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Abstract

In this paper we apply various inversion methods to a set of teleseismic data collected by a network
operating along the Ligurian Belt in the transition region between Alps and Apennines. In particular,
we consider the regularization method, the truncated singular value decomposition, the Landweber
method (with the Related Simultaneous Iterative Reconstruction Technique) and the conjugate gradi-
ent method. All the methods provide rather similar velocity models which are well approximated by
that provided by back-projection (used with an appropriate normalization constant). A drawback of
these models seems to be the large discrepancy (of the order of 40%) between the observed time
residuals and those computed from the model itself. However, for each station of the network, the az-
imuth dependence of the computed time residuals reproduces rather well the observed one so that it is
believable that the most significant information contained in the data has been exploited. The com-
puted velocity models indicate strong heterogeneities in the first 200 km below the Apennines.

Key words seismic tomography — tectonic struc- Granet and Cara, 1988), using different ap-
tures — Northwestern Italy proaches and data sets.

In previous papers (Cattaneo et al.,

1986; Cattaneo and Eva, 1990; Cattaneo

1. Introduction and Spallarossa, 1991), we showed the
presence of strong variations in the time
Northwestern Italy, in particular the re- residuals of teleseismic waves in the area,

gion extending from the western side of the depending on both azimuth and distance.
Alpine arc to the Northern Apennines, is  The size of the azimuthal variation of resid-

characterized by strong lateral hetero- uals has been interpreted in terms of high
geneities in the lithosphere and the upper  velocity contrast due to the presence of the
mantle, as revealed by gravimetric and seis- «Ivrea Body», in the crust, and of Alpine

mic-wave propagation anomalies. From a and Apenninic «roots», reaching at least a
seismological point of view, structural deep depth of 200 km, in the upper mantle. In
heterogeneities have been suggested by this paper we investigate the complex struc-
many authors (Baer 1980; Panza et al., ture associated with the contact between
1980; Babuska et al., 1984; Spakman, 1986; the Alps and the Apennines, using teleseis-
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mic data recorded by stations distributed
along the Ligurian coast.

Since the geographic region involved has
a rather small size and the number of seis-
mic stations and events is not too large
(roughly 10° arrival-time residuals), the to-
mographic problem we have to solve is of
reasonable dimension. For this reason it is
possible to apply to this problem several in-
version methods, including those which are
more expensive from the computational
point of view. Therefore the scope of the
paper is twofold: to derive information on
the lateral heterogeneities of the region
considered and to compare the ability of
various inversion methods in the interpreta-
tion of seismic data.

Concerning the second point, different
inversion methods could provide rather dif-
ferent solutions, because they are different
methods for solving approximately the
same basic equation which is severely ill-
conditioned. A rather satisfactory result we
have obtained is that all the inversion
methods considered provide quite similar
velocity models. A possible difficulty is that
the discrepancy between the real and com-
puted data using these models is rather
large, of the order of 40%. Even the dis-
crepancy corresponding to the generalized
solution is of the same order of magnitude
in spite of the fact that this solution, which
is not physically reasonable because it is
strongly influenced by experimental errors,
is that giving the smallest discrepancy.

The previous result may indicate a large
inconsistency between the models consid-
ered and the seismic data because this dis-
crepancy is much larger than the estimated
experimental errors (~ 10%). However,
the computed time residuals have the same
azimuth dependence of the observed ones
for all the stations of the network. As a re-
sult, for each station the difference be-
tween the observed and the computed data
is a fluctuating vector with approximately
zero mean. This random behaviour may
suggest that the experimental errors have
been underestimated and that the most sig-
nificant information contained in the time

48

residuals has been exploited. Anyway fur-
ther investigation of this phenomenon is re-
quired. It should also be interesting to ver-
ify if it is a common feature of all the mod-
els used in the interpretation of teleseismic
data.

In section 2 we briefly describe the data
we have used and, in section 3, the models
we have considered. In section 4 we discuss
the inversion methods we have applied to
our problem. In section 5 we give the nu-
merical results obtained, while their geo-
physical implications are discussed in sec-
tion 6.

