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ABSTRACT
The region of central Italy is well known for its moderate-to-large earthquakes. Events such
as 2016 Mw 6.2 Amatrice, generated in the shallow extensional tectonic regime, motivate
numerical simulations to gain insights into source-related ground-motion complexities. We
utilize a hybrid integral–composite kinematic rupture model by Gallovič and Brokešová
(2007) to predict ground motions for other hypothetical Amatrice fault rupture scenarios
(scenario events). The synthetic seismograms are computed in 1D crustal velocity models,
including region-specific 1D profiles for selected stations up to 10 Hz. We create more than
ten thousand rupture scenarios by varying source parameters. The resulting distributions of
synthetic spectral accelerations at periods 0.2–2 s agree with the empirical nonergodic
ground-motion model of Sgobba et al. (2021) for central Italy in terms of the mean and total
variability. However, statistical mixed-effect analysis of the residuals indicates that the
between-event variability of the scenarios exceeds the empirical one significantly. We quan-
tify the role of sourcemodel parameters in themodeling and demonstrate the pivotal role of
the so-called stress parameter that controls high-frequency radiation.We propose restricting
the scenario variability to keep the between-event variabilitywithin the empirical value. The
presented validation of the scenario variability can be generally utilized in scenario model-
ing for more realistic physics-based seismic hazard assessment.

KEY POINTS
• We simulate ground motions ofMw 6.2 kinematic scenar-

ios with various source parameters for central Italy.
• Between-event scenario variability is controlled by stress

parameter aggregating effects of source features.

• We propose restricting the scenarios to keep their
between-event variability within the empirical value.

Supplemental Material

INTRODUCTION
Characterization of ground motions, including their uncertainty,
is one of themain ingredients in seismic hazard assessment, espe-
cially for large, human-built structures such as power plants,
infrastructure, or buildings in urban areas. Current approaches
are based mainly on empirical ground-motion models (GMM)
determined by the statistical processing of earthquake recordings.
GMMs describe ground shaking as a function of source param-
eters, source-to-site path, and site conditions. The predictive

capabilities of such models have improved in the recent years
due to the increasing availability of seismic records, allowing
GMMs to be regionalized by distinguishing source regions, geo-
logical domains, and/or specific soil conditions. Moreover, the
use of advanced statistical techniques, such as the linear mixed-
effects regression (Stafford, 2014; Bates et al., 2015), made it pos-
sible to handle the variability better and to calibrate a new gen-
eration of partially or totally nonergodic GMMs (Anderson and
Brune, 1999; Lin et al., 2011; Rodriguez-Marek et al., 2013; Kotha
et al., 2016; Baltay and Hanks, 2017; Abrahamson et al., 2019,
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etc.). They represent a powerful tool to predict ground motions
in moderate- and high-seismicity areas, where the abundance of
data, especially in far-field regions, allows the models to be better
constrained. Contrarily, GMMs are less resolved at near-source
distances and for larger events due to their rare occurrence and
the consequent paucity of recordings, even in well-instrumented
regions.

This shortage of seismic records can be remedied by phys-
ics-based ground-motion simulations, which are promising to
fill the observational gaps (Ameri et al., 2012; Bradley et al.,
2017; Paolucci et al., 2021). For example, the so-called hybrid
simulations are employed frequently due to their efficiency in a
broad frequency range (Mai and Beroza, 2003; Gallovič and
Brokešová, 2007; Graves and Pitarka, 2010). They can predict
ground motions for various rupture scenarios of hypothetical
events in a particular region. In the case of scenario rupture
modeling, the synthetic ground motions are usually assessed
against the empirical GMMs. We point out that the validation
of ground-motion scenario modeling is still an open issue
despite being a critical prerequisite to engineering applications.
For example, the Broadband Platform of the Southern California
Earthquake Center (Dreger et al., 2015; Goulet et al., 2015)
performed various validation tests against both recorded
ground motions of individual events and empirical GMMs.
Nevertheless, most scenario simulation validations focus only
on the median prediction at the current stage. Only a few studies
assess the scenario simulations by comparing their ground-
motion variability with the empirical counterpart (e.g., Ameri
et al., 2009; Cultrera et al., 2010; Song, 2016; Lin and
Smerzini, 2022). Moreover, the studies are concerned only with
total variability.

In the GMM community, it is common to discern two
major constituents of variability: between-event (B-E) and
within-event (W-E) (Strasser et al., 2009; Al Atik et al., 2010).
Although the former corresponds to the event-dependent
deviation of the ground-motion residuals averaged over all sta-
tions, the latter reflects the remaining variability over stations
for a given event. We stress that the scenario modeling assess-
ment should concern these two ingredients individually,
because they provide distinct constraints. The B-E residuals
are connected only to the mean source characteristics (such
as mean stress drop, mean rupture velocity, etc.) that affect
all stations equally. The W-E residuals thus comprehend all
the individual path effects (e.g., 3D medium, hanging, or foot-
wall), site effects, and site-specific source effects such as source
directivity, asperity position, and so forth. Analysis of W-E and
B-E variability from the scenario simulations poses different
numerical/computational challenges. Although the W-E vari-
ability can be studied using a few rupture scenarios with com-
plex 3D source models and 3D wave propagation (e.g., Aochi
and Douglas, 2006; Dujardin et al., 2018; Withers et al., 2018),
the B-E variability assessment requires many rupture scenarios
with various mean characteristics and is rarely studied.

