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Abstract

In this paper some methods are proposed and compared to correct the experimental measurements for prelimi-
nary processing of tripotential data which are acquired for HES prospecting. However, the use of those meth-
ods should be based upon an accurate analysis of all experimental data. Such an analysis ought to involve:
1) an estimate of the averaged measurement errors with their variance and distribution in both the space and
the three apparent-resistivities domains; 2) the choice of a resistivity model capable of describing the actual
volume under study. The differences among the three values of apparent resistivity measured on a point are
generally influenced both by the resistivity distribution below ground as well as by the eventual measurement
errors. The proper choice of the method of correction which may be useful to merge the resistivity values and
minimize the measurement errors is also linked to the separation of modelling effects. Consequently, the
model chosen should be selected in relation to the above mentioned analyses. It thus becomes useful to know
the general relations among the three apparent resistivity values for some simple structures, e.g. the two-layer
model with a slowly changing first layer thickness. This theoretical model is presented and discussed using
two new «composed» apparent resistivities, namely p * and p?, which seem to be useful tools in HES interpre-
tation. The behaviour of the calculated responses can be useful also for a fast data inversion.

I_(ey words geoelectrical prospecting — tripoten- absolute values of the measured potential and
tial method — data processing — two layer model the inserted current, AV/I) as well as an asso-
ciated value of apparent resistivity. The follow-

. ing relations can be written
1. Introduction

) ) R%= AV*/I” (1.1)

The tripotential method, proposed by Car-
penter (1955) and developed by Carpenter and RB = AVB/ P (12)
Habberjam (1956), is based on the detection of )
a triad of resistivity values for each selected _
measurement position. These three measure- RY=avriry (1.3)
ments (namely p% p# and p”) should be car-
ried out using a linear four-electrode arrange- and
ment (fig. 1), alternatively using them as cur- o
rent (namely A and B) and potential (namely p*=R"-2-mp (14)
M and N) electrodes. In this paper only the ar- b op
ray having equidistant electrodes with p spac- pr=R"-6-7p (1.5)
ing is examined, as this kind of array is the
most widely used for Horizontal Electrical p'=R"-3-m-p (1.6)
Soundings (HES).

Each array shown in fig. 1 gives a value of The measured resistances, as well as the ap-
resistance R (defined as the ratio between the parent resistivities are not independent of each
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A M N
A B N
A M B

Fig. 1. Sketch of the three possible distinguished arrays, with p spacing, having A and M, as well as B and N,

electrically concordant.

other, since the following theoretical relations
are in effect:

R*—RP_RY=0 (1.7)
3p%—pP-2p"=0 (1.8)

Consequently an experimental tripotential
measurement (without errors) should give a
triad of values of apparent resistivity satisfying
(1.8), which would correspond to a single point
of the 3-D cartesian space of the three apparent
resistivities [p%, p?, p] pertaining to the plane
which is described by (1.8) and contains the
straight line p* = pf = p.

The various experimental data are generally
affected by errors both with regard to the elec-
trical (currents and potentials) and geometrical
(e.g., the relative positions of the four elec-
trodes) measurements. The propagation of the
errors involved in the electrical measurements
can produce a default in (1.7) and (1.8), giv-

ng
R*—RP—_R'=E (1.9)
and

3p*—ph-2pr=¢, (1.10)

where E and &, respectively are the degree of
incompatibility in resistance and resistivity
with respect to the observed values.

Relations (1.9) and (1.10) appear to be use-
ful to check the experimental data. Consider-
able discrepancies between the & values and
the probable error of measurement are in fact
due to trivial errors during the acquisition pro-
cess: they are often readily recognized and re-
moved. On the contrary minor errors, due to
the instrumental accuracy and the acquisition
procedures, can often be minimized using a
suitable correction routine in which each triad
of experimental resistivity data must be shifted
from the experimental point to the plane
3p%—pP—2p"=0, here after the £ =0 plane.

2. Reduction to the plane ¢ =0

A few correction techniques were discussed
in a previous paper (Cosentino et al., 1992). In
principle those techniques can be divided into
three groups:

1) techniques in which a probability distri-
bution on the £€=0 plane is associated with
each experimental point;

2) techniques of shifting of the actual ex-
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perimental points to the £ = 0 plane, on the ba-
sis of error theory;

3) techniques of composed reduction, in
which the above criteria are integrated through
some constraints which arise from the general
or particular characteristics of the model which
is selected to describe the actual investigated
volume. Generally these constraints are ex-
pressed by relations — equalities or inequali-
ties — among functions of the three measured
resistivities.

