
1. Introduction
Drought is one of the most complex recurring natural disasters, defined by a deficiency of precipitations that 
causes prolonged water scarcity. Failure to manage drought risk has the potential to have dire consequences for 
people, livelihoods, economy and ecosystems. During the summer of 2022, Italy faced the most severe drought 
in the last two centuries, where the dry conditions were related to several drivers, the most relevant being the 
changes in the precipitation regime, resulting in a decline of snow fraction and snowmelt, and an increasing evap-
oration rate (Montanari et al., 2023). The drought significantly impacted the largest Italian river, the Po, whose 
level has significantly decreased from the summer of 2021 to the autumn of 2022 (Figure 1). In summer 2022 
several regions declared a state of emergency, and drinking water has been rationed in hundreds municipalities 
in northern Italy.

The effects of droughts are particularly dangerous in the Po river basin, which has an extension of ∼74⋅10 4 km 2, 
for various reasons: drought threatens the crops in the Po Valley, which are around 40% of the total food produced 
in Italy, and impacts energy production, since a reduced river flow causes deficiencies in hydropower generation 
and cooling of thermal plants (Boyko et al., 2022).

Due to global warming, more frequent, longer and severe droughts are likely to occur in the future (Boyko 
et al., 2022). In order to evaluate the best policies to address the problems caused by water scarcity, it is crucial 
to measure and monitor variations in terrestrial water storage (TWS). For drought monitoring, in fact, changes or 
anomalies in TWS provide direct observations of total water availability, complementing model-based measures 

Abstract We study vertical ground displacement time series from Global Navigation Satellite System 
(GNSS) stations to measure deformation associated with hydrological drought in the Po river basin. Focusing 
on interannual trend changes, rather than seasonal (annual) components, we found a clear spatially correlated 
deformation signal that is temporally (anti)correlated with changes in the Po river level and the SPEI-12 
drought index, with stations moving upward during periods of river/index level decrease and vice versa. In the 
2021–2022 time span, which culminated in the most severe drought of the last two centuries, we estimate the 
amount and spatial distribution of water loss in the basin and its surroundings. Excluding the seasonal signals, 
between January 2021 and August 2022, the GNSS stations underwent uplift, up to 7 mm, which corresponds 
to ∼70 Gtons of water loss. Compared to Global Land Data Assimilation System and Gravity Recovery and 
Climate Experiment estimates, GNSS results show a similar temporal evolution of water content but a more 
heterogeneous distribution of values. We show that continuous GNSS networks provide an effective way to 
monitor multiannual trend changes in water storage even in small water basins and serve as a reliable indicator 
of drought severity.

Plain Language Summary This study looks at the way the ground moves up and down in the Po 
river basin, in northern Italy, using Global Navigation Satellite System (GNSS) stations. We measure how much 
water was lost during a big drought in the area, which occurred from January 2021 to August 2022. During 
this time interval, the GNSS stations show that the ground mostly moved upwards, which means that water was 
being lost. Besides the annual water storage variations, we estimate that about 70 billion tons was lost during 
that time, in agreement with other ways of measuring terrestrial water variations. This study shows that GNSS 
stations can be an alternative way to measure how much water is being lost during drought in small areas and 
common vertical displacement signals are a good approximation of drought indexes.
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such as drought severity indices. Taking into account the anomalies of both precipitation and potential evapo-
transpiration, Vicente-Serrano et al.  (2010) proposed the Standardized Precipitation-Evapotranspiration Index 
(SPEI) drought index. However, meteorological drought indices, such as the SPEI, and other drought indices, like 
the Standardized Precipitation Index or the Palmer Drought Severity Index, estimate droughts based on precipi-
tation and temperature anomalies, so they do not allow to quantify TWS anomalies. TWS, in general, is hard to 
quantify because it is the sum of many components, including groundwater, surface water, vegetation and soil 
moisture, ice and snow. Piezometers, for example, effectively monitor groundwater level variations but not the 
other water storage components, and evaluating the water volume changes from them is not straightforward. On 
the other hand, the Global Land Data Assimilation System (GLDAS) model provides daily variations of the soil 
moisture and snow water equivalent, but it can not take into account the groundwater stored more than 2 m below 
the surface (Argus et al., 2014; Jiang et al., 2021). Geodetic techniques have a distinctive role in monitoring the 
hydrological cycle, as they are the sole means of directly observing TWS anomalies and they can function across 
local to global scales. TWS anomalies can be estimated at global scale by using Gravity Recovery and Climate 
Experiment (GRACE) measurements, which allow modeling water storage changes by inverting the spatiotempo-
ral variations of the Earth's gravity field. Unlike GLDAS, GRACE accounts for all the components of TWS, but it 
provides a spatial resolution of ∼300 km, which is insufficient for monitoring smaller watersheds (Fu et al., 2015; 
Knappe et al., 2019), particularly in mountainous regions where TWS gradients are steep, as highlighted in Argus 
et al. (2017). Moreover, due to the monthly nature of GRACE observations they are not suitable for assessing 
water availability and flood risk during and following brief, intense precipitation events.