Recently, Parker et al. (2023) analyzed the B-E variability from
their rupture scenarios showing that the observed one is over-
estimated likely due to the considered slip velocities.

We point out that recognizing the two ingredients of the
variability in the scenarios enables modelers to bind any
unconstrained free modeling source parameters unbiasedly.
In particular, the so-called stress parameter describing high-
frequency radiation is known to affect ground motions domi-
nantly (Drouet and Cotton, 2015). Yet, it is often considered
constant, leading to underestimating the B-E ground-motion
variability of the scenarios (r53Douglas and Aochi, 2016;
Pacor et al., 2016; Lee et al., 2020). Alternatively, the parameter
is varied in an ad hoc manner (Crempien and Archuleta, 2017)
or based on a theoretical model (Drouet and Cotton, 2015),
and then the synthetic B-E standard deviation is compared
with the empirical one. This study explores the possibility
of restricting the source model parameters set to rather ad
hoc values by assessing their effects on the resulting B-E vari-
ability of the scenarios.

The target area of our study is the central Italy region (see
Fig. 1a), which is well known for its relatively large seismicity
and complex tectonic structure. It features mainly seismogenic
structures oriented north-northwest–south-southeast driven
by the extensional tectonic regime of the central Apennines.
The fault segments generally dip southwest, extending 20–
25 km along the strike and 10–15 km along the dip (Boncio
et al., 2004). Many earthquakes struck this area over the last
centuries, and a large amount of data was acquired thanks to
the increasing number of installed stations in the previous
40 yr that were used to derive high-quality nonergodic regional
GMM (e.g., Sgobba et al., 2021). The events include the 1979
Mw 5.9 Norcia, 1980 Mw 6.9 Irpinia, 1984 Mw 5.6 Gubbio,
1997 Mw 6.0 Umbria–Marche, 2009 Mw 6.1 L’Aquila, and the
2016–2017 Amatrice–Visso–Norcia sequence, with Norcia
being the largest event (Mw 6.5).

The objective of the present study is to build a synthetic
ground-motion dataset in a broad frequency range (0–10 Hz)
of kinematic rupture scenarios using the Hybrid Integral–
Composite (HIC) model for a hypothetical virtual event. As
a model event, we take the 2016 Mw 6.2 Amatrice earthquake
that has been extensively studied, for example, with kinematic
modeling (Tinti et al., 2016; Cirella et al., 2018), broadband
hybrid methods (Pischiutta et al., 2016, 2021), or dynamic
models (Gallovič et al., 2019; Taufiqurrahman et al., 2023).
The HIC modeling approach has been validated for several
central Italian events, for example, the 1980 Mw 6.9 Irpinia
(Ameri et al., 2011), the 2009 Mw 6.3 L’Aquila (Ameri
et al., 2012), and in other regions, for example, the 2011
Mw 7.1 Van (eastern Türkiye; Gallovič et al., 2013), and
recently the 2023 Mw 7.8 Kahramanmaraş (eastern Türkiye;
Čejka et al., 2023) earthquakes. Recently, Čejka et al. (2024)
validated the HIC model against the 2016 Mw 6.2 Amatrice
earthquake recordings.
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To build different rupture scenarios, we vary the parameters
describing the HIC source model and simulate ground motions
on a regular grid of receivers. We compare the synthetic
response spectra at periods 0.2–2 s with the empirical regional
GMM and perform mixed-effect regression on the residuals to
discern the B-E and W-E variability. We explore the role of the
individual source parameters contributing to the variability
demonstrating the pivotal role of the stress parameter aggre-
gating all the source parameters. The analysis also shows that
the synthetic B-E variability overestimates the empirical one.
Therefore, we propose to restrict the source parameters to
fit the synthetic B-E variability to the empirical value, assuming
that (1) the empirical B-E variability corresponds to the upper
limit of the synthetic B-E variability of the scenarios, and (2)
the nonergodic GMM variability constrained mainly by the
abundant small- to moderate-size events is representative of
the variability from less-frequent larger-magnitude events.
Eventually, we discuss the relation between the stress param-
eters of the restricted scenario database and their estimates
from empirical studies, so that the latter can be used to restrict
the scenarios a priori in future studies. Our approach thus pro-
vides general guidelines for scenario generation to simulate
ground motions for various seismotectonic regions worldwide
where a good GMM is available.

METHODS
Source model
To generate the kinematic rupture scenarios, we employ the
HIC technique in which the rupture process is represented
by overlapping square sub-sources randomly distributed on
the fault with fractal number-size distribution, in which the

