
1. Introduction
Volcanism worldwide occurs largely in extensional settings, including oceanic ridges, continental rifts, and 
synorogenic back-arc basins, where tectonic conditions favor magma ascent (e.g., Favela et al., 2000; Galindo & 
Gudmundsson, 2012; Goldberg, 2010; Gudmundsson, 1990, 1992). In areas of stretched crust, volcanic activity 
can produce different kinds of structures, including fissure ramparts, scoria cones and vent alignments (e.g., 
Cardello et al., 2020; De Matteo et al., 2018; Ruch et al., 2016; Smets et al., 2015; Smith & Németh, 2017; 
Tibaldi et al., 2020; Trippanera et al., 2018, 2019). However, understanding the relationships between volcanism 
and tectonics over time may be challenging, especially in areas where different volcanic and tectonic phases have 
occurred.

Such is the case of the Pleistocene Italian volcanism, which is localized along the eastern margin of the Tyrrhenian 
Sea, a back-arc basin resulting from the subduction of the Adria lithosphere beneath the Sardinia-Corsica block 
since at least the Serravallian (Vitale & Ciarcia, 2013 and references therein). The back-arc opening-related exten-
sion progressively moved following the thrust front migration toward NE/E in the southern Apennines and SE/S 
in the Calabria-Peloritani Terrane (Carminati et al., 2014; Faccenna et al., 1996; Vitale & Ciarcia, 2013, and refer-
ences therein). Up to the Early Pliocene, the orogenic construction was dominantly driven by thin-skinned  tecton-
ics with flat-lying thrust faults separating the major thrust sheets. Thereafter, the axial part of the southern 
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the Meso-Tertiary carbonates and overlying Lower Pleistocene breccias of Mt Cesima, northeast of the 
Roccamonfina volcano. We performed a stratigraphic and structural survey of the area and petrographic 
analyses on several samples of the dike. Results indicate that a ∼1 km long fissure fed an eruption that also 
emplaced a Strombolian pyroclastic sequence. Petrological data show that an open-system mafic recharge 
fueled the tephritic magma that fed the eruption, whereas no evidence of significant pre/syn-eruptive 
assimilation of carbonate has been identified. Stratigraphic and petrological data do not allow to firmly 
constrain the timing of the eruption, which could belong both to the pre-Brown Leucitic Tuff (>354 ka) and 
to the post-White Trachytic Tuffs (<230 ka) epochs of activity of the Roccamonfina volcano. Structural data 
show that the dike is broadly oriented E-W and changes direction toward NE-SW in correspondence with a 
pre-existing fault damage zone. We suggest that magma was intruded during an N-S trending extensional event 
in the Middle Pleistocene, whose prolonged activity resulted in regional uplift and exhumation of regional 
significance.
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Apennines experienced an out-of-sequence thrusting phase, which led to the formation of ramp-dominate thrusts 
that also involved the wedge-top basin deposits (Cardello et al., 2021; Vitale et al., 2020). As a result, exten-
sional tectonics affected the Tyrrhenian margin of the southern Apennines since the Early Pleistocene (Alessandri 
et al., 2021; Bergomi et al., 1969; De Rita & Giordano, 1996; Giordano et al., 1995; Ippolito., 1973; Nicotera & 
Civita, 1969). This produced many structural highs and depressions between the Lazio and Campania regions 
(Figure 1a), hosting the volcanoes of the Roman and Campanian Provinces (e.g., Peccerillo, 2017), also in the 
present-day offshore (Conte et al., 2020). Among the structural depressions, the most significant is the Campania 
Plain, hosting the Campi Flegrei, Ischia, and Somma-Vesuvius active volcanoes (Figure 1a). Further to the north, 
the Roccamonfina volcano developed within the Garigliano Graben.

This extensional phase is testified by NW-SE and NE-SW faults in the whole southern Apennines chain, including 
the Garigliano and Campania plains and the Neapolitan volcanoes (Boncio et al., 2016; Bosi & Giordano, 1997; 
Caiazzo et al., 2006; Ciaranfi et al., 1983; Cinque et al., 2000; De Rita & Giordano, 1996; Galderisi et al., 2017; 
Tramparulo et al., 2018; Vitale & Isaia, 2014).

Geochemical and petrological features of volcanic products indicate that the extensional tectonics drove their 
emplacement (Di Girolamo et al., 1988; Lustrino et al., 2011; Peccerillo, 2017). However, knowledge of the struc-
tural mechanisms that acted during the early establishment of the Pleistocene volcanic activity in central-southern 
Italy, and the interplay between volcanism and tectonics through time still needs to be investigated thoroughly 
(e.g., Cardello et al., 2020; Giordano et al., 1995; Isaia et al., 2019; Natale et al., 2022; Tramparulo et al., 2018; 
Vitale et al., 2019).

Furthermore, the emplacement of magmatic dikes within carbonate rock has drawn the attention of several 
researchers since the magma-carbonate interaction may explain significant explosivity during Plinian eruptions 
(e.g., Somma-Vesuvius; Buono et al., 2020; Jolis et al., 2013, 2015; Knuever et al., 2023). However, the feeding 
system is usually poorly exposed, often only in strongly exhumed fossil systems (e.g., Iceland, Oman), or not 
exposed at all, limiting the possibility to investigate dike emplacement mechanisms within homogeneous or faulted 
country rocks. In addition, the behavior of a dike within preexisting fault-zones (Gudmundsson, 2011, 2020), its 
intrusion mechanisms (Mode I and/or II-III), magma flow patterns (Koopmans et al., 2022), and near-surface 
contact geometries (Poppe et al., 2020) which may affect surface deformation and faulting patterns (Trippanera 
et al., 2015), still have room for further comprehension, especially in sedimentary host-rocks.

In this work, we deepen these topics as we conducted a multidisciplinary investigation of a magmatic dike and the 
eruptive fissure system a few km northeast of the Roccamonfina volcano in the Taverna San Felice (TSF) quarry 
(Figure 1), previously not documented in the literature. This structure represents a unique, beautifully exposed 
example in the whole Pleistocene Italian volcanic area of a dike hosted in Meso-Quaternary rocks and may 
provide interesting clues on the relationships between the formation of the Garigliano Graben and the peripheral 
volcano-tectonic activity related to the Roccamonfina volcano.

2. Geological Setting
Roccamonfina volcano is located within the Garigliano Graben, straddling the Roman and Campanian magmatic 
provinces (Conticelli et al., 2010; Peccerillo, 2017). These include the volcanic districts of Vulsini (0.9–0.12 Ma), 
Vico (0.9–0.095 Ma), Sabatini (0.6–0.09 Ma), Colli Albani (0.7–0.03 Ma), Ernici/Middle Latin Valley/Volsci 
Volcanic Field (0.76–0.23  Ma), Roccamonfina (0.63–0.05  Ma), Ischia (0.2 Ma-active), Campi Flegrei (0.08 
Ma-active) and Somma-Vesuvius (0.3 Ma-active) (Figure 1a), all classically ascribed to a subduction-related 
potassic to ultra-potassic post-collisional volcanism (Di Girolamo & Morra, 1988; Peccerillo, 2017).

