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Abstract
The South-East Crater (SEC) at Mt. Etna started a period of lava fountaining in December 2020, producing over 60 paroxysms 
until February 2022. The activity had an intense sequence from February 16 to April 1, 2021, totaling 17 paroxysmal events 
separated by repose times varying from 1 to 7 days. The eruptive sequence was extensively monitored, providing a unique 
opportunity to relate the chemistry and texture of the erupted products to eruption dynamics. We investigate the temporal 
evolution of the magmatic system through this eruptive sequence by quantifying variations in the composition and texture 
of clinopyroxene. Clinopyroxene major element transects across crystals from five representative lava fountains allow us to 
determine the relative proportions of deep versus shallow-stored magmas that fed these events. We use hierarchical cluster-
ing (HC), an unsupervised machine learning technique, to objectively identify clinopyroxene compositional clusters and 
their variations during this intense eruptive phase. Our results show that variations of monitoring parameters and eruption 
intensity are expressed in the mineral record both as changes in cluster proportions and the chemical complexity of single 
crystals. We also apply random forest thermobarometry to relate each cluster to P-T conditions of formation. We suggest 
that the February–April 2021 eruptive sequence was sustained by the injection of a hotter and deeper magma into a storage 
area at 1–3 kbar, where it mixed with a slightly more evolved magma. The February 28 episode emitted the most mafic 
magma, in association with the highest mean lava fountain height and highest time–averaged discharge rate, which make it 
the peak of the analyzed eruptive interval. Our results show that after this episode, the deep magma supply decreased and the 
erupted magma become gradually more chemically evolved, with a lower time–average discharge rate and fountain height. 
We propose this approach as a means to rapidly, objectively, and effectively link petrological and geophysical/geochemical 
monitoring during ongoing eruptions. We anticipate that the systematic application of this approach will serve to shed light 
on the magmatic processes controlling the evolution of ongoing eruptions.

Keywords Clinopyroxene · Hierarchical clustering · Mineral stratigraphy · Thermobarometry · Random forest machine 
learning

Introduction

Trans-crustal magmatic processes and chemico-physical var-
iations within volcanic plumbing systems profoundly influ-
ence the style and size of eruptions (Bachmann and Bergantz Editorial responsibility: D. Andronico
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2008; Cassidy et al. 2018). Understanding these parameters 
and their temporal evolution represents a key step in improv-
ing our understanding of volcanic activity and the ability 
to interpret pre-eruptive monitoring signals (Alparone et al. 
2003; Pichavant et al. 2009; Andronico and Corsaro 2011). 
Mineral chemistry represents an essential archive record-
ing pre and syn-eruptive processes, as minerals record their 
growth conditions by changing chemistry (Ginibre et al. 
2007; Blundy and Cashman 2008; Costa 2008; Ruprecht 
et al. 2012; Cashman and Blundy 2013; Mollo et al. 2013; 
Barboni and Schoene 2014; Zellmer et al. 2016; Petrone 
et al. 2016; Cheng et al. 2017; Morgavi et al. 2017; Probst 
et al. 2018; Ubide et al. 2019; Caricchi et al. 2020; Weber 
et al. 2020; Sheldrake and Higgins 2021; Higgins et al. 2021; 
Boschetty et al. 2022). However, to quantitatively link moni-
toring parameters with processes occurring at depth, it is 
necessary to objectively identify chemically distinct zones 
in minerals. Such objective classification also allows for 
the intercomparison between eruptions, which is otherwise 
complicated by a degree of subjectivity of analyses based 
exclusively on human judgment. Without further delay, we 
state here that this approach is in no way a substitute for pet-
rographic analysis and expert judgment. Machine learning is 
just a tool to enhance our interpretative capacity.

We focus on clinopyroxene because it is commonly found 
in mafic to intermediate magmas and crystallizes over a wide 
range of temperatures (T) and pressures (P; Hirschmann 
et al. 2008; Putirka 2008; Petrone et al. 2016; Ubide et al. 
2019). Clinopyroxene chemistry is also sensitive to changes 
in magma composition, water content, pressure, and temper-
ature (Putirka 2008; Mollo et al. 2018; Ubide et al. 2019). 
Secondly, the overall low diffusion rate of chemical constitu-
ents in its crystal lattice effectively preserves a record of the 
growth conditions (Müller et al. 2013; Petrone et al. 2016; 
Ubide and Kamber 2018; Ubide et al. 2019). Indeed, it has 
been demonstrated how Fe and Mg diffuse slower in clino-
pyroxene compared with other mafic minerals (Müller et al. 
2013, Ubide and Kamber 2018). Additionally, of the elements 
in a clinopyroxene Fe and Mg are some of the fastest diffus-
ing elements, meaning that other elements have even lower 
diffusivities (Müller et al. 2013; Ubide and Kamber 2018; 
Lierenfeld et al. 2019). These properties make clinopyroxene 
not only an excellent tracer of the chemical evolution of mag-
matic reservoirs (Winpenny and Maclennan 2011; Ubide and 
Kamber 2018; Caricchi et al. 2020; Boschetty et al. 2022), but 
also a valuable thermobarometer (Putirka et al. 1996, Nazza-
reni et al. 2001; Putirka 2008; Mollo et al. 2015; Petrelli et al. 
2020; Higgins et al. 2022; Nazzareni et al. 2022; Jorgenson 
et al. 2022).

Mt. Etna volcano is intensively monitored by the Istituto 
Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo 
(INGV-OE) via the collection of geochemical, volcano-
logical, geophysical, and satellite monitoring data, together 

with a regular sampling of all eruptive events (Corsaro 
and Miraglia 2022). Thus, the paroxysmal sequence of the 
South-East summit crater of Etna from February to April 
2021 provides an attractive opportunity to link petrology, 
monitoring signals, and eruptive parameters (such as, the 
repose time before the eruptive event, the mean fountain 
height, the erupted volume during the fountaining activity, 
the time-averaged discharge rate and the cumulative reduced 
displacement). To this aim, we analyzed the lava fountain 
episodes of February 16, 19, and 28 and March 2 and 10, 
when the eruptive frequency was relatively high (one epi-
sode every 1–3 days). Additionally, the presence of abundant 
literature data permits the comparison with past eruptions 
(Behncke and Neri 2003; Di Renzo et al. 2019). In general, 
continuous monitoring and existing data make Mt. Etna a 
uniquely suitable candidate for studying the temporal evolu-
tion of plumbing system processes and their influence on the 
eruptive behavior.