2. Data sources and analysis

The main source of teleseismic travel-
time data used in this paper is the regional
network operating along the Ligurian Belt
and the South-western Alps, based at the
University of Genova (Eva et al., 1985;
Cattaneo and Augliera, 1990). Also tele-
seismic data recorded by two temporary
networks installed in the North-western
Apennines (Augliera et al., 1990) have
been considered. Thus data from 23 sta-
tions (see fig 1a) have been analyzed all to-
gether. Although not all the stations were
operating simultaneously all the time, it
was possible to have a consistent set of data
using the centralized net as a reference.
The areal coverage of the network was not
optimal: stations are mainly installed
around the Ligurian Sea, leaving the Po
Plain incompletely covered, because of the
presence of very strong cultural noise (see
fig. 1b).

After careful tests, a set of 166 teleseis-
mic events (40° < A < 90°), with high qual-
ity recorded signals, was selected, consider-
ing not only the signal-to-noise ratio, but
also the azimuthal and distance coverage.
Figure 2 shows the azimuthal distribution
of the considered events. Most of the foci
were concentrated on the borders of the
Pacific Ocean and the Andes region. The
absolute minimum of coverage in the
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Fig. 1a. Map of the seismic stations used for this work.
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Fig. 1b. Structural sketch map of the Western Alps and their corrclation with the North-western
Apennines and the Ligurian sca: 1) Alpine flysh and Ligurides apenninic formations; 2) Southern al-
pine structures; 3) Pennidic units; 4) Brianconnais units; 5) Cristalline massifs.
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Fig. 2 Azimuthal distribution of the events con-
sidered in this paper.

southern sector is due to presence of the
nearly aseismic African craton.

Since the analysis method requires the
knowledge of the relative time residuals be-
tween the stations, all digital signals have
been processed using a cross correlation
operator applied on a small time-window
around the first arrivals of pairs of seismic
records (Cattaneo et al., 1986; Cattaneo
and Eva, 1990). The application of this op-
erator allows to identify coherent phases
and to determine the relative time shift
needed to obtain the maximum likeness be-
tween them.

The procedure (see fig. 3a-c) can be syn-
thesized in the following in steps:

a) selection of a set of seismic traces rel-
ative to the teleseismic event recorded by
the network;

b) consideration of a suitable time win-
dow centered around the P-phase (less than
5 s of record);

¢) evaluation of the phase shift (z;) be-
tween station pairs (generally assuming as
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reference the master station of the net), ap-
plying the cross-correlation operator;

d) realignment of all traces, performing
a time shift (z;) between the traces, to
check the obtained result (in this way, all
arrival-time differences are related to the
«master» station).

This method is more effective than a di-
rect reading of arrival times which, in pres-
ence of noise, can be uncertain. In fact, in
this way, the evaluation of relative residu-
als becomes nearly independent of the de-
termination of the first motion arrival time,
which is strongly influenced by the signal-
to-noise ratio. The procedure also increases
the time-difference resolution that, in some
cases, can reach some hundredths of a sec-
ond. The transformation of arrival-time dif-
ferences into relative residuals was easily
obtained once the earthquake focus was de-
termined and a mean reference velocity
model was adopted.

As is known, the main advantage of
working with relative residuals is that er-
rors in event location and in long-range ve-
locity models only marginally affect the re-
sult.

3. The models: singular system analysis

Since we consider teleseismic data and
we use the classical ACH method (Aki er
al., 1977), only the last part of the ray path,
immediately beneath the network, is mod-
elled while the Earth’s structure outside
this volume is assumed to be known.
Clearly this assumption is justified only for
network dimensions small compared with
the mean length of the ray paths, but this
condition is satisfied in the case of the data
considered in this paper. Velocity perturba-
tions are parametrized starting with homo-
geneous layers of constant average velocity
and dividing each layer into blocks of con-
stant dimensions.

The volume considered corresponds to
the geographical area of fig. 1a and its di-
mensions are 280 km in the E-W direction,
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Fig. 3a-c. a) Seismic traces of the same teleseismic event recorded at some different stations of the net-
work; b) cross-correlation function between traces 1-9; ¢) realignment of the traces of the plot (a).
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Table L. Values of the parameters characterizing the models considered in this section. In the last co-
lumn we also give the values of the sampling index which is defined as the ratio between the number
of sampled blocks and the total number of blocks.

Model Layers Late(flL)SizeS (?fI ubr?(ljc?(rs of sazgggeglocks Sair;lgé;ng
1 4 35%x35 192 139 72.4%
2 6 35x35 288 211 73.3%
3 4 23x23 432 270 62.5%
4 6 23x23 648 422 65.1%
5 4 17x17 768 433 56.4%
6 6 17x17 1152 660 57.3%

210 km in the N-S direction and 200 km in
depth. Concerning the choice of the layers
we have considered two cases: four layers
(layer depths: 40 km for the first one, 50
km for the second and third, 60 km for the
last one) and six layers (layer depths: 30
km for the first four layers and 40 km for
the last two layers). For each one of these
two cases we have considered three differ-
ent choices of lateral dimensions of the
blocks, as summarized in table 1.

