to prevent potential effects of possible
past unrest that lasted a long time, n1 considers only
time windows that begin in a state of no unrest);

Y1jQ1 � Bin(n1, u1) (1)

where u1 is the probability of unrest in the given
time window t, and Bin signifies a binomial pdf.

The binomial density function is

fY1jQ1
( y1ju1) ¼

n1

y1

� �
u

y1

1 (1� u1)n1�y1 : (2)

(2) We define the following prior distribution
for Q1

Q1 � Be(a1, b1) (3)

that is, as a Beta distribution with parameters a1 and
b1, whose density function is

fQ1
(u1) ¼

1

B(a, b)
ua�1

1 (1� u1)b�1,

0 , u1 , 1, a . 0, b . 0 (4)

where B(a, b) denotes the Beta function

B(a, b) ¼

ð1

0

ua�1
1 (1� u1)b�1dx: (5)

Fig. 1. Sketch of the event tree for Mt. Vesuvius as reported by Marzocchi et al. (2004). The nine steps of estimation
progress from general to more specific events (left to right). It should be noted that any branch that terminates with
‘Clone’ is identical to the central branch. For example, in the column ‘Sectors’, the clones relative to sectors 1, 2, 3, 4,
6, 7 and 8 are identical to the central branch relative to sector 5. The branches terminating with ‘Stop’ are not discussed
here because they cannot develop into dangerous subsequent events. The shaded part of the event tree is the part
considered here.
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The expected value for this Beta distribution is

E(Q1) ¼
a1

a1 þ b1

(6)

and the variance is

V(Q1) ¼
E(Q1)(1� E(Q1))

(a1 þ b1 þ 1)
: (7)

We chose the Beta distribution because it is defined
in the range ½0,1�, and it is the conjugate prior distri-
bution in the binomial model (Gelman et al. 1995).
This choice is subjective and other distributions can
be used, such as the Gauss distribution for the logis-
tic transformation of the probability. In practice, the
differences associated with the use of reasonable
distributions are not usually significant; for this
reason, the Beta distribution is the most used in
practical applications (see, e.g. Gelman et al.
1995). If the present state of the art does not
allow us to estimate a reasonable a priori model,
we can express the state of maximum ignorance
using the uniform distribution that corresponds to
a Beta distribution with a1 ¼ b1 ¼ 1.

(3) Through Bayes theorem and adopting the
results of the conjugate families for the binomial
model, we obtain the following posterior distri-
bution for Q1:

Q1jY1 � Be(a1 þ y1, b1 þ n1 � y1) ð8Þ

where y1 is the number of time windows in which
unrest is observed in the n1 inspections.

Node 2

The structure of the second node is similar to the
structure of the first node: success is ‘magmatic
intrusion’ and failure is ‘not magmatic intrusion’,
given that unrest has occurred.

(1) Let Y2 be the variable that counts the number
of magmatic intrusions that happen in a set of y1

episodes of unrest that occurred at the previous
node. Then we can write

Y2jY1, Q2 � Bin( y1, u2) (9)

where u2 is the conditional probability of magmatic
intrusion.

(2) We define the following prior distribution
for Q2

Q2 � Be(a2, b2): (10)

Also in this case, the present state of the art suggests
we set a2 ¼ b2 ¼ 1.

(3) The posterior distribution for Q2 is

Q2jY2, Y1 � Be(a2 þ y2, b2 þ y1 � y2) (11)

where y2 is the number of magmatic intrusions
observed in the set of y1 periods of unrest from
the previous node.

Node 3

The third node defines the ‘occurrence of eruption’
and ‘not occurrence of eruption’ in a given time
window t as the success and the failure in a bino-
mial model, provided the unrest has magmatic
origin.

(1) Let Y3 be the variable that counts the number
of eruptions that happen in a given time window t in
a set of y2 magmatic intrusions that occurred at the
previous node. Then

Y3jY2, Q3 � Bin(y2, u3) (12)

where u3 is the conditional probability of eruption.
(2) We define the following prior distribution

for Q3:

Q3 � Be(a3, b3): (13)

As before, our present state of knowledge of this
process suggests we set a3 ¼ b3 ¼ 1.

(3) Again we obtain the following posterior
distribution for Q3:

Q3jY3, Y2 � Be(a3 þ y3, b3 þ y2 � y3) (14)

where y3 is the number of eruptions observed in the
set of y2 magmatic intrusions from the previous node.