number of sub-sources decreases linearly with increasing
sub-source size (see also Gallovič and Brokešová, 2007). The
sub-sources are characterized by a constant stress-drop scaling
composing a slip distribution with k−2 decay at high wavenum-
bers k. These sub-sources are treated differently in the high-
(above f 1) and low- (up to f 2) frequency ranges, and each
of these procedures results in a seismogram, which overlaps
in the crossover frequency range f 1–f 2. Up to f 2, the integral
of the representation theorem is calculated, assuming a rupture
propagating at a constant rupture velocity. Above f 1, the
composite approach is used, in which the individual sub-
sources are treated as point sources with Brune’s source time
function. The Brune’s function is described by the sub-source’s
seismic moment and corner frequency, assuming constant
stress-drop scaling (see further for more details). In addition,
we randomly vary the mechanism of the sub-sources in the
composite part to weaken the radiation pattern at high
frequencies. The resulting seismograms up to f 1 come purely
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Figure 1. Study area and velocity models. (a) Epicentral area of the 2016
Amatrice earthquake with 400 virtual stations (triangles) used for
ground-motion modeling with variable source scenarios. The black curves
correspond to the Sibillini thrust separating different crustal regimes of the
Norcia and Amatrice area. Colors distinguish velocity models used for
stations in the Norcia (blue) and Amatrice areas (red). The black rectangles
show the fault planes assumed in the scenario modeling, and focal
mechanism plot shows the corresponding mechanism. A map of Italy with
the study area depicted by a black rectangle is shown in the inset.
(b) Velocity models were used to calculate Green’s functions for stations in
the Norcia (blue) and Amatrice (red) area, with inset zooming in the
uppermost 1 km. See also Table S1 for the model definitions in numbers.
The color version of this figure is available only in the electronic edition.
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from the integral approach, whereas the seismograms are
purely composite above f 2. As a result, the directivity of the
rupture propagation is well captured at lower frequencies
due to the coherent summation of the subfaults’ wavefield
contributions, whereas it is suppressed due to the incoherent
summation of the sub-sources’ wavefield contributions at
high frequencies.

In the frequency crossover section (f 1–f 2), the combination
of composite and integral seismograms is treated in the Fourier
domain by weighted averaging of the real and imaginary parts
of the two seismograms from the two approaches using cos2

and sin2 functions (see fig. 2 in Gallovič and Brokešová,
2007). The crossover frequency range f 1–f 2 is considered to
cover the corner frequency of the event, which has been esti-
mated 0.19 Hz in the Amatrice validation article (Čejka et al.,
2024) or empirical value of 0.35 ± 0.09 Hz from the Brune
stress-drop inversion by Morasca et al. (2019). Following
Ameri et al. (2012) and Čejka et al. (2024), who modeled
the Mw 6.3 L’Aquila and Mw 6.2 Amatrice events in central
Italy, respectively, we set f 1 � 0:15 Hz and f 2 � 0:6 Hz.

In the high-frequency composite part, we assume the omega-
square source model, in which the height of the acceleration
spectral plateau above f̂ c is equal toM0 f̂

2
c , withM0 and f̂ c being

the total scalar seismic moment and the event corner frequency,
respectively. In the HIC model, we generalize the corner fre-
quency with f̂ c � avr

L , in which L is the rupture length, vr is
the rupture velocity, and parameter a is a tuning parameter con-
trolling the strength of the high-frequency radiation. The height
of the acceleration spectral plateau is as follows:

A � M0 f̂
2
c � a2v2r

M0

S
, �1�

in which S � L2. The proportionality constant a is considered to
be related to the small-scale rupture evolution and its radiation
strength. Because of this, we treat it as a free parameter in our
study, although the previous studies suggested a value close to 1
(Gallovič and Brokešová, 2007; Ameri et al., 2009, 2011, etc.).
Parameter a can also be interpreted in terms of the so-called
stress parameter Δσ. Considering that the latter corresponds
to the stress drop of a crack model (e.g., Brune, 1970;
Kaneko and Shearer, 2015; Wang and Day, 2017; Gallovič
and Valentová, 2020), it reads

Δσ � 7
16

�
f̂ c
kvs

�
3
M0, �2�

in which vs is the shear-wave velocity, and k is a parameter
depending on the details of the rupture model (heterogeneity

of slip, vr , rise time, etc.). Expressing f̂ c from equation (2), the
alternative equation describing the acceleration plateau reads

A � M0 f̂
2
c � k2v2s

�
16
7

�
2=3

Δσ2=3M1=3
0 : �3�

Comparing equations (1) and (3) suggests that the stress
parameter Δσ is a combination of source parameters (rupture
velocity vr , rupture size L, and proportionality constant a) con-
sidering a fixed scalar seismic moment. Later, when analyzing
our synthetic dataset, we treat Δσ as a lumped (aggregate)
parameter specific for each rupture scenario.

To summarize, the HIC model parameters for fixedM0 are:
(1) the fault area, (2) the nucleation point position, (3) the sub-
sources layout (i.e., the slip distribution), (4) the rupture veloc-
ity, and (5) the sub-source corner frequencies (alternatively
parameter a).

To generate the synthetic scenarios, we set the strike/dip/rake
angles to 155°/45°/−85°, the latitude and longitude of the fault
center to 42.7063° N, 13.2532° E, and the scalar seismic moment
to 2:6 × 1018 N · m (Pizzi et al., 2017; Gallovič et al., 2019). We
consider two fault dimensions, 25 × 12 km2 and 20 × 10 km2,
representing the sizes of fault segments in central Italy. We
consider 15 and 12 nucleation points distributed regularly on
the fault for the larger and smaller fault, respectively (Fig. 2).
We use eight slip distributions with asperity in the middle,
on one or the other side, and both sides, by prescribing the posi-
tion of the largest sub-sources deterministically (when the others
are placed randomly). We also change the random seed to get
variations of these. The resulting slip distributions are shown in
Figure 2 for both the fault sizes. Note that the slip amplitudes are
larger for the smaller fault since the seismic moment is fixed,
although the spatial distributions are the same for the two fault
sizes.