The initial 1-D velocity distribution,
used for computing the travel-times corre-
sponding to the six layer models, is shown
in fig. 4 (full line). This is an approximation
of the preliminary reference Earth model
given in (Dziewonski and Anderson, 1981),
which is also reported in fig. 4 (dotted
line).

In section 5 we will present our numeri-
cal results mainly for the case of model 4.
For this model the size of the blocks is still
sufficiently large with respect to the wave-
length of the seismic waves but the resolu-
tion in the lateral directions is better than
that of the models 1 and 2 while the resolu-
tion in depth is better than that of model 3.
Moreover, as follows from fig. 5, the blocks
of the last three layers are sufficiently sam-
pled and the sampling is rather uniform.
This is not true for models 5 and 6.

According to the ACH method, for each

model we must solve the linear algebraic
system:

Gs =t 3.1
where the unknown s is the vector whose
components are the slowness anomalies of
the blocks and the data t is the vector
whose components are the travel-time
residuals minus their average over all the
station for each event. The matrix G can be
computed from the travel-times derived
from the velocity distribution of fig. 4. The
unit of both G and ¢t is the second.

In order to reduce the dimension of the
problem, it is convenient to remove the un-
sampled blocks since they correspond to
columns of zeros in the matrix G. This is a
rectangular matrix with m rows (number of
data) and n columns (number of sampled
blocks). As follows from table I, we have
m > n for all the models we have consid-
ered. The rank p of G is smaller than n. In
fact, as proved in (Aki et al., 1977) we have
p = n — N, where N is the number of
layers.

The matrix G is also ill-conditioned and
its ill-conditioning can be investigated by
computing its singular system. This task is
possible in our case since the dimensions of
G are not too large (in the case of model 6
it is 1077 X 660).

The singular system of G, however, de-
pends on the definition of the norms of the
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Fig. 4. Velocity distribution of the preliminary reference Earth model given in (Dziewonski and An-
derson, 1981) (dotted line) compared with the approximation used as initial 1-D velocity distribution

for the six layer models.

solution and data vectors. In general we
can consider weighted Euclidean norms of
the following form:

m

< 1

Isl? = Xv; 15 12, 6P =3 —1 4 |2
j=1 i=19i

(3.2)

The simplest choice is, of course, yp =1

and o; = 1, while the choice corresponding
to the Simultaneous Iterative Reconstruc-
tion Technique (SIRT) is (van der Sluis and
van der Vorst, 1987)
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m n
v =21Gy 1% =Y |Gy|>e

i=1 j=1

(3.3)

where a is a given parameter satisfying the
condition 0 < a < 2. In the following
these will be called the SIRT weights.

If we introduce the matrices

C = diag {y,}, R = diag {o;} (34)

then the adjoint matrix G* is given by
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Fig. 5. Distribution of the sampling of the blocks of model 4, table 1.
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Table II. Parameters characterizing the matrices G corresponding to the models of table 1. In the co-
lumn of the values of the rank p we also give (in brackets) the values of n — N,. In the third and
fourth column we report the values of the condition numbers 04/0,, both for unit weights and for SIRT
weights. In the fifth and sixth column we give the values of the effective ranks corresponding to 10%

data errors.

Model

SIRT

p (o 1/0p) (o 1/Up)SIRT Dest Dest
1 134 (135) 65.8 455 ) 126
2 203 (205) 1.85x10* 4.36x10° 110 167
3 260 (266) 236 10° 4.54x10% 164 231
4 390 (416) 2.69 x 1010 5.14 x10° 190 295
5 400 (429) 2.93x 108 8.53x 107 248 332
6 559 (654) 1.41x 1013 4.90x 1013 278 403

G* = C"1GTR1 (3.5) We have computed the singular system

and the singular system of G is defined as
the set of the solutions {o}; v, u} of the
homogeneous equations

Gv, = oy, G*m = oy ;

k=01,.,p (3.6)

When the weights are not identically
one, this singular system can be computed
by means of standard routines (which apply
to the case of the usual Euclidean norm) if
one rescales the singular vectors and the
matrix as follows (van der Sluis and van der
Vorst, 1987)