Geological setting

Mt. Etna is located in eastern Sicily (Italy; Fig.1a). Its >3300 
m elevation and 1250  km2 areal extent make it the largest 
active European volcano (Branca et al. 2004). It is also one 
of the most active volcanoes in the world (Cappello et al. 
2013; Corsaro and Miraglia 2022). Mt. Etna volcano presents 
a wide range of eruptive behaviors, from purely effusive to 
more explosive eruptions, including strong strombolian and 
violent lava-fountaining events (Branca and Del Carlo 2004; 
Ferlito et al. 2014; Corsaro and Miraglia 2022). It produces 
eruptions from fissure vents along its flanks and its summit 
craters (Branca and Del Carlo 2004; Di Renzo et al. 2019). 
For both types of eruptions, a significant increase in volcanic 
activity has been observed over the last decades (Behncke and 
Neri 2003; Branca and Del Carlo 2005), in particular since 
1971, with the formation of the South-East Crater (Cappello 
et al. 2013). The summit area of the volcano is composed of 
four active vents (Fig. 1a): Voragine (VOR), Bocca Nuova 
(BN), North-East Crater (NEC), and South-East Crater (SEC). 
Among these, SEC represents the youngest but also the most 
active crater (Andronico and Corsaro 2011; Di Renzo et al. 
2019; Corsaro and Miraglia 2022). SEC has often produced 
cyclical or episodic eruptive activity (Parfitt and Wilson 1994; 
Spina et al. 2019), characterized by a series of paroxysmal 
lava fountaining events with very short repose times (Andron-
ico and Corsaro 2011; Spina et al. 2019; Corsaro and Miraglia 
2022). This is exemplified by 23 lava fountain episodes in 
1998 (Neri et al. 2011), the 64 paroxysms in 2000 (Andronico 
and Corsaro 2011), and the 44 fountaining events between 
January 2011 and December 2013 (Calvari et al. 2018; Bonac-
corso et al. 2021).
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Fig. 1  a Digital elevation model (DEM) of the Mt. Etna summit 
area, image modified from Corsaro and Miraglia, 2022. The red rec-
tangle indicates the position of Mt. Etna in Sicily, the blue rectangle 
the location of the summit area on Etna; b bar plot of the paroxysmal 

events occurred at SEC between February 16 and April 1. Blue repre-
sents the repose time before the eruptive event and red represents the 
duration of the lava fountain activity (Calvari and Nunnari 2022)
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A new cyclical eruptive phase started at the SEC on 
December 13, 2020, producing over 60 paroxysms up to Feb-
ruary 21, 2022 (Andronico et al. 2021; Bonaccorso et al. 2021; 
Marchese et al. 2021; Calvari and Nunnari 2022). The activity 
went through a relatively intense sequence from February 16 
to April 1, 2021, with a paroxysm occurring every 1.85 days 
(± 0.67 days) until March 19 and longer repose times for the 
last two events (March 23–24 and March 31–April 1, Fig. 1b) 
for a total of 17 paroxysmal events (De Gori et al. 2021; Mar-
chese et al. 2021; Calvari and Nunnari 2022; Corsaro and 
Miraglia 2022). Each paroxysmal event followed the typical 
pattern observed at the SEC in recent decades (Alparone et al. 
2003; Andronico and Corsaro 2011; Calvari et al. 2011, 2021; 
Calvari and Nunnari 2022; Corsaro and Miraglia 2022), with 
an intensification of strombolian activity which has culmi-
nated in fountaining event (Calvari and Nunnari 2022; Cor-
saro and Miraglia 2022). During the fountaining activity, a 
sustained eruption column was generated, which could extend 
to several kilometers in height (Andronico et al. 2021; Calvari 
et al. 2021; Calvari and Nunnari 2022). As shown in Fig. 1, 
the sustained fountaining events between February and April 
2021 lasted from about 51 min to a maximum of ~ 13 h, with 
a median duration of about 2.7 h (lava fountain duration data 
from Calvari and Nunnari 2022; Fig. 1b).

Materials and methods

Small lapilli (maximum long-axis length 2 cm) were sam-
pled from the tephra fallout deposits of the 16, 19, and 28 
February and 2 and 10 March lava fountains. From each 
eruption, randomly selected lapilli were prepared for chemi-
cal analysis.

Electron probe micro analyzer (EPMA)

Major element analyses of clinopyroxene crystals and glass 
were collected using a JEOL 8200 Superprobe at the Uni-
versity of Geneva and a JEOL JXA-8530F at the University 
of Lausanne. Clinopyroxene analyses were collected with a 
focused beam (diameter between 1 and 2 μm) at an acceler-
ating voltage of 15 keV and a beam current of 20 nA. The 
glass analyses were conducted with either a 10-μm-diameter 
beam (15 keV, 6 nA) or a 5 μm diameter (15 keV and 4 nA) 
depending on glass pool size.

Calibration for clinopyroxene quantitative analyses was 
performed using the following standards: forsterite for Mg, 
fayalite for Fe, Mn-Ti oxide for Mn and Ti, albite for Na, 
wollastonite for Si and Ca, orthoclase for Al, NiO for Ni, and 
chromium oxide for Cr. Chemical analyses were collected 
along rim-to-core transects with a point spacing of ~ 2 μm 
for a total of 1250 analyses. Additional 29 analyses were 

collected for glass at various locations within the ground-
mass of each sample.

Analyses of clinopyroxene were filtered by removing all 
data with a total oxide content below 98% and above 101% 
and cations per formula unit higher than 4.04 and lower than 
3.98 (recalculated assuming all iron in clinopyroxene to be 
FeO). Chemical analyses of clinopyroxenes and glass are 
available in the supplementary materials table (Supplemen-
tary Tables 1 and 3).

Data transformation

A geochemical dataset (like the EPMA data used in this study) 
can be defined as a “closed” dataset. A dataset is considered 
“closed” when the variables it contains, in our case the oxide 
concentration, are not independent but are related in some 
way to each other. In this context, the oxides are expressed 
as wt%, so their nominal sum is 100% (Templ et al. 2008). 
Conducting statistical analysis directly on “closed datasets” 
can lead to issues (Butler 1976; Aitchison 1986; Templ et al. 
2008) as some statistical approaches require the data to be 
normally distributed and not constrained to a constant total 
value (Boschetty et al. 2022). Various data transformations 
have been proposed to solve this issue such as the additive 
log-ratio transformation, the centered log-ratio transformation 
(Aitchison 1986), and the isometric log-ratio (ilr) transforma-
tion (Egozcue et al. 2003). Ilr has been shown to work well 
with geochemical data (Aitchison and Egozcue 2005; Templ 
et al. 2008; Filzmoser et al. 2009; Carranza 2011; Reimann 
et al. 2011; Boschetty et al. 2022). Ilr is a data transformation 
method that can be easily applied to a multivariate environ-
ment and has the particular property of representing the vari-
ables of our closed system in a real Euclidean space (Templ 
et al. 2008; Filzmoser et al. 2009; Carranza 2011). This 
method is useful to transform skewed data distributions into 
distributions closer to normal (Templ et al. 2008; Filzmoser 
et al. 2009). This property is useful for improving cluster-
ing results as shown by Boschetty et al. (2022). We apply 
the ilr transformation to our filtered data, using the formula 
proposed by (Egozcue et al. 2003), where the i components, 
transformed with the ilr function (y=ilr(x)), have been calcu-
lated as follows:

In Eq. 1, D are the parts of the compositional analysis (the 
number of analyzed elements for each spot analysis, x), i is 
one particular part of D (one of the ith analyzed elements, 
e.g., the wt% of  SiO2) and g(xi) is the geometric mean of the 
ith parts of x, which in our case corresponds to the geometric 

(1)yi =

√
i

i + 1
ln

[
g
(
x1,… , xi

)

xi+1

]

, i = 1, 2,… ,D − 1.
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mean of the analyzed elements, for example, from x1 =  SiO2 
to Xi = CaO (Egozcue et al. 2003).

Working with the ilr transformation requires non-zero 
values in the starting dataset (Cortés et al. 2007; Templ et al. 
2008; Carranza 2011; Boschetty et al. 2022). The ilr trans-
formation has been performed using the library “composi-
tions” included in the open-source software R (R Core Team 
2021). Zeros can occur in the investigated dataset for differ-
ent reasons (Pawlowsky-Glahn and Olea 2004; Cortés et al. 
2007; Boschetty et al. 2022). In the case of below-detection-
limit zeros, replacement methods are available (Fry et al. 
2000; Martín-Fernández et al. 2000; Boschetty et al. 2022), 
but from a general perspective, if zeros represent more than 
half of the studied dataset, the element in question should 
not be used for cluster analysis (Boschetty et al. 2022). In 
our case, most of the  Cr2O3 analyses are below the detection 
limit; thus, this oxide was not considered for cluster analysis.

Data normalization

An additional issue with geochemical data is the different 
ranges and absolute values over which the different oxides 
vary. Variability and absolute abundance may result in the 
least concentrated oxides overwhelmingly controlling cluster 
analysis (Templ et al. 2008; Caricchi et al. 2020; Boschetty 
et al. 2022). To circumvent this issue, the data were normalized 
with the median-mad method (Templ et al. 2008; Rousseeuw 
and Hubert 2011; Eesa and Arabo 2017). This method trans-
forms the dataset by subtracting the median and dividing by the 
median absolute deviation (MAD; Huber 2004; Rousseeuw and 
Hubert 2011). The MAD is the median of the absolute devia-
tions from the median and can be calculated as follows:

Calculating MAD using Eq. (2) the final normalization 
formula will be:

where X′ is the normalized dataset.
The median-mad normalization can be easily applied to 

the transformed dataset using the “stats” package in R (R 
Core Team 2021).

Hierarchical clustering

Clustering methods are useful to subdivide multivari-
ate observations into representative and homogeneous 
groups (Templ et al. 2008). Hierarchical clustering (HC) 
is an unsupervised learning method to identify clusters of 
similar chemical composition within and between crystals, 
by assigning each analysis to a cluster. This approach can 

(2)MAD = median
{||xi −Mn

||
}
, with Mn = median

{
xi
}

(3)X�
=

xi −Mn

MAD

recognize similar chemical sequences from the core to the 
rim of disparate crystals and help identify their chemico-
physical growth conditions (Caricchi et  al. 2020). This 
method has been already successfully applied to address 
geochemical and petrological problems (Templ et al. 2008; 
Caricchi et al. 2020; Boschetty et al. 2022) and can be imple-
mented using the open-source software R, using the library 
“cluster” (R Core Team 2021). In detail, the standard imple-
mentation of the HC uses the Euclidean distance  (dij) of the 
filtered, transformed, and normalized dataset to estimate the 
similarity (or dissimilarity) among different analyses in the 
Euclidean space:

where the variables from x to z represent the ilr compo-
nents and i and j are the indexes of two different analyses. 
To cluster similar occurrences, different linkage criteria can 
be used. One of the most widely used criteria is the Ward 
minimum variance (Ward 1963). This method starts consid-
ering each analysis as an individual cluster. Then, it pairs 
similar occurrences into clusters, considering the smallest 
values of  dij between them. It continues by progressively 
joining occurrences and incorporating within the clusters 
only the points which minimize average variance within 
clusters (Caricchi et al. 2020). Results can be visualized in 
a dendrogram. In the dendrogram, the branch length cor-
responds to the  dij distance necessary to merge two distinct 
clusters into one.

Outlier detection

In natural datasets, outliers (i.e., observations which devi-
ate from the majority) are commonplace. In our case, this 
could result from the mixed analysis of two zones belonging 
to different compositional clusters (Rousseeuw and Hubert 
2011). The identification of outliers is based on the differ-
ence (or distance) between a specific analysis and a cluster of 
analyses. The Mahalanobis distance provides such a measure 
(Mahalanobis 1936; Boschetty et al. 2022) and was used in 
this study to identify and remove outliers. The Mahalanobis 
distance for each observation is calculated as:

where �⃗x represent a matrix of observation in a defined 
cluster, C is the center location estimator of the distribution, 
and �⃗𝜇 the covariance estimator. Following the procedure 
reported by Boschetty et al. (2022), we marked as outliers 
all observations that lie outside of the 97.5 percentile range 
of the distribution.

(4)dij =

√(
xi − xj

)2
+
(
yi − yj

)2
+⋯ +

(
zi − zj

)2
,

(5)DM

(
�⃗x
)
=

√(
�⃗x − �⃗𝜇

)T
C−1

(
�⃗x − �⃗𝜇

)
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Cluster visualization

To visualize and validate the results of the cluster analysis, 
we apply principal component analysis (PCA), a dimen-
sional reduction method (Hotelling 1933; Abdi and Wil-
liams 2010; Jolliffe and Cadima 2016; Boschetty et al. 
2022), on the ilr-transformed dataset. PCA is a dimensional 
reduction method which allows for the visualization and 
interpretation of complex multivariate dataset while mini-
mizing the loss of information (Hotelling 1933; Abdi and 
Williams 2010; Jolliffe and Cadima 2016; Boschetty et al. 
2022). PCA allows us to visualize our multidimensional 
dataset (e.g., the chemical composition of the crystals, their 
oxide content, or in our case the six ILR-transformed vec-
tors) in a smaller number of components representative of 
the multidimensional variance of our dataset (Hsieh 2009; 
Unglert et al. 2016; Bisciotti et al. 2022). In our case PCA1 
and PCA2 explain alone up to the 92% of the total chemi-
cal variance (loadings, scores, and contributions of PCA 
analysis are reported in the Supplementary Table 4). If the 
clustering correctly identifies compositional clusters, they 
should be distinguishable when plotted in PCA1-PCA2 
space, which is the case as shown in Fig. 2a. Addition-
ally, we test the validity of the cluster analysis by visually 
inspecting if specific clusters correspond to textural fea-
tures within crystals (Fig. 2b).