The eruptive history of the Roccamonfina volcano consists of three main periods (Conticelli et al., 2009). During 
the first stage (630–400 ka), large volumes (about 100 km 3) of lava and small-volume ignimbrites were emplaced, 
building the ancient stratovolcano (Tedesco, 1965), along with smaller phonolitic domes and scoria cones erupted 
along NE-SW regional lineaments (Bosi, 1994; De Rita & Giordano, 1996; Di Girolamo, 1972, Di Girolamo 
et al., 1991; Sgrosso & Aiello, 1963). Some of these vents are located within the surrounding Mesozoic carbonate 
ridges, including the Taverna San Felice, Presenzano ( 40Ar/ 39Ar age of 600 ± 3 ka, Ballini et  al.,  1989) and 
Sesto Campano eruptive centers on the Mt. Cesima ridge (Figure  1), and the vent reported on the northern 
slope of Mt Massico (Servizio Geologico d’Italia, 1968). The products of this period are K-rich and strongly 
silica-undersaturated, belonging to the so-called High-Potassic series (HKS; Appleton,  1972; “plagioclase 
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Figure 1. (a) Digital Elevation Model (DEM) of the Campania Plain-Garigliano Graben area extracted from ALOS3D DEM (Japan Aerospace Exploration 
Agency, 2021), with the inset at the upper right highlighting the volcanic districts of the Roman and Campanian magmatic provinces of central-southern Italy and the 
red dashed rectangle showing the position of panel (b). (b) Geological map of the Garigliano Graben (modified after Vitale & Ciarcia, 2018), the yellow box indicates 
the study area.
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leucitites,” Conticelli et al., 2009). In this phase also, some Plinian phonolitic-to-trachytic activity is reported, 
such as the Rio Rava eruption, dated at ∼440 ka (K/Ar; Rouchon et al., 2008) and 437 ka ( 40Ar/ 39Ar; Russo 
Ermolli et al., 2010), and other recognized in the distal record, dated at ∼426 ka (Amato et al., 2014).

The second period (385–230 ka) was characterized by the emplacement of the Brown Leucitic Tuff (BLT, 354 ka), 
an ignimbrite sequence with leucite-bearing pumice clasts (De Rita & Giordano, 1996; Luhr & Giannetti, 1987; 
Rouchon et  al.,  2008). The eruption produced a collapse of the volcano edifice toward the NE and marked 
the transition to a slightly silica-undersaturated magmatism (the KS Potassic series; Appleton, 1972; “shosho-
nites,” SHO, Conticelli et  al.,  2009). Subsequent Plinian paroxysmal activity emplaced the White Trachytic 
Tuffs sequence (WTTs, 310–230 ka; Ballini et al., 1989; Cole et al., 1993; De Rita & Giordano, 1996; De Rita 
et al., 1998; Giannetti, 1990; Giannetti & Luhr, 1983; Giordano, 1998), and the deposits of the Yellow Trachytic 
Tuff eruption (YTT), which produced the northern caldera, dated at 227 ka (Cole et al., 1992; Giannetti, 1996; 
Luhr & Giannetti, 1987).

During the third period (155–50  ka), the Roccamonfina volcano mainly emplaced effusive products, fed by 
subalkaline magmas (HKCA, high-K calcalcaline series), including the summit dome of Monte Santa Croce 
(Conticelli et al., 2009). The variable serial affinity displayed by the products emplaced during the three periods 
of activity was ascribed to partial melting of a heterogeneous mantle, with the HKS magmas being sourced from 
different domains with respect to the KS and HKCA ones (Conticelli et al., 2009; Peccerillo, 2017). The volcanic 
successions of the Roccamonfina volcano are capped by the deposits of the Campanian Ignimbrite eruption 
(dated at 39.8 ka; Giaccio et al., 2017), originated from the Campi Flegrei caldera, ∼60 km to the southeast.

The study area (yellow box, Figure  1b) is located within the NE-SW trending Garigliano Graben, a struc-
tural depression bounded by Meso-Cenozoic carbonate ridges to SW (Mt Massico), SE (Mt Maggiore), NW 
(Aurunci Mts), N (Mt La Defensa) and NE (Mt Cesima). The latter is constituted by pre-orogenic shallow-water 
Triassic-Cretaceous carbonates and, locally, by Eocene and Early-to-Middle Miocene limestones (Vitale 
& Ciarcia,  2018). The southern part of Mt Cesima consists of a carbonate succession, including Cretaceous 
shallow-water limestones passing upward to Maastrichtian-Paleocene recrystallized calcarenites and breccias 
(Calcari Cristallini Fm; Vitale & Ciarcia, 2022). The succession is folded, forming a south-verging anticline, and 
displaced by Lower-Pleistocene normal faults with associated syn-extensional continental deposits (D’Agostino 
et  al.,  1998; Demangeot,  1965). The pyroclastic products of the Roccamonfina volcano and the Campanian 
Ignimbrite eruption, as well as Volturno river deposits (Valente et al., 2019), contributed to the filling of the 
Garigliano Graben, formed starting from the Early Pleistocene (Giordano et al., 1995; Figure 1b). NE-SW major 
high-angle faults, and subordinate NW-SE faults, bound the tectonic depression. Younger E-W and N-S faults 
crosscut the carbonate ridges around the graben and the Roccamonfina edifice (e.g., De Rita & Giordano, 1996).

3. Materials and Methods
3.1. Field and Unmanned Aerial Vehicle (UAV) Stratigraphic and Structural Survey

The investigated magmatic dike was studied in the active cement quarry of TSF. Since 2019, we have carried 
out numerous geological surveys of the area following the progress of the excavation activities, which gradually 
exposed new stratigraphic sections, which include pyroclastic deposits from the Roccamonfina, and proximal 
Strombolian pyroclastic successions associated with the feeder dike. Concerning the structural features, we meas-
ured fault and fracture attitudes in the exposed sections of the dike, associated products, and host rock. Fault 
data, including fault plane and striation orientations, and kinematics, were processed with Tectonics FP (Reiter 
& Acs, 1996-2020) and Open Stereo (Open Stereo Softwre Package, 2018) open-source software. In addition, 
for sites inaccessible to in situ measurements and to preserve records of the outcrops during the progress of 
excavations, we performed Unmanned Aerial Vehicle (UAV)-based photogrammetric surveys from September 
2020 to January 2022. The UAV images were acquired using a DJI Mavic Air 2 UAV with a 1/2″ CMOS 12 MP 
sensor and 24 mm-equivalent focal length, with 4:3 aspect ratio in the 12 MP camera configuration to maxi-
mize the pixel resolution. The average front and side overlap of the pictures is around 80%, with acquisition 
angles between nadiral and 30°, following the best practices for UAV surveys (James & Robson, 2012; Stroner 
et al., 2021; USGS, 2017).

The aerial images captured by UAV were processed and used to build photogrammetric Virtual Outcrop Models 
with Agisoft Metashape Pro software (Ver 1.5.1). The 3D texturized models were exported in .kmz format and 
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imported within GeoVis3D Open software (GeoVis3D, 2022) to extract planar and linear structural data using 
the best-fit plane and lineation measuring mode, respectively, and finally exported in .csv format for structural 
analysis purposes.