Y _ po12
X, = Cv, y = R "u,

L = R™12GC~12 3.7)
so that the eq. (3.6) become
Lx, = oy, L'y = oeXie;
k=01,.,p (3.8)

We point out that in the case of the SIRT
weights the singular values (as well as the
matrix L) are dimensionless while in the
case of unit weights (i.e. L = G), the unit
of the oy is the second.
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for all the models of table I both in the case
of unit weights and in the case of the SIRT
weights. The singular value spectra in the
case of unit weights are plotted in fig. 6a,b.
In the case of the SIRT weights we have
found that the singular values do not strongly
depend on a. For example, the first singular
value of the matrix G corresponding to
model 4 is in the range 0.45 + 0.58 for a be-
tween 0 and 2. The largest value of oy corre-
sponds approximately to a = 1 and the be-
haviour of o, as a function of « is roughly
symmetric with respect to this point. Also the
behaviour of the singular value spectrum is
roughly independent of the value of a. For
this reason the results reported in table II
correspond to the case o = 1.

We already know that the matrix G is
rank deficient since p < n — N;. Therefore
we have tried to determine numerically its
rank because, in this way, it is also possible
to determine the true condition number of
G, ie. the ratio 0,/0, between the largest
and the smallest singular value. In fact, due
to the finite precision of the computer, the
number of singular values of G different from
zero can be just n so that the spurious singu-
lar values can be detected only by changing
the precision of the computation.

For all the models we have found several



Comparison of inversion methods in seismic tomography: application to tectonic structures in Northwestern Italy

140

Ok
(sec) |20
100

80r¢

601

40

20

140
Ok
(sec) |20

100

80

60[K

401

20

Fig. 6a,b. Singular value spectra for the models

Model 5

. -].-.-......-n..- !
300 400 500

Model| 2
Model 4
Model 6

200

(dotted line); b) model 2 (full line), 4 (dashed line)

singular values of the order of the com-
puter precision (0 = 10~'5). For example,
in the case of model 4, we have n — NL =
416 but only 390 singular values are > 1013
in the case of unit weights and > 10~16 in
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k

of table I: a) model 1 (full line), 3 (dashed line), 5
, 6 (dotted line).

the case of SIRT weights. We have recom-
puted the singular values with a greater
precision and we have found that the first
390 singular values are stable while the oth-
ers decrease and are still comparable with
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the new computer precision (for instance,
0 = 10739). Therefore we conclude that, in
such a case, p = 390.

Once the rank of the matrix has been
determined, one can compute its condition
number 0,/0,, i.e. the parameter controlling
error propagation from the data to the so-
lution. We find that the ill-conditioning of
the matrix G increases with the number of
blocks of the model. Moreover, for a given
model, the ill-conditioning corresponding
to SIRT weights is smaller than that corre-
sponding to unit weights.

Another interesting parameter is the «ef-
fective rank» of the matrix, which can be
defined as the number of singular values
such that 0, / oy is smaller than the inverse
of the relative error on the data. This effec-
tive rank is, in general, much smaller than
the rank of the matrix. The values reported
in table II correspond to 10% data errors,
i.e, the number of singular values o, such
that 0,/0;, < 10. As follows from this table
the effective rank corresponding to SIRT
weights is larger than the effective rank
corresponding to unit weights.

4. The regularized inversion methods

In this section we give a short account of
the methods we have used. Even if they are
well documented both in the mathematical
and in the geophysical literature (see, for
instance, Bertero, 1989; van der Sluis and
van der Vorst, 1987), where some of them
are reviewed), we wish to stress the rela-
tionship between these methods since each
of them can be considered a filtering of the
generalized solution. This is the solution of
minimal norm of the least squares equa-
tion

Gs = G*t (4.1)
where G is the self-adjoint m X m matrix

= G*G (4.2)
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and G* defined in eq. (3.5). In terms of the
singular system of G it is given by

= 2 Oi (t, ) v (4.3)

where (t, u,) is the scalar product associ-
ated with the norm (3.2) and p is the rank
of the matrix. This solution is numerically
unstable since the condition number of G,
cond (G) = ay/0,, is, in general, rather
large, as follows from table II.