TWS variations are indirectly detectable not only through gravity data but also by measuring ground deformation 
through geodetic observations: an increase of the water content, in the absence of poroelastic processes, causes 
an increasing load on the Earth surface, which subsides elastically; while when the water content decreases the 
crust moves upward because of the water content decrease. Global Navigation Satellite System (GNSS) measure-
ments, for example, provide daily measurements of ground displacements, at mm precisions, that can be used to 
measure ground deformation associated with TWS variations and then to quantify the severity of a hydrological 
drought. Argus et al. (2014) inferred the spatial distribution of the TWS seasonal amplitude, expressed in terms 
of equivalent water height (EWH), by inverting the seasonal vertical displacements of the ground in California, 
while Ferreira et al. (2019) performed a similar analysis considering the entire South America. Fu et al. (2015) 
estimated TWS variations from GNSS measurements of vertical displacement in Washington and Oregon, find-
ing that the largest seasonal variations of water content were localized in the mountain areas.

GNSS displacements have been inverted also to characterize hydrological droughts: Jiang, Hsu, Yuan, Tang, 
et  al.  (2022) produced a drought severity index, in the contiguous United States, based on GNSS-measured 
hydrological loading displacements, which was used also by Zhu et al. (2023) over the Yunnan Province in China.

Carlson et  al.  (2022) computed TWS variations in California using a joint inversion method combining the 
GRACE products with the results of the inversion of GNSS data, taking advantage of the dense spatial distribu-
tion of GNSS data together with GRACE's ability to provide regional closure of the water budget. While most of 
the above mentioned studies dealt with seasonal fluctuations of TWS, here we focus on multi-annual trends. We 
model displacement time-series looking for trend changes in the vertical component, with the goal of studying 
vertical trend changes caused by interannual TWS variations, similarly to Borsa et al. (2014), focusing in particu-
lar on the most recent and severe 2021–2022 drought.

In Section 2 we describe the GNSS data used and the methods applied to analyze the vertical displacement 
time series; in Section 3 we show the relationship between geodetic and hydrological observations and provide 
a quantitative estimation of the evolution of the TWS. In Section 4 we discuss the results, in light of alternative 
estimates of water storage variations.

2. Data and Methods
We consider ∼180 daily GNSS vertical ground displacement time series from January 2010 to June 2023 of 
continuous stations located in the Po river basin (see Figure 1). We also include in the analysis ∼280 stations 
located within 1° of the catchment limits in order to reduce inversion artifacts near the boundaries of the study 
region (Fu et al., 2015). This is part of a larger geodetic solution encompassing the whole Euro-Mediterranean 
region, obtained following the approach detailed in Serpelloni et  al.  (2022). We remove the long-term linear 
trend from the time series using the Median Interannual Difference Adjusted for Skewness (MIDAS) estimator 
(Blewitt et al., 2016) and filter the contribution of the non-tidal atmospheric loading (NTAL), as suggested by 
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White et al. (2022), since they can produce displacements of several millimeters at daily weekly timescales that 
can interfere with the hydrological signal. The NTAL-induced vertical displacements are evaluated from the 
daily 0.5°  ×  0.5° gridded solution of the Earth-System-Modeling Group at the German Research Center for 
Geosciences (Dill & Dobslaw, 2013) and its contribution in each site is calculated considering the nearest grid 
point where the displacements associated with NTAL are computed.