3.2. Petrographic and Whole-Rock Geochemical Analyses of the Volcanic Products

Rock samples were collected from the dike and the associated volcanic deposits (see below) for a total of 11 
samples. Magmatic fabric and primary mineral assemblages were investigated on polished thin sections both at 
the polarizing microscope and at the Scanning Electron Microscope (SEM), using a Field Emission Scanning 
Electron Microscope Zeiss Gemini Sigma 300, hosted at the Laboratorio Interdipartimentale di Microscopia 
Elettronica (LIME), Roma Tre University. Back-scattered electron images were collected using a high-definition 
back-scattered electron detector (HDBSD), and the composition of mineral phases was qualitatively investigated 
using a Bruker XFlash 6,160 Energy Dispersive X-ray Spectroscopy (EDS) detector. Operating conditions were 
15 keV and up to 20 nA for a working distance ranging from 7 to 8.5 mm, and aperture size up to 60 mm. 
EDS-spectra were normalized to the peak of Si (Pulses/eV) to highlight chemical zoning. Whole-rock geochem-
ical analyses were performed at the DiSTAR laboratories. Samples were cut with a diamond-blade circular saw, 
crushed in a steel jaw-crusher, washed in deionized water, dried out, hand-picked to remove the most altered 
external portions, and finally pulverized in a low-blank agate mill. Rock powders were used to produce pressed 
powder pellets, analyzed for major- and trace elements by XRF (X-ray fluorescence) spectrometry using a Pana-
lytical Axios instrument. Analytical uncertainties are in the order of 1%–2% for major elements, 5%–10% for 
trace elements. Weight loss on ignition was determined gravimetrically after heating rock powders (pre-dried at 
∼150°C overnight) at 950°C for 4 hr. Full results and sample locations are reported in Supporting Information S1 
(Table S1).

4. Results
4.1. Main Features of the Study Area

In the TSF quarry, excavation operations have been active since 1981 and have progressively exposed a large 
magmatic dike for a length of over 250 m. The TSF dike crops out in the central part of the quarry, with an E-W 
orientation at its base and a NE-SW direction from the middle toward the topmost outcrops (Figure 2a).

The dike thickness ranges between 5 and 28 m (Figure 2b), with smaller values in the lower part of the quarry 
where the dike dips by ca. 65° toward NNW and many apophyses are also exposed (Figures 2c and 2d), with 
both lateral tips exposed. The carbonate host rocks (Figure 2c) show a thermo-metamorphic aureole that is better 
developed in the lower part of the quarry. Along the contacts, polished fault planes (Figure 2e) with kinematic 
indicators (Figure 2f) occur parallel to the dike-host rock contact. The host rocks are highly damaged by fractures 
and faults, making bedding planes barely recognizable (Figure 2g). Nevertheless, relics of sedimentary features 
allow them to be identified as part of the Lower Cretaceous oolitic lithostratigraphic unit.

Faults (Figure 2h) are visible as polished surfaces (Figure 2j) or as finer grained cataclastic bands (Figure 2i). 
Carbonate speleothems and pseudo-karst features are frequent, as in the nearby outcrops on the Mt Cesima ridge 
(Figure 2o). In the nearby abandoned quarry, to the NW of the active one (Figure 2a), the bedding planes are instead 
visible, steeply dipping toward the south (Figure 2n), with numerous high-angle faults with a similar planar atti-
tude (Figure 2n). Sedimentary indicators allow recognition that the stratigraphic polarity is normal (Figure 2p). 
The TSF dike hosts pervasive joints (Figure  2k), faults (Figure  2l), and related shear fractures (Figure  2m), 
with the contact between the TSF dike and the host rock changing significantly along its length  (Figure 2b). A 
sharp contact aureole, 1–4 m thick, occurs along the boundary between the dike and the cataclastic limestones 
(Figure 3a). Where the dike intrudes the Lower Pleistocene breccia (Figure 3c), the margins are irregular and 
blunt (Figure 3d), with no evident contact aureole. In the lower section of the quarry, apophyses, locally enclosed 
in the host rock (Figure 3b), vary in length between 2 and 7 m, with an average thickness of 0.8 m, pinching 
out toward the tips. The tips of finger-like apophysis can vary from wedge-like to rounded (Figures 3e and 3f). 
Some of them show staircase-like sharp contacts (Figure 3e). Frequently, host rock enclaves are observed within 
the dike along the dike-host rock margin (Figures 3g and 3i). Locally, sub-vertical peperite-like dikes, filled by 
reddish-scoria lapilli coated by a carbonate matrix, occur (Figure 3j). Dike failed-paths (horns) occur both as a 
partial (soft-linked) linkage with isolated bridges (i.e., sections of wall-rock connecting on the two sides of a dike, 
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Figure 2.
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Figure 3h) or as complete linkage (hard-linked) in which a section of the wall rock is isolated within a dike lens 
between overlapping segments (Figure 3k).

4.2. Stratigraphic Survey

Within the topmost part of the quarry (Figures 4a and 4b), an up to 15 m thick Strombolian pyroclastic succes-
sion, mostly preserved in the hanging-wall of normal faults (Figures 4c), was observed to lay on altered pyro-
clastic deposits, in turn, laying on cataclastic Cretaceous limestones and Lower Pleistocene breccia deposits. 
The altered sequence starts with a ∼2 m thick pedogenized reddish pyroclastic material topped by a 60 cm thick, 
variably altered, clast-supported, white-to-gray clast-supported pumice lapilli layer (Figure 4a). This is covered 
in turn by a 1.6 m thick reworked and altered pyroclastic layer, which transitions upward to a mature reddish 
paleosol (Figures 4a and 4f). On top of this sequence, three main Strombolian eruptive units were observed (Units 
1, 2, and 3; Figures 4j and 4k). Unit 1 varies in thickness between 2 and 5 m (Figures 4a and 4f), and is charac-
terized by stratified to diffusely stratified scoria lapilli beds with interspersed fluidal bombs, dense scoria, lava, 
and carbonate ballistic clasts (in upward decreasing order of abundance). Unit 2 is a 5–6 m thick massive deposit 
made up of agglutinated scoria lapilli and spatter clasts, with ballistic ejecta made up of dense scoriae, lava, 
and carbonate clasts (Figures 4d, 4e, and 4j). The thickness reaches a maximum of 10 m in the most preserved 
sections (Figures 4c and 4g). Unit 3 is a clast-supported, very-coarse ballistic-rich unit composed of lava, large 
fluidal bombs, and carbonate clasts up to 1 m in diameter. Clasts of Unit 3 are extensively covered by a reddish 
oxidation patina.

The entire Strombolian succession is cut by faults and fractures, the latter frequently coated by carbonate-rich 
filling/patina (Figure 4) and mostly oriented parallel or obliquely to the excavation fronts (Figure 4). In the upper 
east corner of the quarry (Figure 5a), we report the occurrence of welded deposits made up of scoriaceous spatter 
clasts and scoria lapilli, over 2 m in thickness (Figures 5b and 5c). The distribution of these ramparts (Figure 5a) 
follows the same orientation of the uppermost portion of the dike. Several scattered outcrops of welded lapilli and 
spatter clasts (Figures 5d–5g), locally passing laterally to lava flow deposits (Figures 5h and 5i), are also present.

4.3. Structural Survey

The stereographic projections of the deformation structures are shown in Figure 6. The poles of the TSF dike 
boundaries (Figure 6a) form a cluster indicating a 324/56 mean plane. The rose diagram of map lineaments 
carried out on UAV-derived nadiral-view orthomosaic indicates preferred E-W and NE-SW directions, with the 
former mainly observed in the lowermost part of the quarry, the latter in the topmost (Figure 6b). At greater detail, 
E-W portions are connected by NE-SW segments in a left-stepping en-echelon fashion (Figure 6m). Fractures 
hosted in the TSF dike (Figure 6c) show two main clusters of the poles, indicating mean 223/62 and 202/82 
planes. The joint direction highlighted in the rose diagram (Figure 6d) shows dominant NE-SW and secondary 
WNW-ESE directions. Poles to fractures within the host rock (Figure 6e) show two clusters with 085/82 and 
119/62 mean planes. The rose diagram (Figure 6f) indicates the main N-S and a secondary NE-SW direction. The 
bedding attitude of the limestones is barely visible within the quarry and was measured in the nearby abandoned 
quarry, with high-angle south-dipping attitudes (Figure 6g). The TSF Strombolian pyroclastic units dip at around 
40° toward SW, following the slope angle (Figure 6h).