Identifying the representative number of clusters

Cluster analysis is an unsupervised learning method and there 
is no a priori correct number of clusters. Therefore, different 
strategies must be adopted to identify the relevant number 
of clusters for the Etna dataset. Several quantitative cluster-
ing validation techniques are available (Halkidi et al. 2001; 
Templ et al. 2008; Charrad et al. 2014; Sheldrake and Hig-
gins 2021), although when dealing with geochemical datasets, 
they are insufficient to robustly determine the exact number 
of clusters (Templ et al. 2008, Supplementary document 
1). The result of multivariate cluster analysis is a distance 
matrix in Euclidean space (Templ et al. 2008; Caricchi et al. 
2020; Sheldrake and Higgins 2021; Boschetty et al. 2022). A 
good method to visualize the distance matrix is represented 
by a dendrogram, where the y-axis represents the distances 
between observations (Temple et al., 2008; Caricchi et al., 
2020; Sheldrake and Higgins, 2021; Boschetty et al., 2022). A 
qualitative examination of the dendrogram can inform about 
the number of clusters within a dataset, whereby the dendro-
gram is cut at different heights to separate the dataset into 
different numbers of clusters (Fig. 2c, d). Templ et al. (2008) 
demonstrate that the number of clusters in a geochemical data-
set should be assessed with respect to the known properties 
of the object of investigation. In this regard, we generated a 
series of results in an iterative fashion, increasing the number 

of clusters from two to eight. For each configuration, we first 
tested the chemical validity of the clustering by visualizing 
the data in PCA1-PCA2 space through color coding the points 
according to the relative clusters, allowing us to verify that 
each cluster was chemically distinct (Fig. 2a, Hotelling 1933; 
Jolliffe 2002; Abdi and Williams 2010; Jolliffe and Cadima 
2016). Secondly, we ensured that each cluster corresponded 
to a texturally defined area of the crystal. A visual textural 
analysis was conducted by overlaying the analyzed points on 
the BSE images, assigning each point the color of the relevant 
cluster (Fig. 2b, Fig. 3a), and checking that each cluster cor-
responded to a texturally distinguishable area that was large 
enough not to be the result of mixing between two chemical 
zones. The match between the zoning pattern and clusters for 
selected crystals was an additional confirmation that the clus-
tering identified geochemically meaningful groups of analyses 
(Fig. 3a–d).

Random forest thermobarometry

We applied random forest (RF) thermobarometry (Petrelli 
et al. 2020; Higgins et al. 2022; Jorgenson et al. 2022) to the 
clinopyroxene chemical dataset to estimate the pressure (P) 
and temperature (T) at which crystals grew. RF is a machine 
learning approach capable of building a robust prediction that 
extends the capability of the decision trees algorithm (Breiman 
2001; Simm et al. 2014; Jorgenson et al. 2022). In the decision 
trees algorithm (Breiman 2001), each tree is a hierarchical 
flowchart composed of numerous branches. Their structure is 
determined using training data, in our case the chemical com-
position of experimentally derived clinopyroxene (Hirschmann 
et al. 2008; Jorgenson et al. 2022). Each branch ends with a 
prediction of the investigated parameter (i.e., P or T). The deci-
sion tree algorithm can be applied to natural data by following 
the branch structure to arrive at P or T estimate. However, 
predictions based on single decision tree models are inaccu-
rate due to so-called overfitting (Zhou et al. 2020). If overfit-
ting occurs, the model can only accurately predict the experi-
mentally derived clinopyroxene (training dataset) but not the 
natural samples (unknowns). Thus, a more robust model, like 
the RF, is required (Petrelli et al. 2020; Zhou et al. 2020; Jor-
genson et al. 2022). Following the suggestions reported by 
Jorgenson et al. (2022), we develop a RF model characterized 
by 200 trees, resulting in 200 different predictions of the inves-
tigated parameter (i.e., P and T) for each unknown sample. For 
natural data prediction, we used the median of the voting dis-
tribution as the best P–T estimate. In our specific case, the RF 
algorithm was applied using the open-source R script available 
on GitHub (https:// github. com/ corin jorge nson/ Rando mFore 
st- cpx- therm obaro meter) provided by Jorgenson et al. (2022). 
The results of the hierarchical clustering and random forest 
thermobarometry analyses can be found in the supplementary 
material table (Supplementary Table 2)

https://github.com/corinjorgenson/RandomForest-cpx-thermobarometer
https://github.com/corinjorgenson/RandomForest-cpx-thermobarometer
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Random forest classifier

We finally test a RF classifier assigning clinopyroxene 
analyses from volcanic products that erupted from the SEC 
in the last two decades to the clusters we identified for the 
period between February and April 2021. We trained the 
algorithm using the clinopyroxene dataset of this work and 
applied it to clinopyroxene analyses for the eruptions of 
2002–2003; 2006; 2007; 2008; 2011–2012, available on 
GEOROC (DIGIS Team 2022). This approach is useful to 
compare eruptions and eventually identify patterns between 
the fraction of different clusters and eruptive dynamics. The 
RF algorithm was trained on 200 trees. The performance of 
the method was tested by randomly removing 10% of the 

observations from the starting train dataset, for which the 
chemical clusters were known, and applying the model to 
this 10% by treating it as an unknown. The classifier cor-
rectly classified over 95% of the observations in the test 
dataset.

Textural and chemical complexity of minerals

To quantify compositional and textural variations among 
and within different paroxysms, we define a new parameter, 
the textural complexity  (txcomp), calculated as the number of 
times a change of cluster occurs from the rim to the core of 
a crystal  (Ccl) divided by the length of the analyzed profile 
 (La):

Fig. 2  a Plot of the first and 
second principal components 
(PCA1 and PCA2) from the 
principal component analysis 
performed on the geochemical 
dataset and color contoured 
according to the number of 
clusters. b BSE image on a sec-
tor zoned cpx with the analyzed 
points colored according to 
the number of clusters. c and d 
dendrogram divided in 2 and 6 
clusters, respectively
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We couple this parameter with the variance from rim to 
core for each oxide normalized for the length of the analyzed 
transect. These two parameters provide a quantitative meas-
ure of the textural and chemical complexity of each crystal.