The resulting GNSS vertical displacements time series are then analyzed using a trend filtering approach, which 
performs an extensive analysis using a L1 norm regularization model to identify the seasonal components, offsets 
and linear trend changepoints in the GNSS time series (Wu et al., 2018). The piecewise trend is estimated by 
minimizing the weighted sum objective function:

(1∕2)‖𝑦𝑦 − 𝑥𝑥 − 𝑠𝑠 −𝑤𝑤‖2
2
+ 𝜆𝜆‖𝐷𝐷(2)𝑥𝑥‖1 + 𝜌𝜌‖𝐷𝐷(1)𝑤𝑤‖1 

Figure 1. (a) Map of the SPEI-12 values at August 2022. (b) The study area: the black line represents the Po river (thick blue 
line) basin; the dots show the positions of the Global Navigation Satellite System stations used in the analysis, the reds are the 
ones inside the basin, the gray the ones outside; the yellow diamond shows the location of the Po level measurement point. (c) 
Po river level changes.
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where y is the original time series, w indicates the level component associated with the offsets, s is the seasonal 
term, ‖.‖1 represents the L1 norm and D (n) are the n-th difference matrix defined as in Wu et al. (2018). λ and ρ 
are positive parameters controlling the knots of the estimation trend and the frequency of level shifts, respectively 
(we choose λ = 2000 and ρ = 80). Figure 2 shows an example of output of this analysis. Focusing on transients 
and interannual variations, we only consider the extracted piecewise trends, not the seasonal terms having annual 
and semi-annual frequencies. For some stations level changes (i.e., offsets) not associated with tectonic events or 
equipment changes are highlighted, which mostly represent fast variations in ground displacements (see Figure 2 
in 2012). For this reason, in the further steps we consider the piecewise trend as the sum of the trend and level 
components. As it can be seen in Figure 2, there is an increase in uplift starting from 2021, which is a common 
feature in GNSS stations within the Po river basin. Figure 2e shows the stacking of the vertical piecewise trend 
time-series for all stations analyzed, which is performed by averaging, for each epoch, the residuals of all the time 
series resulting by removing the mean and linear trend terms. In order to better characterize the spatial distribu-
tion of this deformation signal, we use a multivariate statistical approach, similarly to what is used for tectonic 
deformation studies (Gualandi et al., 2014; Kositsky and Avouac, 2010).

Figure 2. Example of Global Navigation Satellite System time series decomposition performed using the L1-norm trend 
filtering approach. In (a) the black dots represent the original time series, the red line the model obtained as the sum of the 
trend (b), level (c) and seasonal component (d). Panel (e) shows the result of the stacking on the piecewise vertical trends of 
all the stations inside the Po river basin.
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3. Results
3.1. Comparison Between Geodetic and Hydrological Measurements

We adopt an approach similar to the one described in Jiang, Hsu, Yuan, Feng, et al. (2022), but using as input of 
a principal component analysis (PCA) the piecewise vertical trends described in the previous section rather than 
the raw time-series that also include the seasonal terms. We decompose the data set using one PC in order to 
identify the most important common signal of the GNSS stations in the Po basin and retrieve its spatial pattern 
(i.e., amplitude and sign). However, the first principal component (PC1) obtained performing a PCA using two 
components is almost identical to the PC1 obtained performing a one-component decomposition, both in terms of 
temporal evolution (Figure S1 in Supporting Information S1) and spatial distributions (Figure S2 in Supporting 
Information S1).

The temporal evolution of PC1 (Figure 3a) well resembles the common mode signal resulting from a stacking of 
the vertical trend time-series for all stations (Figure 2e and Figure S3 in Supporting Information S1). However, 
the advantage of the PCA is to provide the spatial information on the displacement amplitudes (Figure S2a in 
Supporting Information S1).

We compare the temporal evolution of PC1 with the SPEI-12 index value, averaged over the Po river basin, and 
with the Po river level measurements provided by the Regional Agency for Environmental Protection of Veneto 
region (ARPAV; https://wwwold.arpa.veneto.it/arpavinforma/bollettini/dati-storici, Last Access: 24-07-2023). 
The SPEI-12 quantifies the drought level of the previous 12 months, considering the precipitation and potential 
evapotranspiration anomalies over 12 months (Figure 1a), which is the most suitable time scale for interannual 
drought monitoring over a decade (Enyu et al., 2023).