Node 4

The fourth node represents the magnitude of the
eruption in terms of VEI, categorized here as
three possible outcomes j, where j ¼ 3, 4, 5þ
(VEI ¼ 3, VEI ¼ 4, VEI � 5, respectively). It
should be noted that we are considering a specific
case where eruptions with VEI � 2 are very unli-
kely, as for most explosive volcanoes in a closed
conduit regime with little degassing. In this situ-
ation it is appropriate to assume that the next
event must have at least the minimum energy
required to reopen the conduit. However, generaliz-
ing this step to include lower VEI does not pose any
conceptual difficulty. Let Y

j
4 be the number of times

that the event VEI ¼ j occurs in the set of y3 erup-
tions observed in the previous node and let Y4 ¼

(Y3
4 , Y4

4 , Y5þ
4 ) be the vector of all the possible

outcomes, where Y5þ
4 ¼ y3 � Y3

4 � Y4
4 .

W. MARZOCCHI ET AL.34



(1) As a natural generalization of the binomial
distribution, we hypothesize for Y4 a multinomial
distribution with three possible outcomes:

Y4jY3, Q4 � Mu3(y3, u4) (15)

where u4 ¼ ðu
3
4, u4

4, u5þ
4 ) is the vector of the con-

ditional probability for the three outcomes
VEI ¼ 3, VEI ¼ 4, VEI � 5, respectively (with
u 5þ

4 ¼ 1� u3
4 � u4

4).
(2) We define the following prior distribution

for Q4:

Q4 � Di3(a4) (16)

that is, a Dirichlet distribution with parameters
a4 ¼ (a3

4,a4
4,a5þ

4 ), the conjugate prior distribution
in the multinomial model. Such a distribution is
the multivariate generalization of the Beta distri-
bution (see Gelman et al. 1995), therefore the
rationale behind its choice is the same as discussed
above for the Beta distribution. The present state of
the knowledge of volcanic activity suggests that the
magnitude of the eruptions probably follows a
power-law relationship (e.g. Simkin & Siebert
1994; Pyle 1998). The parameters contained in a4

have to account for this information (Marzocchi
et al. 2004). It should be noted that the a priori dis-
tribution accounts for a possible relationship
between repose time and size of a volcanic eruption
only by setting a negligible probability of occur-
rence for eruptions with VEI �2 (a closed conduit
regime implies a long period of repose). More quan-
titative and detailed formulation between repose
times and the size of eruptions can be adopted
once there is a general agreement on their validity.
At this stage we suggest that this possible relation-
ship should be taken into account by selecting
different datasets to obtain different a posteriori
distributions (see below); in this way it is possible
to quantify the influence of the inclusion or
removal of this information on the results (see
Marzocchi et al. 2004).

(3) Through Bayes theorem and adopting the
results of the conjugate families for the multinomial
model, we obtain the following posterior distri-
bution for u4:

Q4 j Y4, Y3 � Di3(a4 þ y4) (17)

where a4 þ y4 ¼ (a3
4 þ y3

4, a4
4 þ y4

4, a5þ
4 þ y3 �

y3
4 � y4

4) and y
j
4 is the number of eruptions of

magnitude j, with j ¼ 3, 4 observed in the set of
y3 eruptions that occurred at the previous node.

An example of long-term volcanic hazard

assessment

To illustrate the long-term volcanic hazard assess-
ment for a generic explosive volcano, we provide
a hypothetical example consisting of the evaluation
of the probability of eruption in a given time
window t. Let:

. YN
1 j u1 � Bin(1, u1) be the variable that

counts if a new episode of unrest occurs in a
given time window t, where u1 is the probability
of unrest;

. YN
2 j Y

N
1 ¼ 1, u2 � Bin(1, u2) be the variable

that counts if the unrest is due to a magmatic
intrusion, provided the unrest happened, where
u2 is the conditional probability of magmatic
intrusion;

. YN
3 j Y

N
2 ¼ 1, u3 � Bin(1, u3) be the variable

that counts if a new eruption occurs in a given
time window t, provided the magmatic intrusion
happened, where u3 is the conditional probability
of eruption.

With this formulation, the eruption event in a
given time window t can be written as (YN

1 ¼ 1,
YN

2 ¼ 1, YN
3 ¼ 1); that is, an eruption occurs

when simultaneously an unrest is detected, a
magmatic intrusion is detected, given the unrest
has occurred, and an eruption is detected, given
the magmatic intrusion occurred. Alternatively,
if unrest has already been detected, the eruption
event in a given time window t can be written
as (YN

2 ¼ 1, YN
3 ¼ 1jYN

1 ¼ 1). That is, an erup-
tion occurs, given the unrest happened, when
simultaneously a magmatic intrusion is detec-
ted, provided the unrest occurred, and an erup-
tion is detected, provided the magmatic intrusion
occurred.