To ensure the representativeness of these parameters, 
special attention must be paid to the crystal selection. The 
sectioning effect, i.e. how the 3D crystal was cut to produce 
the analyzed 2D section, is not negligible (Shea et al. 2015; 
Cheng et al. 2017). The random cuts of a crystal can be 
responsible for the presence of a wide variety of artifactual 
zonation (e.g., different cuts of crystals with the same num-
ber of zones — Cheng et al. 2017). To limit this effect, only 

(6)txcomp =
Ccl

/
La
. the largest crystals (major axis > 80 μm) showing similar 

section cuts were used in the calculation of chemical and 
textural parameters. In this process, the presence of sector 
zoning helped to identify similar sections.

Results

The analyzed lapilli have trachy-basaltic composition, and 
their mineral assembly is constituted of plagioclase+clino
pyroxene+olivine+oxide phenocrysts (microcrysts having 
a length < 100 μm and mesocrysts with a length between 
100 and 500 μm, Zellmer 2021; Mollo et al. 2022). The 
groundmass has differing proportions of microlites for each 

Fig. 3  a, b, c, and d back scat-
tered images of clinopyroxene 
from the February 16, 19, and 
28 and March 02 in order. The 
analyzed points on the clinopy-
roxene are colored according to 
the number of clusters. e Violin 
plots of cluster composition for 
all the analyzed elements
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eruption, and the microlites are mostly composed of pla-
gioclase and clinopyroxene. All the analyzed clinopyrox-
ene phenocrysts show concentric oscillatory zonation, and 
almost all also show a clear hourglass zonation. The glass 
composition shows an increase in  Al2O3 and MgO from 
February 16 until February 28, which then decrease in the 
2 and 10 of March eruptive products (Figs. S1 and S4; Sup-
plementary Table 3), in agreement with data from Corsaro 
and Miraglia (2022).

Cluster identification

The dendrogram shows two clear groups of clusters (Fig. 2c, 
d). As shown in Fig. 2c, the two clusters texturally distin-
guish between hourglass sectors, and prism sectors as their 
chemical composition are the most compositionally con-
trasted. However, two clusters are insufficient to separate 
discrete cores and concentric zones. Six clusters provide the 
best partitioning of data from both chemical and textural 
perspectives as shown by the plot of the two principal com-
ponents of PCA and the correspondence between the cluster 
and the zones identified in the BSE images (Figs. 2a, b and 
Figs. 3a–d). Attempting to partition the data in a larger num-
ber of clusters results in a lack of correspondence between 
cluster and textural features and in a lower quality of the 
chemical split in the PCA1–PCA2 space. This approach 
reinforces the importance of combining textural and chemi-
cal observations when describing zoned magmatic crystals 
(Sheldrake and Higgins 2021).

Cluster chemistry

Three of the six clusters (CL1, 2, and 5) are found in some 
cores, in concentric zones within the prism sectors, and 
within outer growth rims. The other three clusters (CL3, 4, 
and 6) are only found in hourglass sectors, either in cores or 
mantles (Fig. 3a). Many of the analyzed crystals are cut per-
pendicular to the c-axis, where the hourglass sector occupies 
the center of the crystals (Leung 1974; Ubide et al. 2019). 
However, other crystals are cut so that only small portions 
of the hourglass zoning are visible. This results in an uneven 
number of points analyzed in the hourglass zone, which can 
vary from sample to sample. This non-uniform sampling 
could lead to misleading variations in the fraction of the 
hourglass clusters (CL3, CL4, and CL6) between different 
paroxysms. Thus, we only consider the analyses collected 
within the prism sector.

In general, the hourglass sectors present lower concentra-
tions of  Al2O3 and  TiO2 (4.17 and 1.34 wt.% with respect to 
6.42 and 2.01 wt.% in the prism sectors, for  Al2O3 and  TiO2, 
respectively) and an enrichment in  SiO2 and MgO (with a 
mean composition of  SiO2 and MgO of 49.56 and 13.84 
wt.% for the hourglass and 47.13 and 12.53 wt.% for the 

prism sectors) compared to the prism sector. The concen-
tric zonation within prism sectors displays an alternation 
of CL1, CL2, and CL5 (Figs. 2b and Figs. 3a–d). In detail, 
comparing these three clusters with each other, it can be 
seen that CL1, among the three, exhibits a higher median 
content in FeO (8.95 wt.%),  TiO2 (2.21 wt.%), and  Al2O3 
(6.78 wt.%), and a lower content in  SiO2 (46.47 wt.%), CaO 
(21.97 wt.%), and MgO (12.35 wt.%). CL2 and CL5 present 
a higher and similar median content of  SiO2 (47.6 wt.% for 
both) and MgO (12.74 wt.% for CL2 and 12.70 wt.% for 
CL5). While they are similar in  SiO2 and MgO, CL5 show a 
higher content in CaO (CL5: 22.71 wt.%, CL2: 22.05 wt.%) 
and  Al2O3 (CL5: 6.57 wt.%, CL2: 5.77 wt.%) and lower 
FeO (CL5: 8.02 wt.%, CL2: 8.71 wt.%) and  TiO2 (CL5: 1.68 
wt.%, CL2: 1.93 wt.%; Fig. 3e). The pie charts in Fig. 4a 
shows the distribution of CL1, CL2, and CL5 through dif-
ferent lava fountains. Analyses collected on clinopyroxene 
erupted on February 16 and 19 show a similar proportion of 
the three clusters consisting of an almost equal amount of 
CL1 and CL5, and minor content of CL2. The CL2 content 
increases abruptly in clinopyroxene from the February 28 
event, before decreasing gradually through the March 2 and 
10 paroxysms (Fig. 4a).

Cluster distribution within crystals

The variations of the relative proportions of clusters over 
time are associated with changes in the distribution of clus-
ters from the core to the rim of the crystals (Fig. 4b). For 
the February 16 episode, the majority of the rims are CL2 
or CL1 in an almost equal amount, the mantle is mainly 
constituted of CL5 and the core of CL2 or CL1. In the Feb-
ruary 19 crystals, the rims are mainly CL1, the middle part 
is mostly an alternation of CL1 and CL2, and the cores are 
predominately CL5.

The February 28 paroxysm shows more uniform crystals, 
constituted mostly of CL2; CL5 can be found mainly in the 
cores and in the middle portion of the crystals, and CL1 is 
in all crystals as a small concentric zone. Most of the March 
2 clinopyroxene presents CL1 in the rims and CL2 in the 
central portion (mantles), with CL5 as a dominant phase 
in cores. Lastly, the March 10 clinopyroxene presents an 
oscillating distribution of CL1, which alternates with CL5 
and CL2 in complex concentric zoning from rim to core. 
CL2 can be found everywhere from the rim to the core and 
CL5 mainly in the rims. Overall, we can observe a shift 
from rim to cores of CL5 from February 16 to the event of 
March 2, and CL5 mostly in the rim in the March 10 event. 
CL1 usually represents the rims, with the exception of the 
February 16 paroxysm where its distribution is generally 
constant through the profiles, and the March 10 event where 
an oscillating distribution is observed. CL2 can be found 
both in cores and in alternation with CL1 and CL5 in rims 
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and in the central part of the crystals, and it is the dominant 
phase everywhere on February 28.