The Po river level time series is filtered adopting the same approach used for the GNSS time-series, retaining only 
the piecewise trend component (Figure S4 in Supporting Information S1) and not the seasonal ones. On the other 
hand, SPEI-12 time series does not contain annual variations, since the index is computed as an anomaly over 
12 months, then the time series has not been filtered. Figure 3a shows that the geodetic (sign inverted), climatic 
and hydrological time series are highly temporally correlated, so that geodetic uplift is observed coeval with 
the drop of the Po river level and the SPEI-12 index, while the geodetic subsidence is observed coeval with the 
increase of the Po river level and SPEI-12 index, respectively. In particular, the geodetic time series is character-
ized, besides the minimum in August 2022, by minima also in winter 2012 and 2017, which corresponds to peri-
ods of maximum ground uplift and to known major drought episodes (Baronetti et al., 2020). While for the 2012 
and 2022 minima there is a good correspondence between GNSS, Po river level and SPEI-12, for the 2017 there 
is some discrepancy, which is discussed later in Section 4. Focusing on the time interval covering the last drought, 
we observe that the three de-seasoned time series start decreasing from the beginning of 2021 to mid-2022, after 
which they invert their sign. As a result, we set the time limits of the drought as 2021.00 and 2022.58 (1 January 
2021–1 August 2022), which is represented as the yellow area in Figure 3a.

The vertical displacements associated with PC1 from 2021.00 to 2022.58 are shown in Figure 3b. Most of the 
stations show positive values (uplift), in accordance with the hypothesis that in dry periods, when the water load 
is reduced, the GNSS stations record uplift, while in wet periods the water load increases causing a downward 
motion of the Earth's surface. We find that this is not true for 22 sites, which show an opposite behavior (black 
triangles in Figure 3b). Maximum uplift, of the order of 7 mm, is observed in the south-eastern portion of the 
basin and in the northern portion of the Po basin, which correspond to uplift rates, in the considered 2 years, that 
are much faster than the long-term ones (e.g., Pintori et al., 2022).

3.2. Inversion of Vertical Ground Displacements

The displacements associated with PC1 in the 2021.00–2022.58 time span are inverted using the approach 
described in Jiang, Hsu, Yuan, Feng, et al. (2022), which estimates water storage variations assuming an elastic 
response of the Earth to the hydrological load. In order to avoid misinterpretation of the spatial variations of the 
water storage changes, we exclude from the inversion the 22 stations showing negative vertical displacements 
(i.e., subsidence, Figure S5 in Supporting Information S1) in the investigated time interval that, following Carlson 
et al. (2022), are possibly affected by poroelastic processes, causing vertical displacements in the opposite direc-
tion compared to the elastic ones. We also exclude from the inversion the GNSS stations that have no observations 
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recorded in the 2021.00–2022.58 time-span (i.e., do not register displacements potentially associated with the 
last drought episode investigated in this work). The total number of stations used for the inversion is then 257.

The relationship between the vertical displacements measured by GNSS 𝐴𝐴 𝐴𝐴 and the water mass load 𝐴𝐴 𝐴𝐴 , expressed 
as EWH, is

𝑥𝑥 = 𝐺𝐺𝐺𝐺 

where G is the Green's function matrix using load Love numbers of the preliminary reference earth model 
(PREM) (Dziewonski & Anderson, 1981) as commonly used in many recent works (e.g., Carlson et al., 2022; 
Jiang et al., 2021). The final solution for the daily estimates of EWH changes u is

𝑢𝑢 =
(
𝐺𝐺𝑇𝑇𝐺𝐺 + 𝛼𝛼2𝐿𝐿𝑇𝑇𝐿𝐿

)−1
𝐺𝐺𝑇𝑇𝑥𝑥 

Figure 3. (a) Comparison between the PC1 temporal evolution, the SPEI-12 index and the Po river level. Since PC1 is 
obtained from detrended Global Navigation Satellite System time series, Po river level and SPEI-12 have also been detrended 
for consistency. (b) Vertical displacements associated with PC1 during the 2021.00 (January 2021)–2022.58 (August 2022) 
time interval (yellow panel). The dashed line represents the boundary of the Po river basin, extended by 1°. Black triangles 
indicate the 22 stations excluded because they show negative displacements; black crosses represent sites with more than 75% 
of missing data and black diamonds the stations with no records after 2021.0.
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where L is the Laplacian smoothing matrix and α is the smoothing factor controlling the relative weight between 
model roughness and data misfit.

We invert the displacements associated with PC1 to estimate EWH on a 0.25° × 0.25° grid. We choose α = 0.0030, 
which is the minimum in the line showing the relation between the sum of squared residuals from cross-validation 
(CVSS) and the smoothing factor (Figure S6 in Supporting Information S1), and use four neighbor points for 
calculating the Laplacian matrix during the least-squares inversion.