When our hypothetical volcano is in a quiet
period, we are interested in the long-term volcanic
hazard assessment, whereas if the unrest is detected
we are interested in the mid- to short-term volcanic
hazard assessment. Here, we focus our attention
only on the long-term volcanic hazard assessment.

Let us suppose that we wish to evaluate the prob-
ability of an eruption in a given time window t,
taking into account the known history of this
hypothetical volcano. Let us suppose that, at this
stage of knowledge, we start from a uniform distri-
bution for the first three nodes (a1 ¼ b1 ¼

a2 ¼ b2 ¼ a3 ¼ b3 ¼ 1), and in the past we
observe y1 ¼ 8 onsets of unrest out of n1 ¼ 40
time windows investigated, with evidence of y2 ¼

4 magmatic intrusions and y3 ¼ 1 eruption. For
simplicity, we indicate with P both the probability
function (for a discrete random variable) and the
density function (for a continuous random variable).
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Then the probability we are looking for is

P(YN
1 ¼ 1, YN

2 ¼ 1, YN
3 ¼ 1 jY1, Y2, Y3)

¼

ð
P(YN

1 ¼ 1, YN
2 ¼ 1, YN

3 ¼ 1 ju1, u2, u3)

� P(u1, u2, u3 jY1, Y2, Y3)du1du2du3

¼

ð
P(YN

1 ¼ 1 ju1)P(u1 jY1)du1

�

ð
P(YN

2 ¼ 1 jYN
1 ¼ 1, u2)P(u2 jY2, Y1)du2

�

ð
P(YN

3 ¼ 1 jYN
2 ¼ 1, u3)P(u3 jY3, Y2)du3

¼

ð
u1P(u1 jY1)du1

ð
u2P(u2 jY2, Y1)du2

�

ð
u3P(u3 jY3, Y2)du3

¼ EQ1 j Y1
(u1) EQ2 j Y2,Y1

(u2) EQ3 jY3,Y2
(u3)

¼
a1 þ y1

a1 þ b1 þ n1

� �
a2 þ y2

a2 þ b2 þ y1

� �

�
a3 þ y3

a3 þ b3 þ y2

� �

¼
1þ 8

1þ 1þ 40

� �
1þ 4

1þ 1þ 8

� �
1þ 1

1þ 1þ 4

� �

¼ 0:036 (18)

the product of the posterior expected values of the
conditional probability of the risky event at each
node (see equations (8), (11) and (14) for the pos-
terior densities involved, and equation (6) for the
expected value of a Beta distribution).

Concluding remarks

One of the most relevant features of the Bayesian
approach is that it allows the probability of a
specific event to be a random variable characterized
by a statistical distribution. The first and second
moment of such a distribution can be associated
with different types of ‘uncertainties’. Specifically,
the intrinsic unpredictability of the system (aleato-
ric) can be estimated by the expected value of the
pdf, whereas the uncertainty related to our limited
knowledge of the system (epistemic) can be natu-
rally associated with the standard deviation of the
pdf (i.e. to the dispersion around the expected
value). Often, decision-making is at best based on
a single value of the volcanic hazard. However,
the Bayesian approach allows us to include our
a priori belief about the probabilities at each

node. In other words, the long-term volcanic
hazard assessment of an eruption in the frequentis-
tic approach is evaluated with the product of the
maximum likelihood estimates of the conditional
probabilities at each node, that is, the product
of the proportions of events at each node.
For example, (y1=n1)(y2=y1)(y3=y2) ¼ (y3=n1) ¼
1=40 ¼ 0:025. It should be noted that the Bayesian
long-term volcanic hazard for an eruption (e.g.
0.036) is greater than the frequentistic estimate of
probability (e.g. 0.025), because it includes the
information about maximum ignorance expressed
through the a priori uncertainties. The Bayesian
long-term volcanic hazard for an eruption can be
seen as the weighted average of the probability of
an eruption with the posterior distributions of the
probabilities of the risky events. The dispersion of
the prior distributions at each node furnishes our
‘degree of knowledge’ for that stage of the volcanic
process, and therefore it may guide future research
with the aim of reducing epistemic uncertainties.

Further reading

Gelman et al. (1995) have provided a comprehen-
sive introduction to Bayesian methods. Newhall &
Hoblitt (2002) have described the use of the event
tree in volcanology, particularly for short- and
mid-term hazard assessments. Marzocchi et al.
(2004) have presented an actual hazard assessment
of Vesuvius, Italy, using methods such as those pre-
sented in this paper.

Thoughtful reviews by C. Connor, G. Woo and S. Coles
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financial support from the University of Padova (Italy)
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extreme sea levels and for coastal erosion’.
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