Random forest thermobarometry

The random forest thermobarometry results for our data-
set are shown in Fig. 5a, where the estimates of P and T 
median values are plotted and color-contoured accord-
ing to their respective clusters. Most analyses record a 
pressure between 1 and 3 kbar (SEE = 2.6 kbar) and a 
temperature between 1070 and 1130 °C (SEE = 58.9 °C). 
Such values agree with literature estimates of Etnean 
magma storage (Murru et al. 1999; Spilliaert et al. 2006; 
Giacomoni et al. 2014; Mollo et al. 2022). While the pres-
sure is similar for the three clusters, they seem separated 
in terms of temperature, with CL1 recording the lowest 
temperatures and CL5 the highest. Even if the single esti-
mates are within the uncertainty of our approach, dif-
ferences are still visible in the distributions (Fig. 5a). 
While CL1 presents lower temperatures and more evolved 
compositions, CL2 and CL5 register higher temperatures 
and show a similar Mg# (Fig. 5a, b). CL2 shows higher 
CaO/Al2O3 values with respect to CL5. The Mg# and the 

crystallization temperature reach higher values in CL5 
clinopyroxenes. (Fig. 5).

Random forest cluster classifier

We tested the potential of a random forest classifier to 
identify clusters in previous eruptions, using the data 
we collected in 2021 as a training dataset. The results of 
the random forest cluster classification on previous SEC 
eruptions are shown in Fig. 6. The clusters identified for 
the 2021 eruptive sequence describe sufficiently well the 
chemical variability of past eruptions, with the exception of 
a group of data in the 2006 eruption. The chemistry of this 
group of clinopyroxenes is in agreement with xenocrystals, 
potentially in equilibrium with the mantle (Fig. 6b). Even 
if the xenocrystic nature of these crystals would require 
petrographic confirmation, this represents a good exam-
ple of something that might happen during an eruption 
when clinopyroxenes of a previously unrecognized group 
are analyzed. To construct a reliable geochemical classifier 
for all Etna crystals, it is hence necessary to build a larger 
geochemical dataset that collects all existing clinopyrox-
ene analyses and a description of their textural location. 
Once such a dataset will be constructed, the classifier we 

Fig. 4  a Prism sector cluster 
distribution in different eruptive 
events. b cluster distribution 
between cores and rims of 
clinopyroxene, within all the 
studied episodes, normalized 
between 0 and 1
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present here will allow the identification of the cluster for 
each collected analysis in clinopyroxene and therefore the 
rapid quantification of the proportions of different clusters 
in the erupted material. This approach would have three 
major advantages: (1) the rapid quantification of the pro-
portions of analyses belonging to different clusters; (2) the 
quantitative comparison with previous eruptive events; (3) 
anticipate the evolution of an ongoing eruptive sequence 
on the base of previously identified quantitative temporal 
trends in the fraction of analyzed clusters.

Discussion

Clusters as recorders of the evolution 
of crystallization conditions

The February 28 events have the lowest counts for the lower 
temperature cluster (CL1) and thus the highest amount of 
analyses assigned to CL2 and CL5 (Fig. 4a). The increased 
contribution of mafic magma to this event is confirmed by the 

glass analyses (Fig. S2 and Supplementary Table 3), show-
ing a peak of CaO/Al2O3 and MgO content on February 28. 
This trend was also observed by Corsaro and Miraglia (2022), 
who analyzed the glass composition of the SEC 2021 eruptive 
products over a wider time span (Dec 2020–Apr 2021) show-
ing the same peak of higher mafic compositions on February 
28. The observed trends in glass and crystal-chemical varia-
tion suggest the interaction and mixing between an increasing 
proportion of a hotter and more mafic melt with a slightly 
colder and more evolved magma until February 28, followed 
by a decrease of the hot magma input. This hypothesis is also 
confirmed by the observed clinopyroxene concentric zonation, 
which could be an expression of magma mixing (Ubide and 
Kamber 2018; Ubide et al. 2019; Mollo et al. 2022).

We suggest that declining rates of mafic magma input 
after February 28 are reflected by increasing fraction of 
lower temperature CL1 clinopyroxene analyses. This is 
also confirmed by the core-to-rim distribution of clusters 
and the increasingly evolved nature of clinopyroxene rims 
after the episode of February 28 (Fig. 7b).

Fig. 5  a P and T estimates 
for each analyzed point, color 
contoured according to the 
cluster number, the error bars 
are based on the interquartile 
range. On top of the plot, the 
kernel density estimate normal-
ized between 0 and 1 show 
the density distribution of T 
estimates for the three clusters. 
b Magnesium number (Mg#) 
plotted vs CaO/Al2O3
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Mollo et al. (2022) studied the growing conditions of 
clinopyroxene during the same eruptive period, giving us 
a broader view of the fountaining sequence. These authors 
note that clinopyroxene that erupted on February 28 records 
higher crystallization temperature compared with the previ-
ous events, in agreement with our observations. They also 
analyzed crystals from the final two episodes of the eruptive 
sequence (March 24 and 31), where clinopyroxene crystal-
lization temperatures were similar to those that erupted on 
February 28. Altogether these results suggest that the period 
from February to the end of March was characterized by two 
major events of input of mafic magma from depth at the end 
of February and at the end of March 2021.

While the chemical characteristics and estimated tem-
perature for CL1 can be reconciled with the crystallization 
of these clinopyroxenes at relatively low temperatures in 
a cooling superficial reservoir, it remains unclear which 
process can produce the difference in CaO/Al2O3 and Mg# 
observed between CL2 and CL5. While more data would 
be required, we provide in the following a speculative inter-
pretation. Looking at the thermobarometry result obtained 
from clinopyroxene chemistry, the lack of high-pressure esti-
mates is evident (Fig. 5a). This can be either the product of 
lack of crystallization or resorption. Considering the water 
content of magmas at Mt. Etna (Métrich et al. 2004), their 
liquidus temperature increases with increasing pressure from 
a few kilometer depth. As the liquidus phase for these mag-
mas is clinopyroxene (Fig. S3; calculations performed with 

rhyolite-MELTS; Gualda et al. 2012), magmas extracted 
deeper will have lower CaO/Al2O3 content because of more 
extensive clinopyroxene fractionation with respect to mag-
mas extracted shallower at the same temperature. Thus, we 
could speculate that CL2 clinopyroxene crystallized from 
a melt extracted from a shallower depth with respect to the 
melt from which CL5 clinopyroxenes crystallized (Fig. 5b).