Faults with different orientations affect the pyroclastic deposits (Figure 6i). The dominant fault directions are 
shown in the rose diagram (Figure 6j), showing dominant NE-SW and subordinate N-S and E-W directions. 
The latter crosscut the succession at the base of the TSF Strombolian deposits, recording greater displacements. 
We recognized two main fault systems, both made up of two fault sets. The first, named S1, is characterized by 
a NE-SW direction with conjugate planes and a few NW-SE directions, with dominant normal and subordinate 

Figure 2. (a) Unmanned Aerial Vehicle (UAV) wide-angle picture of the Taverna San Felice quarry showing the study area, with red boxes highlighting the zoomed 
sections. (b) Texturized UAV photogrammetric 3D model of the quarry documenting dike thickness measurements along its visible strike. (c) Field photograph taken 
broadly parallel to the dike strike in its basal portion, where it is hosted in a cataclastic limestone showing a contact aureole. (d) Zoomed photo showing an isolated 
apophysis with both lateral tips showing tapered edges. (e–g) Zoomed field photographs showing the contact aureole of (c) and the polished fault planes. (h) UAV 
picture indicating some North-dipping E-W normal faults (j), and NE-SW normal faults (i). (k) Severe jointing in the medial part of the dike showing further faulting 
and fracturing (l and m). (n) UAV photo taken in the nearby abandoned quarry showing the nearly vertical South-dipping limestone beds affected by both E-W and 
NE-SW faults. (o) Field picture of one of the numerous examples of speleothems/pseudo-karst feature. (p) Field picture showing a fining upward oolitic bed. Enlarged 
inset photographs are presented in Supporting Information S1 (Figures S5 and S6).
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Figure 3.
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transtensive kinematics (Figure 6k). The second, labeled S2 (Figure 6l), includes normal and transtensive faults 
that indicate dominant E-W and subordinate N-S directions. We also investigated the thickness distribution of  the 
dike along its strike within the host rock in the exposed section (Figures 6m and 6n). Measurements were collected 
orthogonal to the dike boundaries with a regular step of ∼1.5 m along the strike (Figure 6m), corrected for the 
average dike dip (65°) to account for the apparent thickness. The elevation of the midpoint ranges between 5 and 
80 m above the quarry base (orange points in Figure 6m, solid orange line in Figure 6n), with thickness ranging 
from ∼5 to 25 m (black dashed line; Figure 6n). The dashed blue box indicates the position of the intersection 
between the E-W and NE-SW fault zones. Reference to the corresponding host rock lithology is also indicated in 
the topmost part of Figure 6n.

4.4. Petrography

Host rock samples collected close to the contact with the TSF dike include both partially recrystallized lime-
stones with relict oolites (Figure 7a) and completely recrystallized isotropic granoblastic marbles with abundant 
fluid inclusions (Figure 7b). Samples from the TSF feeder dike were collected in the core, along the dike/host-
rock interface and from some apophyses. The samples from the dike core are weakly/moderately porphyritic 
(phenocrysts <15 vol%), poorly vesiculated lithic-free and microcrystalline, with a holocrystalline fine-grained 
groundmass (Figures 7c–7f). The alignment of clinopyroxene phenocrysts and microcrysts (and of plagioclase 
laths) defines a fluidal magmatic fabric (Figure 7e). Compared with the dike core samples, the samples from the 
dike margin display a higher vesicularity up to 30 vol% (Figure 7c), a less evident fluidal fabric and an oxidized 
reddish-brownish groundmass (Figure 7d). The primary assemblage is the same for the core and margin sample, 
composed of zoned euhedral clinopyroxene (Cpx), elongated platy plagioclase (Pl), euhedral to subhedral leucite 
(Lct), and opaque minerals (Opq). Rare nepheline and olivine microcrysts also occur, invariably showing intersti-
tial growth texture in the groundmass (Figures S3 and S4 in Supporting Information S1). A very rare occurrence 
of brown mica is reported as inclusion at cores of clinopyroxene phenocrysts (Figure S3b in Supporting Informa-
tion S1). Two different types of clinopyroxene crystals were observed (Figure S4 in Supporting Information S1). 
The Cpx1 type is represented by phenocrysts and groundmass microcrysts showing evident concentric reverse 
zoning, with yellow-to-green rounded cores (i.e., “green-core,” gc) mantled by colorless rims. They are, in turn, 
covered by outer greenish rims that show equilibrium growth with groundmass plagioclase laths (Figure S3 in 
Supporting Information S1). The second clinopyroxene type Cpx2 population is light-green homogeneous micro-
crystals in groundmass (Figure 7g).

The juvenile clasts making up the Strombolian deposits (Units 1, 2, and 3) are represented by scoria lapilli 
and spatter clasts, both being weakly porphyritic (phenocrysts <20 vol%), moderately vesiculated (vesicles 
up to 30–40 vol, %), lithic-free and with a microcrystalline to hypohyaline fine-grained isotropic groundmass 
(Figures  7j and  7k). Oxidized reddish groundmass is locally observed. The primary assemblage consists of 
leucite, plagioclase, clinopyroxene (similar to the Cpx1 type from the dike samples) and opaque minerals (Figure 
S3 in Supporting Information S1).

The gray-to-white TSF pumice lapilli layer is made of weakly porphyritic (phenocrysts < 5 vol%), highly vesic-
ulated (>60 vol, %) pumice clasts. Rare sanidine phenocrysts are set into a holohyaline groundmass (Figure 7l).

4.5. Whole-Rock Geochemistry

Rock samples were collected from the main dike, two from its core (PR8 and PR9), one from the margin, close 
to the contact with the host rock (PR1), and two from two apophyses (PR6 and PR7). Additional samples include 

Figure 3. (a) Unmanned Aerial Vehicle (UAV) oblique view of the main body of the Taverna San Felice dike, showing the sharp contact with the host rock at the base 
of the quarry. (b) UAV picture of the upper part of the dike, hosted in the Pleistocene breccia, with a well-developed jointing and an irregular contact. (c) Finger-like 
and enclosed apophysis with rounded to tapered tips. (d) Zoomed field photograph of the irregular dike-host rock contact within the Pleistocene breccia. (e, f) Close-up 
views of the dike terminations, showing significant differences between cataclastic limestone and Lower Pleistocene breccia country rocks, resulting in sharp staircase-
like contacts and wedge-like tips in the lower part of the quarry, and irregular contacts and rounded tips in an embedded apophysis in the upper part of the quarry, 
respectively. (g) Close-up view picture of calcinated carbonate enclaves with a reddish oxidized aureole. (h) “Horn,” incomplete dike linkage between overlapping 
segments almost isolating a carbonate enclave raft. (i) Zoomed field photograph showing a large carbonate enclave raft within the dike. (j) Sub-vertical peperite-
like dike, made-up of vesiculated and oxidized scoriae in a fluidized fine-lapilli carbonate-coated scoriae matrix crosscutting the cataclastic host rock. (k) Almost 
linked hook-shaped magma segment enclosing a carbonate bridge. Outcrop locations are given in Figure 2a. Enlarged inset photographs are presented in Supporting 
Information S1.
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Figure 4.
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two composite scoria clast samples (PR2 and PR3, from TFS Units 1 and 2, respectively), one spatter clast 
(PR4) and one bomb (PR5) from Unit 3 and a composite pumice lapilli sample (PP-PR) from the TSF pumice 
lapilli layer. The investigated samples were plotted on various classification and binary diagrams (Figure 8, and 
Figures S1 and S2 in Supporting Information S1), along with literature samples from the Roccamonfina volcano, 
distinguished in “pre-BLT” samples older than the BLT eruption (BLT, ∼350 ka), including Rio Rava samples 
(∼440 ka), BLT samples, “post-BLT” samples younger than the BLT (385–155 ka) and WTT (White Trachytic 
Tuffs, 310–230 ka) samples and the peripheral vents to the N and NE of the volcano edifice.