The rupture propagates from the prescribed nucleation
radially at a constant speed. We vary rupture velocity vr
between 2.0 and 3.4 km/s with a step of 0.2 km/s, covering
the standard range of slow to fast ruptures. The last varying
parameter is a, assuming values from 0.7 to 1.9 with a step
of 0.2. The parameter ranges were chosen rather ad hoc and
are addressed later in the Discussion, in which they are con-
strained following the B-E variability of the GMM.

Green’s functions and crustal velocity models
To calculate the synthetic seismograms, the HIC sub-sources
are convolved with Green’s functions according to the repre-
sentation theorem for a regular grid of 400 virtual stations
(Fig. 1a). The synthetic Green’s functions are precalculated
in the 1D velocity models using the Axitra code (Cotton and
Coutant, 1997) at frequencies 0.05–10 Hz.

We consider a specific 1D velocity model for each of the two
major geological domains divided by the Sibillini thrust, which is
the main structural discontinuity in the area (Fig. 1): (1) the
south-southeast unit of the Sibillini thrust, which lies on the
Laga formation (Amatrice area) and (2) the carbonate unit to
the north-northwest of the thrust (Norcia area). For the
Amatrice area, we supplement the crustal velocity model
proposed by Ameri et al. (2012) used in ground-motion simu-
lations of the 2009 L’Aquila earthquake by three subsurface
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low-velocity layers, as considered in kinematic and dynamic
source modeling of the Amatrice earthquake by Gallovič and
Valentová (2023) and Čejka et al. (2024), respectively. For
the Norcia area, we adapt the 1D velocity model of Bianchi
et al. (2010) to consider the observed wave propagation
differences between the two main domains. The topmost
kilometer in the Norcia area was obtained by resampling the
VS array profile at stations IT.CSC (Cascia) and IT.LSS
(Leonessa). The two final velocity models proposed for the
Amatrice and Norcia area are shown in Figure 1b and Table S1.

The anelastic attenuation is modeled by depth-dependent
quality factor Q and high-frequency decay parameter κ.
Following Castro et al. (2022), we adopt κ = 0.03 s as a mean
value for all the stations.

GMM
To assess the scenarios, we compare the simulated ground
motions with a fully nonergodic GMM by Sgobba et al. (2021),
hereafter named SEA, calibrated explicitly for the region of
central Italy on a dense dataset (about 30,000 waveforms) from
460 stations within 120 km from about 450 earthquakes in the
magnitude range of 3.4–6.5. Unlike traditional ergodic models,
the SEA is calibrated on reference rock sites (as identified by
Lanzano et al., 2020) and then adjusted for systematic effects
related to source area, propagation path, and site response,
which are specific to the target region.

In our application, the SEA median is adjusted for the loca-
tion-to-location contribution related to local systematic

differences in source features (stress drop, focal depth, etc.)
with respect to the average overall source regions in central
Italy (for more details, see Sgobba et al., 2021). On the other
hand, we do not introduce any site correction terms, because
the predictions refer to rock conditions. Moreover, we neglect
the small contribution of propagation (i.e., the path-to-path
terms), because our primary purpose is to reproduce the over-
all empirical attenuation trend, with no specific focus on the
spatial distribution of the shaking. However, the missing cor-
rections to the median are moved to the associated total vari-
ability composed of the B-E and W-E terms (see the appendix
of Sgobba et al., 2021, for more details). As a result, for the
present case study, the W-E variability includes the following
sources of uncertainty: (1) the response of the 36 reference rock
sites used for the SEA calibration, (2) the systematic path
terms, and (3) the remaining aleatory variability.

The adopted GMM model is defined for the spectral accel-
erations (SAs). Therefore, if available, the simulations are
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Figure 2. Eight slip distributions used in the scenario source modeling
obtained by changing the distribution of sub-sources of the Hybrid
Integral–Composite (HIC) model for fault sizes (a) 25 × 12 km2 and
(b) 20 × 10 km2. The largest sub-sources are placed deterministically to
simulate various positions of asperities, whereas the others are distributed
randomly along the fault. The black triangles mark nucleation points from
which the rupture propagates at constant speeds. Note the different color
scales in the two panels. The color version of this figure is available only in
the electronic edition.
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compared with GMM in terms of SA. Nevertheless, the pro-
posed methodology can be applied to other ground-motion
measures, such as Fourier amplitude spectra (Kotha et al.,
2022; Sgobba et al., 2023).

RESULTS
Comparison with GMM and synthetic ground-motion
variability
In total, we generate 12,096 source models and calculate the
broadband seismograms at 400 virtual stations resulting in
more than 4.8 million synthetic waveforms simulated up to
the maximum frequency of 10 Hz. From them, we evaluate the
response SAs for periods in the range of 0.2–2 s. Figure 3 com-
pares SAs at four vibration periods (0.2, 0.5, 1, and 2 s) with the
predictions of the SEA model for the study region. To facilitate
the comparison, we supplement the figure with the mean and
standard deviations of binned data. We observe a good agree-
ment with the empirical GMM regarding median and variabil-
ity at all SA ordinates. We point out that the total variability
comprises the W-E (azimuthal changes) and B-E (changes due
to the event characteristics) terms. We further scrutinize these
two components to avoid misinterpreting the modeling
performance.