A blurred solution, however, can be eas-
ily obtained by means of the so-called back-
projection method. We define the back-
projected solution sgp as follows:

1
Spp = ? G*t (44)

1

For its computation we only need the
largest singular value ¢, which can eventu-
ally be computed (without computing the
complete singular system) using the power
method (Ralston, 1965). If we represent ¢
as a linear combination of the singular vec-
tors u,, we find that

2

1
) rA (t, w) v

< o
k
sBP"Z(—

(%1

(4.5)

and therefore sgp is a filtered version of the
generalized solution s

Spp = WBPS+ (46)
with a filter Wpp given by
. Oy 2
Wpgp = diag (777) 4.7

In the case of an ill-conditioned problem
the back-projection provides a very rough
approximation of the unknown solution.
More refined approximations can be ob-
tained using methods of the so-called reg-
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ularization theory (Tikhonov and Arsenine,
1977).

4.1. Tikhonov regularized solution
This is given by

s = (G + A)~1G*¢ (4.8)
with G defined in eq. (4.2) and G* defined
in eq. (3.5). The parameter A is called the
regularization parameter (damping parame-
ter in geophysical literature).

When y; = 1, g; = 1, the regularized so-
lution (4.8) is just the well-known damped
least squares (DLS) solution. When y; and
o; are defined as in eq. (3.3) then the
solution (4.8) is the limit of the DSIRT
algorithm considered in (Trampert and
Leveque, 1990).

If we write s, in terms of the singular sys-
tem of G, then we easily obtain that s, is a
filtered version of s+

5 = Wyst 4.9

where
2

. 0]
W, = diag {a%-—j:_l} (4.10)

It is obvious that the diagonal elements of
W, are of the order of 1 if 67 > A and are
negligible when o7 < A.

The optimum value of 4 is related to the
inverse of the signal-to-noise ratio (see
Bertero, 1989 for a review). When this
quantity is not known, a procedure, which
is used very often in practice, consists of
computing the value of A which minimizes
the so called generalized cross-validation
(GCV) function (Craven and Wahba,
1979), defined by

le — GsP
[7rlI = GWIP

V() = (4.11)

where
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G@) = G(G + A)™'G* = GG + AD-!
(4.12)

and G = GG* (see also Bertero, 1989 for a
review).

We have also considered the case of a
regularized solution defined as the mini-
mizer of the following functional:

Pils] = |Gs — 4P + (s> +

+ |Hisl? + [Hasl? + [|Hss]P)
(4.13)

where H; is the matrix which associates to
each block the variation of its slowness with
respect to that of the preceding one in the
x-direction; H, and H; have a similar desig-
nation relative to variations in the y- and z-
directions. No variation is associated to a
boundary block in the directions orthogo-
nal to its boundary surfaces. In short, the
functional (4.13) implies regularization with
a constraint on the gradient of the slowness
function.

By means of a suitable change of vari-
ables (Seatzu, 1986) it is possible to write
the minimizer of the functional (4.13) in
the form (4.8) with a different definition of
the matrices G and G*. Again the estimate
of A can be obtained by means of the GCV
criterion.

4.2. Truncated SVD

The method of truncated Singular Value
Decomposition (SVD) (Bertero, 1989) con-
sists in looking for an approximate solution
given by

K

o=

k=1

i (t, llk) Vi (414)
Oy

with K < p. The number of terms plays
here a role similar to that of the regulariza-
tion parameter. As concerns the choice of
K, if the signal-to-noise ratio is known, one
keeps in eq. (4.14) only the terms corre-
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sponding to singular values o, greater than
the inverse of the signal-to-noise ratio. This
solution corresponds to replacing the filter
(4.10) by a squared filter of the type 1 or
0.

4.3. Landweber iterative method

This method, introduced in (Landweber,
1951), refined in (Bialy, 1959) and known
in Russian literature as the method of suc-
cessive approximations, is a generalization
of the method known as SIRT in geophysi-
cal literature. If s®) is the result of the N-th
iteration and if r®™ is the corresponding
discrepancy vector

™ = ¢t — Gs™ (4.15)
then the iterative scheme is
sVFD = M + G*rV) (4.16)

where w, the so called relaxation parameter,
is a fixed number satisfying the condition

2
0<ow< o7 4.17)
If this condition is satisfied and s(® = 0,
then s™ converges to s* in the limit N —
. For a finite N, the result of the N-th it-
eration can be expressed as a filtering of s*
as follows:

s = Mg+ (4.18)

where
WM™ = diag {1 — (1 — wop)V} (4.19)

It follows that the number of iterations
plays the role of a regularization parame-
ter. In such a case one needs a «stopping
rule» but unfortunately no practical crite-
rion seems to be available (except the obvi-
ous one of stopping the iterations when one
finds a satisfactory solution).