All dike samples are remarkably homogenous in composition, showing a strongly silica-undersaturated 
potassium-rich phonotephritic composition covering a very narrow compositional spectrum for all the major 
oxides (e.g., 49.2–49.5 wt% SiO2, 17.7–18.1 wt% Al2O3, 3.08–3.37 wt% MgO, 6.59–6.99 wt% K2O) and trace 
elements (e.g., 281–304 ppm Rb, 2,101–2,175 ppm Sr, 214–219 ppm Zr).

Samples from the TSF Strombolian deposit are mostly similar to the dike samples, showing a relatively homo-
geneous phonotephritic composition (e.g., 48.9–49.2 wt% SiO2, 17.3–18.8 wt% Al2O3, 3.12–3.41 wt% MgO, 
6.61–6.85 wt% K2O, 330–474 ppm Rb, 2,159–2,202 ppm Sr, 221–224 ppm Zr). One single sample from the 
bottom of the sequence (Unit 1) clearly stands out, showing a slightly less evolved basanitic/tephritic composi-
tion (e.g., 46.1 wt% SiO2, 16.9 wt% Al2O3, 4.63 wt% MgO, 5.93 wt% K2O, 271 ppm Rb, 1757 ppm Sr). Both 
the dike and the Strombolian deposit samples are comparable with literature samples from the peripheral vents 
(which include also less evolved, MgO-richer compositions from the Sesto Campano and Presenzano locations; 
Figure 1b) and are in line with the pre-BLT products of the Roccamonfina activity, though with generally higher 
CaO at given MgO content.

The sample from the TSF pumice lapilli layer shows a trachyte composition and a slightly silica-undersaturated 
potassic affinity (e.g., 61.4 wt% SiO2, 21.7 wt% Al2O3, 0.23 wt% MgO, 7.92 wt% K2O, 497 ppm Rb, 267 ppm 
Sr, 540 ppm Zr). The composition is consistent with the literature data for the Roccamonfina activity younger 
than the BLT eruption (Figure 8), being overall comparable with the composition of the samples from the WTT 
eruptions. However, the compositional field of the WTT, also overlaps with the composition of some pre-BLT 
poorly recognized eruptions for whom only a few geochemical data are available, including Rio Rava eruption 
(Rouchon et al., 2008) and the slightly younger pre-BLT eruption recognized in the distal record (i.e., MOL13 
tephra in Amato et al. (2014); not plotted in Figure 8 since no whole rock data is available).

5. Discussion
5.1. The Origin and Tectonic Significance of the TSF Dike

Several examples of peripheral monogenetic activity, accompanying the volcanic history of the Roccamonfina, 
are reported (e.g., De Rita & Giordano, 1996). Volcanic centers and dikes were also observed in the surround-
ing calcareous massifs bounding the Garigliano Graben, including; (a) the Presenzano fissure (Sgrosso & 
Aiello, 1963), (b) the Sesto Campano remnant, (c) a dike encountered in an aque duct gallery (Di Girolamo, 1972; 
Di Girolamo et al., 1991), (d) the scattered outcrops of lavas and scoria deposits at TSF (Di Girolamo et al., 1991), 
and (e) the vent reported on the northern slope of Mt Massico (Servizio Geologico d’Italia, 1968). Based on the 
petrological similarities with the pre-BLT Roccamonfina rocks, these centers were ascribed to the early activ-
ity (Epoch 1; 600–400 ka) by Di Girolamo et al. (1991). In this work, we envisage that these vents might have 
been fed by a common, regional-wide source, unrelated with the main stratovolcano, as corroborated by several 
geometric elements. In fact, structural data suggest that the orientation of the minimum stress (σ3) at the time of 
intrusion was broadly N-S trending, with the E-W oriented dike, that is, ∼45° from the respective radial direction 
from the volcano and dipping toward the north (Figure 9a). This suggests an origin from beneath the Mt. Cesima 
ridge and/or the former plain (Figure 9b) instead of a radial dike or a cone sheet propagating from beneath the 

Figure 4. (a) Field photograph showing the pumice lapilli layer (highlighted in the zoomed section) embedded within a thick pedogenized pyroclastic sequence 
overlain by the Taverna San Felice (TSF) Strombolian eruptive sequence. (b) Texturized Unmanned Aerial Vehicle (UAV) Photogrammetric 3D model of the uppermost 
excavation front showing the TSF Unit 2 with zoomed inset showing a ballistic lava block. (c) Oblique view of a texturized UAV Photogrammetric 3D model showing 
the preservation of the TSF pyroclastic units within a NW-SE trending graben. (d) Inset showing a normal fault displacing the base of the TSF Unit 1. Field picture of 
tilted, steeply dipping beds of the TSF Units 1 and 2, pervasively affected by faults. (f) Field picture of a structural contact between the TSF Unit 1 and the underlying 
paleosol. (g) Field picture of the TSF Unit 3 affected by conjugate faults producing metric displacements. (h) Zoomed field picture of a lava clast with a scoriaceous 
rim within TSF Unit 3. (i) Field picture showing a fault-controlled contact between the TSF Unit 2 and the underlying paleosol. (j) Zoomed photographs of a carbonate 
block embedded in the TSF Unit 2. (k) Field picture of an apophysis intruded within the paleosol succession. Outcrop locations are given in Figure 2a. Enlarged inset 
photographs are presented in Supporting Information S1.
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Figure 5. (a) Texturized Unmanned Aerial Vehicle Photogrammetric 3D model oblique view of the eastern part of the quarry. (b) Field picture of the welded-spatter 
ramparts. (c) Detail of a welded-spatter rampart. (d and e) Close-up view of the welded scoriaceous lapilli and spatter deposits. (f and g) Field pictures of the lava flow 
deposit, showing both shear foliation and degassing structures, respectively. (h and i) Field photograph of the lava flow fronts at the base of the slope. Outcrop locations 
are given in Figures 2a and 5a. Enlarged inset photographs are presented in Supporting Information S1.
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Figure 6.
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Roccamonfina. In the context of strong tectonic extension, the magma accumulated within crustal reservoirs 
(Figure 9a) can be forced to erupt since the negative buoyancy alone would not promote adiabatic magma uprise 
throughout the carbonate country rocks. Similar processes of magma intrusion beneath mountain ranges have 
been proposed for the nearby Matese ridge (Di Luccio et  al.,  2018) and reported for the central Apennines 
(Cardello et al., 2021).