A second possibility is that partial resorption of clinopy-
roxene upon ascent resulted in an increased CaO/Al2O3 con-
tent of the melt from which CL2 clinopyroxenes crystallized 
at shallower depths. In this scenario, clinopyroxenes from 
CL5 crystallized from a melt that was extracted near liqui-
dus, and therefore, no resorption could occur. This would 
agree with the higher temperatures recorded by clinopyrox-
enes from CL5 (Fig. 5a). The resorption of about 1.2 wt.% 
of clinopyroxene is sufficient to explain the difference in the 
CaO/Al2O3 in the glass between the 28 of February and the 
other fountaining events (Fig. S4).

Cluster variabilities and eruptive dynamics 
for the February 28 episode

The proportion of clusters in samples from the 28 of Febru-
ary lava fountain is clearly different from the other episodes 
we investigated (Fig. 4a). Additionally, this event shows the 
lowest and least variable textural complexity of all erup-
tions, together with the lowest oxide (e.g. MgO and CaO) 
variance (Fig. 7a, b, and c). Hence, our results suggest that 
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the February 28 event was fed by a more mafic magma, 
which potentially ascended faster (quasi adiabatically lead-
ing to an increase of the fraction of high CaO/Al2O3 CL2 
clinopyroxenes). The lower textural and chemical complex-
ity (low oxide variance along the crystal profile) of clino-
pyroxene from this event could be related to the growth of 
crystals in a more homogeneous environment with a larger 
volume of mafic magma. The presence of greater amounts 
of mafic magma is also confirmed by the results of our glass 
analyses (Fig. S2). The eruption of February 28 also shows 
a greater proportion of microlites, an observation confirmed 
by the CSD analyses conducted by Mollo et al. (2022). This 
could be due to a higher nucleation rate caused by the higher 

ascent velocity of a more mafic and hotter magma (Vona and 
Romano 2013; Vetere et al. 2022).

A comparison between clinopyroxene core and rim chemistry 
through the entire eruptive sequence shows that cores are more 
chemically homogeneous with respect to rims and the chemical 
variance of rims reaches a minimum in the products of February 
28 before increasing again until the event of March 10 (Fig. 7d, 
e). This suggests that progressive input of mafic magma led to 
the most mafic lava fountain of February 28, after which the 
input of mafic magma declined, allowing for the growth of rims 
reaching the most chemically evolved composition with the last 
event we investigated. Existing data (Mollo et al. 2022) suggest 

Fig. 7  Box plots of: a textural 
complexity; b and c MgO and 
CaO variance for each episode; 
d and e MgO and  Al2O3 clino-
pyroxene content in rim and 
cores for each paroxysm
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another increase of the mafic input from depth occurred at the 
end of March 2021.

Linking quantitative petrology to eruptive 
dynamics

Differences in the rate of magma input, chemistry, and 
temperature of the erupted magma can affect the eruptive 
dynamics because of the control of these intensive param-
eters on magma viscosity (Giordano et al. 2008). To investi-
gate this hypothesis, volcanological and geophysical parame-
ters were collected from the INGV multidisciplinary weekly 
bulletins (INGV-OE, Bollettini Settimanali sul monitoraggio 
vulcanico, geochimico e sismico del vulcano Etna at: https:// 
www. ct. ingv. it/ index. php/ monit oragg io- esorv eglia nza/ prodo 
tti- del- monit oragg io/ bolle ttini- setti manal imult idisc iplin ari) 
and from published literature (Andronico et al. 2021; Calvari 
and Nunnari 2022). Specifically, we analyzed the variation 
of repose time before the eruptive event, the mean fountain 
height, the erupted volume during the fountaining activity, 
the time-averaged discharge rate (TADR), and the cumu-
lative reduced displacement  (RDcum) between the 5 erup-
tive episodes studied in this work.  RDcum is the root mean 
square (RMS) of the volcanic tremor amplitude normalized 
for the distance of the measuring station from the source 
(Andronico et al. 2021). The RD value is cumulative and so 
accounts for values of volcanic tremor amplitude collected 
over a well-defined time window in which the tremor was 
recorded (Andronico et al. 2021). TADR represents the flux 
of volume of erupted tephra averaged over a specific time 
interval (Harris et al. 2007; Calvari and Nunnari 2022).

This analysis shows that the fraction of mafic magmas 
(i.e., clinopyroxenes from CL2 and CL5), which peaks on 
the 28 of February, follows a similar pattern to repose time, 
mean height of the lava fountain, and TADR (Fig. 8a). A 
good correlation is observed between the variance of MgO 
and  Al2O3 in clinopyroxene,  RDcum and the volume erupted 
by the lava fountain (Fig. 8b). Finally, we observe an anticor-
relation between the fraction of CL2 and  RDcum (Fig. 8b). 
These quantitative relationships should be further explored 
and potentially implemented for effective petrological moni-
toring in periods of protracted magmatic activity.

In agreement with the results of La Spina et al. (2021), 
our results show that the hotter and more mafic magma (i.e., 
lower viscosity) erupted on 28 February 2021, which led to 
the highest lava fountain event and TADR of the investigated 
period. The lower magma viscosity of this event probably 
caused faster rates of magma ascent. Moreover, higher rates 
of ascent (corresponding to a higher magma flow) increase 
crystal nucleation (Vona and Romano 2013), which would 
account for the more abundant microlite content of the mag-
mas that erupted on February 28 (Fig. 3c and supplementary 
Fig. S1).

A model for the February–April SEC eruptive 
sequence

We suggest that the paroxysmal activity which occurred 
during the February–April 2021 eruptive sequence at Etna 
was driven by the injection of mafic and deep magma into a 
region of the plumbing system that extends over a pressure 
range of 1–3 kbar, as suggested by our barometric estimates, 
some of which erupted to the surface. Here, new magma is 
mixed with slightly more evolved magma left from previous 
eruptions in January (Corsaro and Miraglia 2022). The mix-
ing explains the complex concentric zoning in the rim char-
acterized by alternating CL1 and CL2. After the February 
28 eruption, the magma supply to the storage area decreased, 
and the occurrence of fractional crystallization processes 
produced magmas that gradually evolved to compositions 
comparable to those produced in January 2021. The Febru-
ary 28 eruption represents the peak of the February-April 
eruptive series involving the highest portion of mafic and 
hotter magma, and it is characterized by a higher ascent rate 
and fountain height.