To analyze the variability of the scenario simulations (Fig. 3),
we use mixed-effect regression, which is standardly used in
quantifying fixed and random effects of ground motions in
the development of empirical GMMs (Bates et al., 2015). For
each spectral period, the residuals Rij between decadic loga-
rithms (log10) of geometric means of the horizontal synthetic

SAs, yij, and the corresponding
empirical estimates from the
SEA model of Sgobba et al.
(2021), yGMM

ij , for event scenario
i at station j, defined as
Rij � yGMM

ij − yij, can be decom-
posed into the following equa-
tion:

Rij � C� ηi � εij, �4�

in which C is the mean offset
between the GMM and synthetic
database; ηi are the B-E residuals
representing the mean offset
over all stations of the ith event
scenario; and εij are the W-E

residuals corresponding to the
difference of synthetic measure-
ment at observer j from the offset
of event i. These variability terms
are assumed to have independent
normal distributions with zero
mean and standard deviations

denoted τ and ϕ for the B-E and W-E variabilities, respectively.

The total standard deviation is then σ �
����������������
ϕ2 � τ2

p
. The decom-

position is here performed using the Python package Statsmodel
(see Data and Resources, Seabold and Perktold, 2010).

The period dependence of mean offset C, W-E deviation ϕ,
B-E deviation τ, and total standard deviation σ is shown in
Figure 4a (violet). Table 1 (first row) lists the values for an exam-
ple period 0.2 s. TheW-E variability is slightly below the empiri-
cal value of the SEA model (black) for almost all periods. This
underestimation could be ascribed to the fact that the synthetic
W-E variability includes only some effects (two area-specific
crustal models, varying nucleation point position, radiation pat-
tern, and directivity effects). In contrast, it lacks others, such as
complex path effects due to the 3D velocity structure and topog-
raphy, the uncertainty of reference rock sites, and remaining
aleatory uncertainties, which are present in the real data.
Note that the W-E variability is even smaller if only 1 crustal
model is used (Fig. S1, available in the supplemental material
to this article). We conclude that we cannot reach the empirical
value of the W-E variability in our synthetic dataset by adopting
Green’s function modeling with 1D models.

The difference between observations and synthetics is larger
for the B-E variability and increases toward the lower periods.
Indeed, the scenario simulations provide about twice larger B-
E standard deviations than the empirical ones for period 0.2 s
(τGMM � 0:142 and τ � 0:327, see Table 1). We attribute this
significant overestimation of the synthetic B-E variability to
the exaggerated scenario variability. We point out that it would
remain unnoticed without the additional analysis of the

Figure 3. Spectral accelerations at four spectral ordinates at virtual receivers of Figure 1 and for all source scenarios
plotted as a function of the Joyner–Boore distance by gray dots. The red circles with error bars are mean values and
standard deviations over 2 km bins. The black solid and dashed lines are the ground-motion model (GMM) mean
and uncertainty prediction, respectively (SEA, Sgobba et al., 2021). The color version of this figure is available only
in the electronic edition.
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components of the variability
by the mixed-model statistics.
Indeed, the total variability
shown in Figure 3 and then
in Figure 4a shows a relatively
good agreement between the
simulations and the GMM
for most of the periods,
because the overestimation of
the synthetic B-E variability
was compensated by the
underestimation of the syn-
thetic W-E variability. In the
Discussion, we further scruti-
nize the effects of HIC source
parameters on the synthetic
B-E variability and propose
restricting scenario parameter
ranges to reduce the resulting
B-E variability of the scenarios.

DISCUSSION
Role of source parameters
on the ground-motion
variability
To understand the contributions
of the individual HIC parame-
ters to the synthetic B-E variabil-
ity, we expand the regression of
equation (4), considering vari-
ous explanatory terms corre-
sponding to different varied
parameters. In particular, to
explain the variability of SA in
Figure 4a, we derive the regres-
sion model from the logarithm
of the high-frequency theoretical
source spectrum of equation (1),

Rij � C′�Ca logai�Cvr logvri

�CS logSi� η′i � εij, �5�

in which C′ is the new mean
offset, Ca, Cvr , and CS are

regression coefficients corre-
sponding to the respective
explanatory variables indicated
by the subscript; and η′i is the
new B-E residual. We perform
the regressions to isolate the
effects of the individual source
parameters on the variability,
taking one explanatory variable

(a)

(b)

−0.2
−0.15

−0.1
−0.05

 0
 0.05
 0.1

 0.15
 0.2

 0.2  0.6  1  1.4  1.8

C

Period (s)

Offset

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.2  0.6  1  1.4  1.8

St
an

da
rd

 d
ev

ia
tio

n

Period (s)

Within-event variability

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.2  0.6  1  1.4  1.8

St
an

da
rd

 d
ev

ia
tio

n

Period (s)

Between-event variability

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.2  0.6  1  1.4  1.8

St
an

da
rd

 d
ev

ia
tio

n

Period (s)

Total variability

Unrestricted
Restricted B–E

Empirical Sgobba et al. (2021)

−1.5
−1

−0.5
 0

 0.5
 1

 1.5
 2

 2.5

 0.2  0.6  1  1.4  1.8

C v
r, 

C
S

, C
a,

 C

Period (s)

Slopes
Log10vr
Log10s
Log10a

Log10

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0.2  0.6  1  1.4  1.8

St
an

da
rd

 d
ev

ia
tio

n

Period (s)

Between-event variability
Empirical (Sgobba et al., 2021)