The structural data and volcanological observations suggest that the morphostructural configuration at the time of 
the eruption was radically different from the present, highlighting that significant tectonic uplift took place after 

Figure 6. Stereographic projections of poles to lineaments, joints, faults and bedding surface (lower hemisphere, equiareal net), with corresponding contour plots, rose 
diagrams and great circles. (a and b) Contour plot and rose diagram of main dike lineaments and measured contacts with the host rock. (c and d) Contour plot and rose 
diagram of dike joints. (e and f) Contour plot and rose diagram of host rock joints. (g) Great circle plot of bedding attitude of the carbonate host rock. (h) Great circle 
plot of bedding attitude of Taverna San Felice (TSF) pyroclastic deposit. (i) Great circle and slip vector of faults in the TSF pyroclastic deposits. (j) Rose diagram of 
the fault directions. (k) Great circle and slip vector of the S1 fault system measured in the host rock. (l) Great circle and slip vector of the S2 fault system measured in 
the host rock. (m) Orthomosaic nadiral view of TSF dike with measurement transects (orange lines) and midpoints (orange circles). The Blue dashed box indicates the 
approximate location of the main fault zone. (n) Plot of midpoint topography relative to the base of the quarry (orange line; the black ticks are the measuring points) and 
corresponding dike thickness (dashed black line). Horizontal distance is calculated across the midpoints.

Figure 7. Left outcrop Unmanned Aerial Vehicle photograph shows the location of samples for panels (a–f), reporting representative plane polarized light 
photomicrographs of the investigated samples from the Taverna San Felice quarry. (a) Partially recrystallized limestone host rock with oolites; (b) Marble from the 
contact aureole; (c) Vesicle-rich dike margin with Cpx phenocrysts and Lct in the groundmass; (d) Oxidized groundmass on the dike margin; (e) Fluidal anisotropy 
defined by aligned Cpx microlites in dike core groundmass; (f) Dike core texture with Cpx, Pl and Lct microcrysts; (g) Cpx phenocryst with rounded green core; (h) 
green-core (gc) Cpx phenocryst with spongy texture; (i) green core Cpx phenocryst with mantle growth; Panels (j–l) show the petrography of the analyzed scoria, bomb 
and pumice clasts: (j) Weakly porphyritic, highly vesiculated scoria clast with zoned Cpx phenocryst; (k) weakly porphyritic and moderately vesiculated bomb clast 
with Cpx microphenocrysts and leucite (Lct) microlites; (l) highly vesiculated—poorly porphyritic pumice clast with rare sanidine (Sa) phenocrysts.
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Figure 8. (a and b) Total Alkali versus Silica (TAS; Le Bas et al., 1986) and K2O versus SiO2 (Le Maitre et al., 2002), and (c–h) selected major oxides and 
trace elements versus MgO diagrams for the investigated samples from the Taverna San Felice (TSF) magmatic dike (dike core, dike margin, apophysis) and 
TSF Strombolian deposits and pumice lapilli layer. Literature samples for the Roccamonfina volcano (Beccaluva et al., 1991; Carter et al., 1978; Conticelli 
et al., 2002, 2007, 2009; D’Antonio et al., 1996; Di Girolamo, 1968; Giannetti, 1996, 2002; Giannetti & Ellam, 1994; Giannetti & Luhr, 1983; Hawkesworth & 
Vollmer, 1979; Luhr & Giannetti, 1987; Martelli et al., 2004; Rouchon et al., 2008; Santello, 2010; Vollmer, 1976; Vollmer & Hawkesworth, 1980), and for the 
peripheral vents of TSF, Sesto Campano and Presenzano, to the NE of the volcano edifice (Di Girolamo et al., 1991) are also reported for comparison.

Figure 9. (a) Schematic cartoon showing a simplified model for the plumbing system beneath the Roccamonfina area. (b) Cartoon of the mafic recharge prior to 
the Taverna San Felice (TSF) eruption, according to the petrologic information. GC: Green Cores Cpx1 with more mafic mantle rim, and gm: groundmass Cpx2. (c) 
Simplified stratigraphic section showing the stratigraphic relationships between TSF products and Roccamonfina products. (d) Interpretative sketch illustrating the 
eruption processes emplacing the three units of the TSF Strombolian sequence.
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the fissure eruption. In fact, carbonate clasts rarely occur in the thick paleosols underlying the TSF Strombolian 
deposits, indirectly suggesting the absence of significant eroding carbonate relief. However, more robust evidence 
is given by the presence of solidified magma within the uppermost portion of the dike exposure, where ramparts 
of welded spatter clasts were observed. Indeed, magmatic dikes resemble natural examples of hydraulic fracture 
fillings, and as such, they follow Pascal's Law of fluids. In case of pressure waning during the final stages of 
the eruption, the uppermost part of the dike would be drained following the drop in the magmastatic pressure. 
Therefore, since the fracture is filled by quenched magma up to its top, it indicates that the eruption was fed from 
a similar topographic level along the fissure length, with the magma solidifying at the sub-vent elevation as soon 
as the feeding was interrupted. The spatter ramparts constituting the vent system are found ∼160 m above the 
current plain level, which suggests that a corresponding uplift should have occurred at least since the end of the 
eruption. Therefore, depending on the stratigraphic attribution of this eruption (see following section), the uplift 
history of the Cesima ridge has occurred during or after the caldera phase of the Roccamonfina volcano.

5.2. Interpretation of Petrological Data

The composition of the TSF dike and Strombolian eruptive units is overall homogeneous and weakly evolved 
(tephritic to phonotephritic), indicating that the feeding magma had likely experienced limited differentiation 
before being erupted, in resemblance to the similar behavior of other carbonate-hosted monogenetic centers (e.g., 
Volsci Volcanic Field, Marra et al., 2021). Fractional crystallization is likely the main process involved, as indi-
cated by the linear differentiation trends observed for most major oxides and trace elements (Figure 6 and Figures 
S1 and S2 in Supporting Information S1). These fall well within the larger differentiation trends defined by the 
pre-BLT Roccamonfina products, suggesting that the parental magmas from which the magmas generating the 
TSF volcanic rocks were likely similar to the least-evolved, near-primitive leucite-bearing basanitic magmas of 
the ancient volcano activity (Conticelli et al., 2009), which suggested Di Girolamo et al. (1991) to a straightfor-
ward correlation of this activity to this older phase. Nevertheless, the investigated samples display disequilibrium 
textures (i.a., green-cores Cpx, and growth mantle) typical of open-system processes such as magma mixing and/
or contamination (Streck, 2008). The concentric reverse zoning in Cpx1 crystals can be interpreted as evidence 
of growth from a surrounding mafic liquid after the initial crystallization from a more evolved melt (Figure 9b). 
The rounded green cores with dissolved to spongy margins can represent the remnants of a magma batch before 
the homogenization with a more mafic recharge (Figure 9b). Significant mass change due to country-rock assim-
ilation (e.g., Lucci et al., 2020) can be substantially excluded. The subordinate role of the open-system process 
is also testified by the very limited evidence for the ingestion of lithic clasts, which can be observed only in 
the outermost portions of the dike, close to the contact with the host rock. On the other hand, the presence of 
carbonate-bearing matrix embedding scoria clasts can be interpreted as a localized, short-lived hydromagmatic 
process due to magma intrusion in carbonate water-rich host rocks (Knuever et al., 2023).