When G* is given by egs. (3.3) and
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(3.5), then the iteration scheme (4.16) is
identical to that of SIRT and condition
(4.17) can be replaced by 0 < w < 2 since
0; = 1 (van der Sluis and van der Vorst,
1987).

We also note that, if §@ = 0 and 0 =
1/03, then sV = sgp, the back-projected so-
lution.

4.4. Conjugate gradient

This is a projection method that can be
regarded as an iterative method for the de-
termination of the solution of minimal
norm of eq. (4.1). The important feature of
this method is that it has a regularizing ef-
fect similar to that of the Landweber
method, ie. the number of iterations plays
the role of a regularization parameter.
Moreover, this method can be more practi-
cal than the Landweber method because, in
general, it requires a smaller number of it-
erations for obtaining a reasonable approxi-
mate solution. The iterative scheme we
have used is that given in (van der Sluis and
van der Vorst, 1987).

Again the result of the N-th iteration can
be described as a filtering of the general-
ized solution. This filter is data-dependent
and it can be computed as follows: if 6{V,
65, ..., 6" are the Ritz values associated
with the N-th iteration (see van der Sluis
and van der Vorst, 1987) and if Ry(t) is the
Ritz polynomial defined by

R = (To) T o
(4.20)

then the result s of the N-th iteration can
be written as follows:

s = Mgt (4.21)

where

W™ = diag {1 — Ry(0p)} (4.22)
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Finally, if § is some approximate solution
obtained by one of the previous methods,
we define as relative discrepancy o, associ-
ated with §, the quantity

_ lles - 4

b
e

(4.23)

Le. the ratio between the norm of the dis-
crepancy vector and the norm of the data
vector. It is obvious that the generalized so-
lution is that corresponding to minimal dis-
crepancy.

5. Numerical results

Since we have determined the rank of
the matrix G and we have computed its sin-
gular system, for all the models of section 2
we can compute the generalized solution
(4.3). As follows from table II, except in
the case of model 1, this solution is highly
ill-conditioned and the ill-conditioning in-
creases by increasing the number of blocks.
Therefore these solutions are more and
more affected by numerical instability: the
corresponding velocity models are not
physically reasonable due to the dramatic
effect of the propagation of data errors.

It is well known, however, that among
all the approximate solutions of eq. (3.1),
s* is that providing the minimum value of
the relative discrepancy (4.23). Now, in the
case of model 6, ie. the model with the
highest resolution we find 6 = 0.31 while in
the case of model 4 we find 6 = 0.45.

Since we believe that the relative RMS
error on the data is of the order of 0.1 (i.e.
10%) or less, the previous result seems to
imply that models consisting of blocks of
constant slowness are not able to reproduce
the data within experimental errors. More-
over, it also implies that it is not possible to
use in such a case a rather well-known
method for the determination of the regu-
larization parameter 4, eq. (4.8), known as
discrepancy  principle  (Morozov, 1968),
which consists of looking for a value of this
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parameter such that the discrepancy is of
the order of the experimental errors. In
fact since the relative discrepancy corre-
sponding to the generalized solution is >
0.1, it follows that no regularized solution
exists satisfying the previous criterion.

It is possible, however, that experimen-
tal errors have been underestimated. For
each station the observed time residuals
have a rather typical azimuth dependence.
An example is given in fig. 7 where the
time residuals of the Apenninic station
(SARO) are represented in the central
plot. The azimuthal dependence is clear as
well as a systematic variation with the inci-
dence angle (events with different incident
angles are represented with different sym-
bols, the decreasing number of edges of the
symbols indicating an increase of the dis-
tance of the event). In the same figure the
bottom plot represents the time residuals
computed by means of the propagation
model which will be discussed in the follow-
ing. It is quite evident that most of the sig-
nificant trends of the experimental data are
correctly reproduced. Finally the top plot
represents the difference between the com-
puted and the experimental time residuals,
L.e. the components of the discrepancy vec-
tor corresponding to this station. They
show a nearly random behaviour, as ex-
pected for a vector representing experimen-
tal errors, with an average value which is
approximately zero. Quite similar results
are obtained for the other stations, indicat-
ing that the computed velocity model, in
spite of the large discrepancy, is able to re-
produce the most significant information
contained in the data.