−
Log10vr
Log10s
Log10a

Combined
Log10

Figure 4. Results of the linear mixed-model regression of spectral acceleration residuals with respect to SEA GMM at
different spectral periods. (a) Offset, within-event (W-E), between-event (B-E), and total variability standard
deviation (in log10). Models with unrestricted and restricted B-E residuals (see the Constraining the Source
Parameters section) are distinguished by symbols and colors. The black triangles show the empirical variability.
(b) Coefficient values for the individual explanatory variables and the respective log10 standard deviation of the B-E
variability (see equations 5 and 6) distinguished by colors (see legend); “combined” corresponds to the case when
all the variables (except for the stress parameter) are considered together. Arrows outside the left graph are
theoretical values at high frequencies, see equations (1) and (3). The purple line is the B-E variability corresponding
to the mixed-model regression without any explanatory variable (equation 4), the same as in panel (a). The black
line is the empirical B-E variability of the GMM by Sgobba et al. (2021). The color version of this figure is available
only in the electronic edition.
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at a time and setting the other terms to zero. Figure 4b shows
period dependence of the mixed-model regression coefficients
and B-E standard deviations (values for the example period
0.2 s are listed in rows 2–4 of Table 1). Note that we do not
discuss the W-E standard deviations, because the considered
explanatory variables in the mixed-model regression are related
exclusively to the mean source properties, and thus the W-E
variability remains the same for all cases.

For short periods, the regression coefficients are generally
close to their predicted theoretical values, that is, powers in equa-
tion (1), indicated by arrows on the left side of Figure 4b. The
coefficients generally tend to decrease (in absolute values) with
increasing periods. Theoretically, the effect of the considered
parameters should attain zero for the longest periods, because
the finite-source model apparently becomes a point source
described solely by the (fixed) seismic moment. However, this
is not the case, because our maximum analyzed period of 2 s is
still shorter than the rupture duration.

The B-E variabilities estimated for each explanatory varia-
ble, corresponding to the remaining B-E variability after
excluding the effect of the respective variable, are shown in
Figure 4b (see also Table 1 for values for the period of 0.2 s).
For example, the remaining B-E variability at period 0.2 s
decreases from τ � 0:327 to τS � 0:311 after removing the
dependence on the fault size. The most significant decrease
of the B-E standard deviation is attained for parameter a, dem-
onstrating that the greatest portion of our scenario variability
comes from the variability in this parameter (also note that
τa � 0:188 is closer to τGMM � 0:142 for period 0.2 s). The
drop of the synthetic B-E variability is smaller for rupture
velocity vr than for parameter a despite the fact that they both
contribute to the variability with the same regression coeffi-
cient (∼2, in agreement with the second power in the theoreti-
cal model of equation 1), suggesting that parameter a has
stronger control on the high-frequency radiation. The effect
of the rupture velocity variations on the B-E variability is also
weaker because it also translates partially in the W-E variabil-
ity by altering the directivity effect. We note that the decrease

of the B-E variability is controlled not only by the respective
regression coefficient but also by the assumed parameter
range. In this sense, the result found in this analysis cannot
be generalized, because it is tied to the construction of our
dataset.

Figure 4b (“Combined”) and the fifth row of Table 1 show
the regression results after we cleared the effects of all explana-
tory variables (so only the nucleation point and slip distribu-
tion are not analyzed). The B-E standard deviation decreases
well below the empirical value. Because such remaining vari-
ability is relatively small, it suggests that the effect of slip dis-
tribution on B-E variability is relatively weak. We note that the
nucleation position controlling the directivity effect does not
influence the between-scenarios variability, because it does
not make a repeatable contribution to the ground motion.
Conversely, it controls the spatial variability of the shaking
within the same scenario event and is thus attributable to
the W-E variability component.

As discussed in the Source model section, the source param-
eters that control the high-frequency spectrum can be lumped
into one stress parameter Δσ (equation 3). For each scenario,
we determine the amplitude of the high-frequency acceleration
source spectrum plateau by summing contributions from the
HIC model sub-sources and calculate Δσ by equation (3),
assuming k = 0.37 (Brune, 1970). The histogram of the stress
parameters for all the scenario events is shown in Figure 5,
resembling a lognormal distribution.

To analyze the effect of Δσ on the residuals, we assume
another form of the regression equation for the residuals,

Rij � C″� CΔσ logΔσ � η″i � εij, �6�

in which C″ is the mean offset value, and CΔσ is the regression
coefficient for Δσ as the explanatory variable. The results are
shown in Figure 4b (in yellow) and listed in Table 1 for the 0.2 s
period. The value of the coefficient CΔσ is 0.64, which is very
close to the theoretically derived value ⅔ in equation (3). As
expected, the low value of the remaining B-E standard

TABLE 1
Parameters of the Linear Mixed-Model Regression of the Spectral Acceleration (SA) Residuals for Period T = 0.2 s with Different
Explanatory Variables and Corresponding Between-Event (τ) and Within-Event (ϕ) Variabilities (See the Main Text and
Equations 5 and 6)

Explanatory Variable Offset LogS Log a Logvr LogΔσ τ ϕ

– −0.077 – – – – 0.327 0.124
Log S −9.963 −1.177 – – – 0.311 0.124
Log a 0.095 – 1.873 – – 0.188 0.124
Logvr 6.814 – – 2.012 – 0.291 0.124
Loga� LogS� Logvr −2.901 −1.177 1.873 2.012 – 0.044 0.124
LogΔσ 0.995 – – – 0.644 0.047 0.124
Empirical GMM values (Sgobba et al., 2021) – – – – – 0.142 0.314

The first row corresponds to the regression without explanatory variables as in equation (4). Empirical values of τGMM and φGMM are specifiesd in the last row.
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deviation (like the case of the combined regression) confirms
the validity of equation (3), suggesting that the scenario vari-
ability is controlled dominantly by this aggregated parameter.
Note also that the mutually canceling effect of the source
parameters lumped in the stress parameter makes the B-E stan-
dard deviation stable over all periods.