Interestingly, the geochemical affinity of the TSF products is in line with that of the Roccamonfina pre-BLT 
products, belonging to the first period (630–400 ka) of strongly silica-undersaturated activity of the volcano. 
This is apparently in contrast with their stratigraphic position above the trachytic TSF pumice lapilli layer 
deposits that could be correlated with the WTT eruptions based on the juvenile compositions. Volcanological 
observations possibly support attribution to the latest of the WTTs unit, such as the Galluccio tuff ignimbrite 
(e.g., Giordano, 1998), which have at least two Plinian fallout deposits interstratified within the PDC deposits, 
dispersed toward the northeastern sector of the volcano. This would require some re-evaluation of the current 
petrological models for the magmatism in the Roccamonfina area, possibly indicating that the mantle sources 
responsible for the generation of strongly silica-undersaturated magmas, which dominated the oldest stages of 
activity (Conticelli et al., 2009; see Section 2), could have been reactivated in more recent times in the peripheral 
sectors of the volcano.

5.3. Stratigraphy of TSF Strombolian Eruption

The TSF Strombolian pyroclastic sequence shows a regular basal contact on the underlying paleosol, which 
embeds a pumice lapilli layer (Figure 9c). As concerns the TSF dike, it reached the surface and fed a fissure 
eruption which emplaced three eruptive units characterized by vesiculated scoria clasts and frequent carbonate 
and lava clasts as lithic ballistics. These three units have been distinguished based on deposit lithofacies and 
changes in grain size. We reconstructed the eruptive sequence as follows: Unit 1 is the result of discontinuous 
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lava fountaining, with the ejection of pyroclasts producing a stratified deposit, featuring frequent scoriaceous 
spatter clasts and carbonate bombs (Figure 9d). The presence of whitish fine-grained scoria lapilli layers possibly 
witnesses some short-lived phases of carbonate-rich water-magma interaction during eruption column pulsation. 
Unit 2 is characterized by a coarser and massive deposit, mainly composed of spatter clasts and bombs with 
ballistic carbonate blocks, interpreted as a peak of the sustained fountaining phase of the eruption with clast 
agglutination might suggesting a relatively higher emplacement temperature (Figure 9d). Episodic water-magma 
interactions are suggested by carbonate-coated finer lapilli beds. Unit 3 indicates episodic, more energetic explo-
sions (i.e., Vulcanian, Figure 9d) involving already solidified portions of the dike, as suggested by the pres-
ence of frequent, up to meter-sized, solidified lava clasts embedded into poorly vesiculated scoria material (e.g., 
Figure 4h). The reddish color of this Unit suggests enhanced oxidation due to high emplacement temperature. The 
topmost contact is poorly preserved, but locally the sequence is covered by colluvium and slope talus deposits, 
which rework the pyroclastic material. In summary, the stratigraphic data suggest the occurrence of a Strombo-
lian/fissure eruption, characterized by low-to-moderate energy lava fountaining, possibly from a series of vents 
that are only locally preserved.

5.4. The “Thickness Problem” and Estimate of the Magma Overpressure

The reconstruction of the dike geometry based on structural and field data indicates an average thickness of 5 m in 
the lower part and >25 m in some segments of the middle part, with an average thickness of ∼20 m (Figures 6m 
and 6n). Compared to other examples of magmatic dikes worldwide, from the Italian volcanoes of Etna (1.9 m, 
Scudero et al., 2019) and Somma-Vesuvius (1.2 m, Porreca et al., 2006), the Mijakejima island (Japan, 1.3 m, Geshi 
& Oikawa, 2014), the Icelandic East Rift zone (4 m, Gudmundsson, 1983) and Askja volcano (0.8 m,  Trippanera 
et al., 2018), the Oslo Rift (Norway, <2 m, Poppe et al., 2020), the Timna Igneous Complex (Israel, 1.5–32 m, Baer 
et al., 1994), and the Santorini island (Greece, 2–10 m, Drymoni et al., 2022), the thickness of TSF dike is well above 
the average. The only comparable cases are those from the East Rift and Timna Igneous Complex, which however 
exceed 3 and 1 km in length, respectively, whereas the exposed TSF dike is less than 1 km. Furthermore, a thickness 
>20 m would require significant magma overpressure (Geshi et al., 2020), but volcanological and petrographic obser-
vations suggest that the magma was only moderately vesiculated, both in the solidified lava and the ballistic juvenile 
material, likely indicating low magma overpressure, following the relationship proposed by Geshi et al. (2020).

On the other hand, the absence of diagnostic structures, such as multiple joint rows or internal chilled margins, 
indicates that such large thickness could not result from multiple magma injections (sensu Gudmundsson, 1984). 
Therefore, we propose that the unusually large thickness of the TSF dike is related to a spectrum of factors that 
include the lack of constraints at the free surface (Geshi et al., 2010, 2020), the effect of dilatant component of 
normal faults during rifting (Weismuller et  al., 2019), and the pre-existing very-low rigidity damage zone of 
NE-SW faults, that magma re-used in localized oblique opening during propagation, as suggested by the devia-
tion from E-W to NE-SW orientation, and already observed in monitored rifting events (Ruch et al., 2016).

Another concurrent factor might be found in dike-wall erosion processes during magma ascent within the host 
rock (Geshi & Oikawa, 2014), although is less common in mild-Strombolian eruptions (e.g., Morgan et al., 2008), 
and not envisaged by the few amounts of carbonate lithic clasts found within the dike.

The geometry of a magmatic dike may give clues on the overpressure needed to break the magma reservoir and 
reach the surface. A representative dike thickness (w) of 5 m, has been measured in the lowermost part of the 
quarry. According to the distribution of welded deposits and direct outcrop measurements, the strike-dimension 
(L) of the dike is inferred to be 1,000 m, resulting in an aspect ratio L/w of 200, within the literature-estimated 
ranges of 10 2–10 3 (Gudmundsson, 1983). The relationship between the overpressure of magma filling a dike in 
an elastic medium (Po) and the dike aspect ratio L/w in a two-dimensional elliptical crack is defined as follows:

𝑃𝑃𝑂𝑂 =
𝑤𝑤𝑤𝑤

2𝐿𝐿(1 − 𝑣𝑣2)
 (1)

where E is the Young's modulus and v is the Poisson's ratio (Gudmundsson, 2020; Pollard & Segall,  1987). 
Assuming E equal to 10 10 Pa and v 0.25, Po is ∼26 × 10 6 Pa.