We have applied all the methods de-
scribed in section 4 to all the models dis-
cussed in section 2. For each one of these
models all the methods have provided quite
similar results with comparable discrepan-
cies. Therefore a detailed description of
these results is not necessary. Moreover
among all the models, model 4 is that hav-
ing a reasonable resolution both in lateral
directions and in depth and we will report
our results mainly in this case.
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Fig. 7. Dependence of the time residuals on the azimuth for one of the stations of the network. The
dependence on the incidence angle is also indicated by representing events with different incidence
angles by means of different symbols (the number of edges of the symbol decreases if the distance of
the event increases). The observed residuals are represented in the middle plot, the computed resi-
duals are represented in the lower plot while the difference between observed and computed residuals

is represented in the upper plot.

A first remark is that a reasonable solu-
tion is aiready provided by the back-projec-
tion method as defined by eq. (4.4). This
can be obtained very easily since it only re-
quires a matrix-vector multiplication once
the largest singular value o, is known. The
corresponding relative discrepancy is 6 =
0.63. This value is rather high but compara-
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ble with the value corresponding to s*. The
back-projected solution is given is fig. 8.
As follows from eq. (4.5) sgp is a
strongly filtered version of s* and therefore
it is a very «blurred» solution. In spite of
this fact, it clearly indicates a structure
which will be discussed in the next section.
We do not give the back-projected solution
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Fig. 9. Behaviour of the generalized cross validation function V(1), a function of the regularization

parameter A.

obtained using the SIRT weights because
this is very similar to that of fig. 8.

Since the back-projected solution is
quite blurred, we expect an improvement
of resolution using the more refined meth-
ods described in section 4. All these meth-
ods contain a free parameter, which is the
regularization parameter A4 in the case of
method 4.1., the number of singular vec-
tors in method 4.2., and the number of iter-
ations in methods 4.3. and 4.4.

In the case of method 4.1., a criterion
for the choice of A consists of minimizing
the GCV function V(1) given in eq. (4.11).
This can be easily computed once the sin-
gular system of the matrix G is known. In
general V(1) is very flat and therefore very
difficult to minimize. Moreover it can have
several local minima. In our case we have
verified the flatness of V(1) but we have
found only one minimum at A = 122 (s)% In
fig. 9 we plot the behaviour of V(1) as a
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function of log 1. As we see, in the wide
range considered we obtain variations only
on the second digit of the values of V(1).

The regularized (or damped) solution, as
given by eq. (4.8) with A = 122 (s)?, is plot-
ted in fig. 10. It is evident that it has the
same structure of the back-projected solu-
tion given in fig. 8. However a shrinking of
the high-velocity body, particularly in the
upper layers is also evident. This is clearly
an effect of the improved resolution that
can be obtained using the regularized solu-
tion. We also notice that the more regular
behaviour of the solution in the deepest
layers with respect to that in the upper lay-
ers is not a result of the smoothing of the
inversion algorithm, as demonstrated by
numerical simulations described in (Catta-
neo and Eva, 1990). In fig. 11 we present
an attempt of 3D-representation of the
high-velocity body indicated by the previ-
ous results.
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Fig. 11. 3D representation of the propagation model provided by the back-projection method.

A similar solution we have obtained by
minimizing the functional (4.13). More pre-
cisely we have obtained a solution which is
intermediate in terms of resolution between
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the back-projected solution of fig. 8 and
the regularized solution of fig. 10. This is a
reasonable result because, due to the con-
straints on the variations of s implied by the
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Fig. 12. Comparison of the filters corresponding to the various solutions considered in this paper:
(1) = back-projection solution; (2) = Tikhonov regularized solution with A = 122; (3) = Landweber
solution with N = 42; (4) = conjugate gradient solution with N = 5.

functional (4.13), we expect that the mini-
mum of this functional is smoother than the
regularized solution (4.8).

As concerns the other methods de-
scribed in section 4, by means of an appro-
priate choice of the number of singular vec-
tors or of the number of iterations we have
always obtained solutions quite similar to
the regularized solution both in the case of
unit weights and in the case of SIRT
weights (this statement is only partially true
in the case of method 4.2.). For this reason
it is not interesting to plot all the solutions
we have obtained. Since each method can
be described by means of a filter we com-
pare the various methods simply by com-
paring the corresponding filters. This is
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done in fig. 12. We only remark that the
number of iterations required for obtaining
the best solution (in the case of iterative
methods) is not very large. In fact we need
42 iterations in the case of Landweber
method and only 5 iterations in the case of
the conjugate gradient method. Since the
first iteration of the conjugate gradient
method is essentially the back-projected so-
lution (except for a factor of the order of 1)
this method is highly recommended for a
fast improvement of the resolution pro-
vided by the back-projection method.