Constraining the source parameters
As we have shown, the B-E variability of our scenario simu-
lations exceeds its empirical counterpart. This calls for restrict-
ing the scenario variability by limiting their source parameters
for further applications. We propose reducing the number of
scenarios by constraining the synthetic B-E standard deviation
τ to be close to the empirical value τGMM of Sgobba et al.
(2021). Indeed, this GMM is a regional model describing the
source contributions of the seismogenic structures with nor-
mal-fault mechanisms in central Italy.

We prescribe the probability density function (PDF) of the
synthetic B-E residuals at the lowest considered period of 0.2 s to
follow the empirical form, namely normal PDF with zero mean
and standard deviation to be equal to the empirical value of the
adopted GMM at 0.2 s. We use the rejection method, in which
we randomly pick scenarios and accept or reject them stochas-
tically based on their B-E residual. This way, the B-E residuals of
the resulting restricted database have PDF that agrees with the
empirical one at 0.2 s; at higher periods, the B-E standard devi-
ations are closer to or below the empirical values (Fig. 4a). In the
restricted database, we choose to have about one-third of the
scenario events (4000 scenarios with potential duplicate entries).

We explore the properties of the source parameters of the
scenarios in the restricted database. The stress parameter has

a narrower lognormal distribu-
tion with a mean of 4.3 MPa
and log10 variability of 0.23
(see Fig. 5). The distributions
of fault dimension S, rupture
velocity vr , and parameter a
are shown in Figure 5. We see
that S and vr retain their distri-
butions from the unrestricted
dataset, whereas parameter a
attains a bell shape instead of
uniform distribution. This is
due to the exclusion of many
“extreme” scenarios also associ-
ated with too high- or too low-
stress parameters.

Concerning the ground-
motion variability, the
restricted scenario events data-
base does not affect the offset
and theW-E standard deviation
(Fig. 4a, green). The former is

because we assumed a zero mean for the prescribed PDF of
the B-E residuals; if needed, prescribing a nonzero mean can
be used to adjust the offset with respect to the empirical
GMM. The combination of the B-E and W-E components also
makes the total variability of the restricted dataset slightly
smaller than the empirical one (Fig. 4a). This is, however, pref-
erable, considering the unmodeled features such as complex 3D
path and variability among reference rock sites. In addition,
there is no epistemic uncertainty in our synthetic dataset
(e.g., in magnitude) that would increase the variabilities as in
empirical estimates, because we know all our modeling param-
eters perfectly (Crempien and Archuleta, 2017; Valentová et al.,
2021). Indeed, Figure S3 shows that the B-E variability of
the restricted database reaches the empirical value if we add
random perturbation to each scenario’sMw (with ±0.1 standard
deviation), representing the error in Mw estimation from real
data.

Because the only constraint in the restricted database is
placed on the synthetic B-E residuals and not the source model
parameters, we examine the possible correlations between the
parameters in the restricted database. For example, comparing
the expressions for the spectral acceleration plateau from
equations (1) and (3), we obtain the following equation:

Δσ � 7
16

�
a
k
vr
vs

�
3 M0

S3=2
, �7�

in which we see a possible correlation between the stress param-
eter Δσ and, for example, rupture velocity vr . Although we see
such a correlation in the unrestricted database, the stress param-
eter is independent of the rupture velocity in the restricted

Figure 5. Histograms of source model parameters of the scenario database. The blue bars correspond to the unre-
stricted (full) database, and the brown bars are for scenarios restricted to have the B-E residuals in agreement with
the adopted GMM. The color version of this figure is available only in the electronic edition.
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database (see Fig. S2a). This can be explained by the anticorre-
lation between vr and a, which was not originally present in the
scenario database, as suggested also by equation (7), see Figure
S2b. We point out that the anticorrelation is an outcome of the
scenario restriction. Nevertheless, adopting such a relationship
from physical considerations (rupture dynamics) would be pref-
erable.

Relation of the B-E variability to the stress-drop
variability
There is a long-lasting debate about whether the B-E variability
is connected to the variability of stress drop or stress parameter
(Atkinson and Beresnev, 1997; Causse and Song, 2015;
Gallovič and Valentová, 2020). Moreover, the relation between
the stress drop and stress parameter is ambiguous. In empirical
studies, the stress drop is usually estimated using corner
frequencies under the assumption of the Brune (omega-
square) source model (equation 2) (Abercrombie, 2021). On
the other hand, the stress parameter is related to the high-fre-
quency ground motions (equation 3). The two empirical esti-
mates are discrepant both in mean and variability, so they are
suggested to be understood as two distinct, unrelated quantities
(Atkinson and Beresnev, 1997).

There are two main reasons for this discrepancy. First, the
epistemic error in the corner frequency estimation is amplified
by the third power in the relation between the corner frequency
and the stress drop (equation 2), increasing the variability of
the inferred Brune stress drop. Second and more substantial is
the validity of the Brune model itself. For complex models, the
source spectra deviate from the simple Brune spectra, and the
corner frequency thus estimated is not directly related to stress
conditions on the fault. Indeed, this issue has been recognized
in real-event analyses (Archuleta and Ji, 2016; Denolle and
Shearer, 2016; Liu et al., 2023) and dynamic source modeling
(Gallovič and Valentová, 2020).