With regard to point (2), we will show later
that the criteria used to choose the directions of
the shifting procedure can also be suggested by
the analysis of the expected errors on each
measured resistivity (p% p® and p?).

In principle the projection of an experimen-
tal point to the €= 0 plane using ¢, €4, € di-
rection parameters is carried out using the fol-
lowing correction formulas:

p?:p“—e-ea/@ea—eﬂ—zey) 2.1

pl=pP-e-0/(3¢,—¢,-20)  (2.2)

pl=p'-¢- €y/(3€a—€ﬁ—2€y) (2.3)

In particular it is possible to calculate for
each measurement point a quantity — hereafter
p* — proportional to the mean apparent resis-
tivity. This is equivalent to a normal projection
of the experimental point on the p*=p?
straightline (Cosentino ez al., 1992). The physi-
cal meaning of p* will be discussed below.

Another useful correction can be obtained
by projecting each experimental point normally
to the £=0 plane. It can be performed using
the following formulas:

pi=p*=3-¢e/14 (2.4)
pP=pPt+ella (2.5)
pl=p'+ell (2.6)

This procedure corresponds to the minimum
possible correction of the data which, neverthe-
less, insures a partial reduction of the errors.
Error theory suggests choosing the directional

p’
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parameters of (2.1), (2.2) and (2.3) in such a
manner that the corrections are proportional to
the probable errors on the three measured ap-
parent resistivities. It is possible to evaluate
such errors starting from the probable errors on
the measured AV, I and the geometric factor K,

J (%)

where 0,,, o and oy, are, respectively, the stan-
dard deviations of the resistivity measure-
ments, the geometric factor and the measured
resistences. The values of o, can be used for a
correction of the various measurements based
on the analysis of the errors bearing on each
measurement.

It should be noted that, as (1.7) is indepen-
dent from the geometry of the array, the errors
on the estimate of K shift the resistivity points
along directions which are parallel to the £ = 0
plane.

If the term under the root in (2.7) is quite
independent from the values of R, (2.1), (2.2)
and (2.3) reduce to the corrections proposed by
Habberjam (1979)

Og
R

Ok

O, =p (? 2.7

pr=pT—e-p*/Gp +pPe2p) (2.8
pl=pPie pPrGBp*+pP+2pn) (2.9
pl=p'+e-p'/(3p*+pP+2ph (2.10)

The composed reduction techniques seem to
introduce a new tool which can improve both
the correction techniques as well as the selec-
tion of the model type. As a matter of fact
these techniques are characterized by an analy-
sis of the experimental data both in the space
and resistivity domains. These analyses should
give different information on the model to be
used in the final step; such information can
also be used in the preliminary step of reduc-
tion of the data to the € =0 plane.

Thus, the experimental data, without correc-
tion or with a preliminary rough correction,
should be examined on the £=0 plane and
compared with the general behaviour of the re-
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sistivity data calculated for each particular
model.

3. The composed apparent resistivities
p" and p°

In order to describe the point distribution in
the € = 0 plane it is very useful to use a rotated
reference frame constructed in such a way that
two of its axes are on the € = 0 plane, while the
third one is p®, and, thus is equal to zero if the
measurements are correct. The two axes p¥, p°
on the £€=0 plane can be chosen with direc-
tional parameters respectively €, =1, €,=1,
¢,=land€, =1, g=-5,¢ —4w1threspectt0

y
the old frame.

The new composed resistivities can be ex-
pressed as a function of the old ones, as fol-
lows:

pﬁzvg.(pa+pﬁ+pY)/3 3.1
pf=14-(3p%—pP-2p" /14 (3.2)
P =42 (p%—5pP+4p7)/ 14 (3.3)

It can be useful to stress that in the new ro-
tated frame only the two composed resistivities
p" and p* are connected with the resistivity
distribution in the earth, while the third appar-
ent resistivity, namely p® is only connected
with all the measurement errors carried out
during the acquisition of the triad [p%, p#, p"].
So, in principle, once the corrections are car-
ried out, one can use only the two following
composed resistivities to generate a complete
tripotential information:

pH=~3. (4p*-

P13 (3.4)

pT=\42- (p"- p%) 3.5)

In particular, if the measurements are carried
out on a homogeneous and isotropic earth whose
resistivity is p,, and no measurement error is
done, the composed resistivities should respec-
tively result p#=+3-p,, p*=0and p°=0

It is easy to deduce the qualitative be-
haviour of the data distribution in the resistiv-
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ity domain when the data pertain to a simple
ground model (see, e.g., Cosentino et al.,
1992). It can be very useful to known their
quantitative behaviour in many theoretical
cases: such behaviour is calculated below for a
two-layer model characterized by low-gradient
variability of the thickness of its first layer.