However, for a dike that leaves the magma reservoir and propagates into the upper crust, the magmatic overpres-
sure is also defined as follows:

𝑃𝑃𝑂𝑂 = 𝑃𝑃𝑒𝑒 + (𝜌𝜌𝑟𝑟 − 𝜌𝜌𝑚𝑚)𝑔𝑔𝑔 + 𝜎𝜎𝑑𝑑 (2)
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where Pe is the magmatic excess pressure, which is equal to the in situ tensile strength of the host rock. The buoy-
ancy term is a function of the density difference between the host rock ρr and the magma ρm, multiplied by gravity 
acceleration g and depth h. The tectonic differential stress σd is defined as σd = σ1–σ3 in the considered crustal 
layers. Magmatic excess pressure Pe usually ranges between 3 and 10 × 10 6 Pa (Gudmundsson, 2012), assuming 
an average ρr of 2,400 kg m −3 for the limestones and basement rocks and ρm of 2,650 kg m −3 for a basanite/teph-
rite magma, with g 9.81 m s −2, and h given by the dip-dimension of the dike, (i.e., the depth of the magma cham-
ber) at 10 4 m. Therefore, the buoyancy term is negative at ca. −24 × 10 6 Pa, thus strongly hampering magmatic 
overpressure Po. Many observations indicate that tectonic differential stress σd may be the main factor controlling 
the dike intrusion, ranging between 40 and 47 × 10 6 Pa (remarkably similar to σd values necessary to produce 
normal faulting in extensional settings, e.g., Fossen, 2016), implying that the Pe alone would not be sufficient to 
drive the eruption. In fact, the low viscosity of the magma that can be inferred based on the geometry of the tips 
(e.g., wedge-like) and the moderately/low vesicularity is in contrast with the significant thickness of the dike. 
Indeed, following Geshi et al. (2020), the dike aspect ratio may help distinguish between magmas of high and low 
vesicularity, thus resulting in corresponding explosivity eruptions. Higher vesicularity was only observed in the 
main dike along the contact with the host rock and around carbonate enclaves. Hence, low confining pressure due 
to tectonic extension is likely the main factor controlling the “passive” dike intrusion (sensu Cervelli et al., 2002).

5.5. Outcrop-Scale Magma Intrusion Mechanism

Regarding the intrusion mechanism of the TSF dike, two possible processes could be suggested. Pure-opening 
deformation (Mode I) seems to be dominant in the bottom part of the exposed dike, where the host rock is made 
by the Lower Cretaceous limestones (Figure 1c), as testified by the sharp contacts and wedge-like tapered tips 
(Figure 3). Moreover, the observed peperite-like dikes (Figure 3j) may be interpreted as preserved fluid-filled 
cavity tips of propagating apophysis (Poppe et al., 2020 and references therein) where localized magma-water 
interactions occurred (Westerman et  al.,  2017). Blunt geometries of some tips, irregular contacts, the larger 
thickness of the dike toward the tips, as well as plastic deformation of the low-rigidity material indicate a 
shear-dominated deformation (Mode II), as similarly observed in the literature (Dering et al., 2019; Martinez-Poza 
& Druguet, 2016). This is the case where the host rock consists of cataclastic limestones, like in the uppermost 
part of the outcrop (Figure 4). Thus, we hypothesize that the low-confining pressure related to near-surface dila-
tant fractures, the deterioration of the host rock due to cataclasis, and the thermo-chemical interaction (e.g., decar-
bonation and dissolution) concurrently played a role in the dike intrusion. Similar processes are envisaged also in 
the Volsci Volcanic Field (Marra et al., 2021). In particular, the effect of a pre-existing fault zone in near-surface 
conditions likely affected dike propagation, as hinted by the field evidence that the direction of the dike deviated 
from E-W to NE-SW, since σn to the fault plane is lower than σ3 (e.g., Gudmundsson, 2011). In a general perspec-
tive, this highlights the pivotal role that volcano-tectonic setting, such as fault-related fracture zones, may have 
during magma propagation, with potential repercussions on vent location (e.g., González, 2022). Finally, it seems 
likely that the intrusion of the dike was accompanied by the pervasive circulation of CO2-rich fluids, as evidenced 
by the pseudo-karst features observed both in the TSF quarry and in the nearby areas. Indeed, heating of the host 
rock could have promoted carbonate dissolution in circulating waters, followed by calcite re-precipitation in open 
fractures and porosities, similar to intrusion-related geothermal systems (Stimac et al., 2015).

5.6. Evolutionary Model

In Figure 10, we summarize the volcano-tectonic evolutionary stages that can be inferred for the TSF dike intru-
sion, starting from a flatter initial morphology (Figure  10a) in which only a small relief is present above a 
NE-SW and NW-SE oriented flank, the latter not represented in the figure. NE-SW faults affect the entire Mt 
Cesima succession, including Mesozoic carbonates and Lower Pleistocene breccia, and are formerly covered 
by altered Roccamonfina ignimbrite and fallout deposits. The dike intrusion started during an N-S extensional 
pulse (Figure 10a), promoting magma chamber rupture and magma propagation from beneath the former plain. 
The main intrusion mechanism is a pure-opening mode I (Figure 10b). As magma reaches the surface along a 
E-W oriented permeable fractures, with sub-surficial mixed-mode intrusion mechanism (Figure 10c), and several 
smaller apophyses. With the onset of the eruption, the aquifer circulation is altered as denoted by thermal springs 
(Figure  10c) witnessed by the speleothem features. The along-strike propagation of the dike intercepted the 
pre-existing NE-SW oriented fault zone (Figure 10d), whose greater permeability promoted lateral propagation 
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Figure 10. Cartoon showing the proposed volcano-tectonic evolution of the southern sector of Mt Cesima ridge. See the text 
for full explanations.
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and dike thickening. As the eruption continued, a compound spatter rampart system built up (Figure 10e), concur-
rently with the emission of pyroclasts and subordinate lava flows. Following the eruption, potentially concur-
rently with the caldera period of Roccamonfina, the uplift of the Mt. Cesima ridge started to dismantle the vent 
(Figure 10f), and locally exposed underlying deposits. In the final stage of the model, the uplift of the Mt. Cesima 
ridge had elevated the spatter system midway along the flank, as well as the Lower Pleistocene breccia, found at 
higher elevations (Figure 10g). Reworked deposits develop a less-steep flank.

6. Conclusions
In this work, we studied one of the most impressive outcrops of a magmatic dike intruded within carbonates in 
central-southern Italy, merging structural, stratigraphic, and petrological analyses. The tephritic TSF dike, broadly 
E-W oriented, was intruded within the southern edge of the Mt Cesima ridge, northeast of the Roccamonfina 
volcano. The dike intrusion was promoted by an important extensional event during the Middle Pleistocene that 
affected the Tyrrhenian margin of the southern Apennines and could be either younger than pre-BLT eruptions 
(∼440 ka) or of the WTT Plinian eruptions (310–230 ka) of Roccamonfina volcano. The dike fed an erup tion 
over a ∼1 km long fissure, which emplaced a composite pyroclastic eruptive sequence up to 10 m thick. The 
combination of near-surface dilatant cracks and the intersection of preexisting fault damage zones account for the 
large thickness of the dike. Furthermore, the structural position of these volcanics suggests that they are closely 
related to the Mt. Cesima uplift, since these vent structures and the Lower Pleistocene breccia are currently found 
at over 160 m above the plain level, indicating that the whole ridge has undergone significant uplift after the dike 
intrusion episode.

Our data suggest that the eruption of the TSF dike and associated pyroclastics were sourced by a magma reser-
voir uncorrelated to that of the Roccamonfina volcano, highlighting the leading role of the extensional tectonics 
in this area during the Middle Pleistocene. Further analysis, including new geochronological data, is necessary 
to provide an unambiguous temporal framework for the eruption, which could be presently ascribed to both the 
pre-caldera and the post-caldera periods of Roccamonfina activity. The occurrence of a peripheral feeder dike and 
its subsequent exhumation and uplift suggests regional-scale extensional events that controlled the localization 
of volcanism in this area of the Tyrrhenian margin of the southern Apennines. A similar mechanism could be 
possibly depicted also for the onset of volcanism in the Campania Plain, where the Campi Flegrei caldera, Ischia 
and Somma-Vesuvius developed. Detailed structural data also point out that dike propagation can be strongly 
influenced by fault fracture networks that can alter the trajectory beyond the control of local stress fields.
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