On the contrary, the HIC source model employed in this
study is based on the Brune source spectrum (although strictly
speaking, the Brune model is considered for the individual sub-
sources). Therefore, the stress drop estimated from the corner
frequency is directly related to the stress parameter controlling
the high-frequency spectral radiation. For this reason, we found
that the ratio between standard deviations of the high-frequency
B-E ground-motion variability τGMM (0.142 in log10) and the
calculated Brune stress parameter Δσ of the restricted database
(0.23 in log10) is close to the coefficient CΔσ from the residual
regression analysis (equation 6) and the theoretically derived
relation with power ⅔ (equation 3),

τ ∼ CΔσstd�logΔσ� � 0:64std�logΔσ� ≈ 2=3std�logΔσ�: �8�

An alternative theoretical relation between PGA variability
and the stress parameter with a similar scaling coefficient of
5/6 was derived by Causse et al. (2008) and validated by

Drouet and Cotton (2015). Our resulting value of 0.64 permits
a larger variability of the stress parameter to fit the B-E variability
than in Causse et al. (2008). Nevertheless, it depends on
the methodology and thus can deviate from other theoretical
predictions.

The relation between the standard deviation of the stress
parameter and the B-E residuals (equation 8) can be thus uti-
lized when generating scenarios using models based on the
Brune spectrum. Let us emphasize that adopting empirical
stress-drop standard deviation to determine that of the stress
parameter would lead to too large scenario variability. Indeed,
in the standard empirical estimates from corner frequencies of
apparent moment rate functions of real earthquakes, the Brune
stress-drop variability is inferred as 0.5 in log10 (i.e., 1.1 in ln;
e.g., Baltay et al., 2011; Cotton et al., 2013; Causse and Song,
2015; Oth et al., 2017; Bindi, Picozzi, et al., 2018; Bindi,
Spallarossa, et al., 2018; Morasca et al., 2022, and references
therein). Adopting this value for the stress parameter variabil-
ity, that is, corresponding roughly to our unrestricted database,
would result in the scenario B-E variability of 0.3 in log10 (0.7
in ln), much higher than the empirical estimate. Contrarily, the
standard deviation of the stress parameter of our restricted
database is 0.23 in log10, as if it was constrained by the empir-
ical B-E value (τGMM � 0:142 and equation 7). Although this
analysis was made a posteriori on our dataset, for future appli-
cations the stress-drop/parameter variability of the synthetic
scenarios can be constrained a priori from the empirical B-
E variability using equation (8). Because Δσ aggregates effects
of all other source parameters, one can also randomly sample
parameters vr , a, and S independently from their uniform dis-
tributions and limit the scenarios a priori (i.e., before perform-
ing the simulations), so that the resulting distribution of the
stress parameter follows its target distribution with a pre-
scribed standard deviation of Δσ.

Let us also note that the empirical B-E variability might be
biased by epistemic errors, such as uncertainty in the Mw esti-
mation, as suggested by dynamic simulations (Valentová et al.,
2021) and data analysis of large, repeating earthquakes
(Yagoda-Biran et al., 2015). Considering this overestimation
in the empirical values, the stress parameter variability for
the scenario simulations would be even smaller than the value
derived from the B-E one using equation (8). We acknowledge
that our approach of constraining the scenario variability rep-
resents an upper limit.

CONCLUSIONS
We have employed a kinematic finite-fault model to build a
database of ∼12,000 Mw 6.2 earthquake scenarios with varied
source-related parameters. The total variability of the simu-
lated scenarios agrees with the empirical one. The mixed-
model analysis reveals that when the synthetic W-E variability
is underestimated, the B-E variability (i.e., purely the variability
due to changes in the source scenarios) exceeds the empirical
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values. The former is acceptable, considering the simplification
of many path and site complexities in the modeling. However,
the overestimation of the synthetic B-E variability related to the
changes in source scenarios suggests too large variability in the
mean source parameters.

To overcome this issue, we restricted the scenario database
by randomly resampling the scenarios to conform their B-E
residuals with the prescribed (empirical) distribution. We
showed that the standard deviation of the stress parameter
(aggregating all source modeling parameters in our models)
attains ∼⅔ of the empirical B-E standard deviation of the
adopted GMM, in agreement with theoretical considerations
for our kinematic model. This relation can be used for future
applications to restrict a priori the stress parameter variability
of the scenarios (instead of adopting the likely overestimated
variability from empirical source spectrum studies). In addi-
tion, the stress parameter variability can be considered even
smaller for a single seismogenic source, because the empirical
B-E standard deviation is affected by epistemic errors.

DATA AND RESOURCES
The Python package Statsmodel is available at www.statsmodels.org
(last accessed September 2023). The supplemental material contains
Table S1 with the 1D crustal velocity model of (a) Norcia area and (b)
Amatrice area. Figure S1 shows the decrease of the within-event (W-
E) variability if one 1D crustal model is considered. Figure S2 dem-
onstrates the relations between the stress parameter and rupture
velocity and between the parameter a and rupture velocity in the origi-
nal and restricted scenario databases. Figure S3 documents the
increase of the between-event (B-E) variability of the restricted data-
base if we add random perturbation to each scenario’s Mw (with ±0.1
standard deviation), representing the error inMw estimation from real
data. The study is based solely on synthetic calculations.
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