4. Two-layer model with variable depth
of the boundary

The normal two-layer model can be charac-
terized by a slow variability of the depth of the
boundary in the investigated area. In this case
the distribution of the set of the experimental
data in the resistivity domain can be approxi-
mately calculated by collecting the responses
of many two-layer models having a plane and
parallel interface at different depths, for the
range of depths considered. Thus the single re-
sponses can be calculated using two-layer
monodimensional models.

Let p, be the resistivity of the upper layer
and p, that of the lower one. The reflection co-
efficient k is given by

_ P2~ P1
P2+ py
If 6 is the ratio between the thickness # of

the upper layer and the p spacing the image
method directly gives:

4.1)

AP P
P o \/1+4522 V4 +48%n?
(4.2)
1
_—1+6 k" + -
,,Z{ [V9+4522 V1 +46%n°
2
V4 +4820
4.3)
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1+3Zk”

~ \/1+452 2

1
o+ 452112]
(4.4)

which obviously satisfy (1.8).

On the £=0 plane the distribution of the
experimental points that can be measured on a
two-layer model having a slowly variable
thickness of the upper layer will be approxi-
mately given by

——\/3+\/3 k" L+
P 3 n=1 \/1+452n2

3 6
V9 + 45212 V4 + 48202

V4 + 48272

P_Tz\/ﬂ. 4
P 3 Zk[
n=1

1 3
V1 +48%02 \/9+452n2]
(4.6)

The relative behaviour of the ratios between
the two composed resistivities and the upper
layer resistivity on the € = 0 plane is presented
respectively in figs. 2 and 3, for positive k val-
ues (that is for conductive overburden) and
negative k (that is for resistive overburden). Fi-
nally in figs. 4, 5 and 6 such calculated values
are projected upon the three coordinate planes
of the resistivity space and are logarithmically
represented. The general trend of the three sets
of curves seem to be similar, even though the

4.5) relative distances from the main diagonal are
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Fig. 2. Behaviour of the composed apparent resistivities for all the &-values and for selected positive k-values.
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Fig. 3. Behaviour of the composed apparent resistivities for all the &-values and for selected negative k-values.
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Fig. 4. Behaviour of the apparent resistivities p* and pP for all the S-values and for selected k-values.
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Fig. 5. Behaviour of the apparent resistivities p* and p? for all the &-values and for selected k-values.
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Fig. 6. Behaviour of the apparent resistivities p# and p” for all the &-values and for selected k-values.
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significantly different due to the different dihe-
dral angles among the € = 0 plane and the three
coordinate ones.

5. Conclusions

It can be concluded that it is useful to study
the distribution of the experimental data in the
apparent resistivity domain, and, in particular,
in the plane of the composed apparent resistivi-
ties, once the necessary corrections of the data
are carried out.

As a matter of fact such distributions can
reveal some general characteristics of the type
of model which should be used, so that it is
possible to optimize the correction methodol-
ogy. In particular, in the two-layer model hav-
ing a «slowly» variable thickness of the first
layer, the experimental points, in the p*— p°
plane should be approximately distributed
along section curves similar to those shown in
figs. 2 and 3. In such model, as can be ex-
pected, a tripotential measurement can theoreti-
cally give both the local thickness of the first
layer as well as the resistivity of the second, if
the resistivity of the first layer is known.

It is important to note that often, in practice,
the actual resistivity distributions should be
represented by models more complex than the
studied one.

If two or more sectors of the investigated
area are characterized by different models, the
whole set of data should be differentiated in
various different sub-sets: otherwise the distri-
bution on the £ = 0 plane would be quite irreg-

ular and scatted due to «geological» and mea-
suring noise.

Consequently it may be important to dis-
criminate the possibility of finding different
components in the whole data set, preferably
after a suitable low-pass filtering: such ap-
proach can represent a standard preliminary
methodology, which may also be useful in or-
der to optimize the correction procedure.

Finally it should be noted that it is often
necessary to filter the various maps in the
space domain (for instance, a low-pass filtering
in order to reduce the noise component due to
random errors and to low-wavelength resistiv-
ity anomalies). In such cases it is difficult to
evaluate the optimal characteristics of the filter
by analyzing only the filter effects in the space
domain: the optimization can be performed
also analyzing the data in the resistivity do-
main, especially if those are compared with the
distributions given by the chosen resistivity
models.
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