This conclusion is confirmed by a com-
parison of the CPU times required for the
various methods. For the computation of
the singular system of the matrix G we
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need approximately 1 min on a workstation
IBM RISC/6000-560, using the SVD routine
of the ESSL library. Then the computation
of all the solutions based on the singular
system (s, s;, sx and also s through eq.
(4.18)) takes approximately 1 s. This is also
the computation time for computing sgp
through eq. (4.5). However, as remarked
before, an approximation of sgp is provided
by the first iteration of the conjugate gradi-
ent method, which does not require the
computation of the singular system of G.
The CPU time for this first iteration is
about 14 s (which is essentially the CPU
time for computing G7G). Each of the sub-
sequent iterations requires approximately
1 s. Therefore in our case the conjugate
gradient method is certainly the most con-
venient one from the computational point
of view.

6. Discussion

The 3-D inversion, with the limitations
due to the assumption of a block model,
gives a sketch of the structural setting, ex-
pressed in term of velocity contrast, of the
lithosphere and upper mantle in the transi-
tion region between the Alps and the
Apennines. Basically all methods, when ap-
plied to our data set, show a pattern similar
to that of fig. 10, i.e. scattered areas of high
and low velocity zones in shallower layers
and a more smoothed distribution in the
deepest omes, with high velocity zones
bounded by low velocity ones. As demon-
strated by the numerical simulation de-
scribed in (Cattaneo and Eva, 1990) the
smoothing effect of the regularization
(damping) parameter A is roughly depth in-
dependent and therefore we believe that
the above mentioned behaviour is not an
artifact of the inversion procedure.

More in detail it is noteworthy that high
velocities characterize, at all depth ranges,
a band extending from the center of the Po
Plain up to the inner part of the Northern
Apennines. The lowest velocities appear
mainly localized in the westernmost side of
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the Alps, the Ligurian Sea and the external
Apennines. This might be correlated to the
presence of Alpine and Apenninic roots
(Mueller and Panza, 1986; Spakman,
1990a; Cattaneo and Eva, 1990), which are
cold lithospheric bodies transported down-
wards by subduction processes. Thus the
increased velocity and density in the root
region is mainly due to the cooling of the
surrounding relatively hot asthenosphere.
This hypothesis is strongly supported by the
close correlations with the heat flow map of
the region (Cermak et al., 1992).

The high heat flow values determined in
the Ligurian Sea, due to the existence of a
young lithosphere and a well developped
asthenosphere, are in agreement with the
low velocity zone depicted by our models.
In addition the high velocity structure un-
der the westernmost sector of the Po valley
corresponds to an absolute heat flow mini-
mum. Therefore, the deep extension of this
zone should be attributed to a deep-reach-
ing root, representing the remnant of an
earlier subduction episode, probably bro-
ken and partly assimilated by the mantle
during the course of time (Spakman, 1990a,
b). More surprising is the extension of the
roots in the Northern Apennines.

The presence of high velocity zones in
the shallower layers (h < 90 km), along the
Ligurian coast, could be correlated with a
lithospheric indenter (Laubscher et al.,
1992) determined by the collision between
the thin Ligurian Sea plate and the thicker
Adria plate. The younger less deep pene-
trating Ligurian lithosphere beneath the
Northern Apennines might produce a
nearly vertical, deep Apenninic slab, as
proposed by some authors for the Central
Apennines (Mueller and Panza, 1986;
Laubscher et al, 1992). Some lithospheric
slivers in the crust, as suggested by aero-
magnetic surveys (AGIP, 1986; Bolis et al.,
1981) might be also responsible of the in-
crease of the mean crustal velocity.

Even if a possible geometrical connec-
tion between the two structures appears in
these figures, in the light of the present
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data it is impossible to hypothesize any cor-
relation between them.

Finally we point out that the general fea-
tures of the velocity distribution can be in-
ferred from the back-projection solution
(fig. 8), while the more refined solution
provided by the other methods (fig. 10)
only gives more precise information about
the extension of the high velocity zones.
Therefore, back-projection can be ex-
tremely useful for an inversion of the seis-
mic data since it is very fast and very signif-
icant, exhibiting already the principal fea-
tures of the velocity distribution.
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