The RF cluster classifier

We have shown and validated on a known dataset that 
using a clustered dataset is a useful tool for robustly iden-
tifying discrete chemical clusters, which in turn can be 
related to magmatic processes as well as volcanologi-
cal and geophysical monitoring parameters. We suggest 
that the RF cluster classifier method has the potential to 
recover the eruptive dynamics of past eruptions and to 
quickly establish a link between petrology and volcano-
logical parameters.

To demonstrate the wider applicability of our method to 
historical eruptions, and to compare the chemical variabil-
ity of clinopyroxene crystals measured in this work with 
those of past eruptions, we investigate a large dataset of 
clinopyroxene chemical composition from Mt. Etna, taken 
from GEOROC (DIGIS Team 2021). In Fig. 6, we see that 
the RF classifier distinguishes the proportions of clusters 
present in products from different eruptive periods. This 
result underlines the capability of this method to be used 
as a tool for reconstructing the chemical variations over 
time as recorded by crystals. To link mineral chemistry 
and eruptive dynamics, as we did in this study, the exact 
date of sample collection is necessary. However, this is not 
always available in the GEOROC database, where often 
only the year of the eruption is reported. As an example, in 
2000, there were 64 lava fountain episodes (Andronico and 
Corsaro 2011). The connection between mineral chemistry 
and eruptive dynamics using our approach is thus only 
possible for samples for which the exact collection date is 
reported. Nevertheless, the results obtained on historical 

https://www.ct.ingv.it/index.php/monitoraggio-esorveglianza/prodotti-del-monitoraggio/bollettini-settimanalimultidisciplinari
https://www.ct.ingv.it/index.php/monitoraggio-esorveglianza/prodotti-del-monitoraggio/bollettini-settimanalimultidisciplinari
https://www.ct.ingv.it/index.php/monitoraggio-esorveglianza/prodotti-del-monitoraggio/bollettini-settimanalimultidisciplinari
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eruptions allow us to make several conclusions: first, we 
note that while six clusters might be enough to describe 
the chemical variability of products erupted by Mt. Etna 
over the last 20 years, an additional cluster for xenocrys-
tals is necessary (Fig. 6). Additionally, our method can 
easily discriminate geochemical clusters and identify 
whether the analysis was collected on the prism or on the 
hourglass section. Finally, we propose a set of guidelines 
to make our approach more robust for quantitative petro-
logical monitoring. During prolonged eruptions, the com-
parison should be facilitated by the collection of samples 
with similar characteristics (e.g., tephra or lavas for which 
the emission date is known) and a consistent analytical 
approach to keep track of the zone of the crystals in which 
the chemical transects and/or spot analysis are acquired 
(i.e., core and rim). Clearly, the assembly of a larger data-
set collected with the sampling and analytical strategy we 
describe above will serve to improve the accuracy of our 

approach in linking the chemical evolution of minerals and 
eruptive dynamics.

Conclusions

This study shows that the application of robust data trans-
formation and normalization combined with HC analysis 
on geochemical datasets is a useful tool for identifying 
clusters of similar chemical-textural zones in minerals. 
This, in tandem with RF thermobarometry, can be used to 
trace specific P-T-X growth conditions and constrain the 
distribution of clusters on inter-eruption and intra-eruption 
base. The HC analysis on clinopyroxene underlines the 
presence of six chemically and texturally distinct clusters 
within the February 16 to April 1 Etna eruptive sequence. 
CL3, CL4, and CL6 are related to hourglass zones and 
CL1, CL2, and CL5 are related to prism sectors and to 
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Fig. 8  a Ratio between the mafic (CL2 and CL5) and more evolved 
(CL1) cluster fractions plotted for each lava fountain episode and 
compared with volcanological parameters such as: the repose time 
before the eruptive event, the mean lava fountain (LF) height, and the 
time-averaged discharge rate (TADR). All the parameters have been 
normalized, the information about repose time has been collected 
thanks to the multidisciplinary weekly bulletin available on the INGV 
website, while mean LF height and TADR have been taken from Cal-

vari and Nunnari (2022). b The fraction of cluster 2 and the normal-
ized variance of MgO and  Al2O3 in clinopyroxene are plotted for each 
paroxysm and compared with the  RDcum (the  RDcum data has been 
taken from Andronico et al. 2021) and the LF erupted volume (from 
Calvari and Nunnari 2022). All the parameters have been normalized. 
c and d Regression lines and R2 are reported to mark the relationship 
between  RDcum and the MgO and  Al2O3 variance from core to rim of 
the crystals
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the concentric zoning. CL2 and CL5 represent a more 
mafic endmember, which proportionally increases up to 
the February 28 eruptive event before then decreasing. 
The application of RF thermobarometry to the clustered 
dataset allowed us to relate chemical clusters to P and T 
conditions. We estimate clinopyroxene crystallization to 
occur in a pressure range of 1–3 kbar and in a temperature 
range of 1070 and 1130 °C, in line with previous studies. 
CL1, CL2, and CL5 formed in the same pressure range 
but at different temperatures, where CL1 is a low-T clus-
ter, and CL2 and CL5 are high-T clusters. We conclude 
that the 2021 Etna eruptive sequence was sustained by the 
intrusion of deep mafic magma into a storage area located 
at 1–3 kbar. Here, the mixing between a new fresh magma 
and a more evolved magma remaining from previous erup-
tions in January took place.

RF algorithms offer an effective and rapid way to clas-
sify and study the distribution of unique chemical clusters 
in different eruptive events. This represents a useful step 
in identifying the emergence of chemical compositions 
related to specific eruptive dynamics during an ongo-
ing eruptive series, bringing a further contribution to the 
importance of syn-eruptive petrological monitoring. This 
has the potential to unveil magmatic processes at a depth 
that can control eruptive dynamics. More generally, the 
methodology shown in this work represents a fundamen-
tal tool for analyzing chemical variations in a robust and 
quantitative manner. This approach offers the possibility of 
quantifying chemical variations both within and between 
different eruptive events, allowing the direct correlation of 
the chemical variations with other monitoring parameters 
and enabling the construction of new parameters capable 
of tracing the chemical and textural complexity recorded 
by crystals. Moreover, we have shown the use of this tech-
nique on 1D profiles with its limitations. Extending the 
approach to 2D maps, in the future, could lead to a quanti-
tative identification of zoning patterns and crystal families 
that underwent similar growth histories (e.g., Jerram and 
Martin 2008; Cheng et al. 2017; Sheldrake and Higgins 
2021; Higgins et al. 2021). Finally, the use of clustering in 
conjunction with thermo-barometric methods allows rapid 
correlation between representative chemical compositions 
and their forming conditions.

Supplementary Information The online version contains sup-
plementary material available at https:// doi. org/ 10. 1007/ 
s00445- 023- 01643-2.
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