Figure 4 shows the inverted spatial distribution of water loss, expressed as EWH in mm for the specific time 
interval shown in yellow in Figure 3. It is worth considering that the temporal evolution of EHW resembles that 
of PC1 in Figure 3, as the approach adopted assumes that the deformation source (in this case the decrease or 
increase of hydrological loading) remains static in space, which is a possible limitation of the multivariate statis-
tical approach (see also Gualandi et al., 2016; Kositsky & Avouac, 2010).

A checkerboard test using synthetic inputs is performed to show the ability of the inversion method and the distri-
bution of the GNSS stations to resolve spatial features of water mass variation in a checkerboard pattern, where 
each mass has dimensions of 1° × 1° and an EWH change of 300 mm (Figure 5a). The inversion performance 
is evaluated estimating the agreement dR between each grid point of the checkerboard synthetic model within 
the Po river basin and the results of the inversion (Figure 5a) using the following equation, which estimates the 
percentage of accuracy:

dR = 1 −
|input − output|

max(input)
 

where input is the value of the checkerboard synthetic model, output the value resulting from the inversion and 
max(input) the maximum value of input, that is, 300 mm. The mean value of dR computed over all the grid points 
is 0.70, then we can conclude that the accuracy of our inversion, at the resolution of 1° × 1°, is 70%. By using 
smaller patches we find a rapid degradation of the spatial accuracy (Figures 5a and 5b).

It is also worth noting that the spatial distribution of the GNSS station is not uniform, so that the spatial features 
are not resolved with the same quality over the study area. For example, no data are available in the Switzerland 
territory, so that the EWH spatial resolution in the north-western portion of the study area is much poorer than 
the center of the Po basin, where there is a high GNSS station density.

Figure 4. Water loss occurred in the 2021.00–2022.58 time interval in terms of equivalent water height from the inversion of 
the vertical Global Navigation Satellite System signal.
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4. Discussion
We compare the EWH obtained by inverting the GNSS displacements (EWHgnss) with surface water content 
(SWC) from GLDAS and with Liquid Water Equivalent Thickness (LWE) from GRACE.

The GLDAS products provide the soil moisture content in the first 2 m of the subsurface, the snow depth water 
equivalent, the plant canopy surface water and the root zone soil moisture (Rodell et al., 2004). We consider as 
SWC the sum of these four components, which are provided as 0.25° × 0.25° gridded data set and 3-hr tempo-
ral resolution, which are transformed into daily time series by averaging the 3-hourly time series to make them 
consistent with the daily resolution of EWHgnss.

LWE is computed using the NASA Jet Propulsion Laboratory (JPL) GRACE and GRACE-FO RL06 Mascon 
solutions (Watkins et al., 2015), but we also show the results obtained using other GRACE products in Supporting 
Information S1. While the data are here analyzed in a 0.25° × 0.25° grid for consistency with SWC and EWHgnss, 
the current resolution is 300 km. The temporal resolution of LWE data is monthly and data are missing in corre-
spondence with the gap between the GRACE and GRACE-FO missions, which results in a 11 months gap, from 
July 2017 to May 2018.

Figure 5. Checkerboard test using synthetic data. (a) Comparison between the checkerboard synthetic model (left) and the results using the inversion method (right) 
considering a 1.00° spatial resolution. (b) Same as (a) but considering a 0.75° spatial resolution.
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The GLDAS products allow an estimate of the water content with a better nominal spatial resolution of EWHgnss, 
even though the disadvantage is that GLDAS does not take into account groundwater. Importantly, while the 
GLDAS nominal spatial resolution is 0.25°, its effective resolution may be different due to the assimilation 
process and the interpolation techniques used to generate gridded data sets. Furthermore, the nominal spatial 
resolution of GLDAS may not represent the true spatial variability of soil moisture in a context such as the Po 
river basin, characterized by high topographic gradients. The correct determination of the soil types in regions 
characterized by heterogeneous landscapes, elevation and land cover, in fact, is complex and this can lead to 
errors in soil moisture modeling (Bi et al., 2016).

LWE takes into account all TWS components, but with a spatial and temporal resolution much poorer than 
EWHgnss. We point out that while EWHgnss is inverted on a 0.25° × 0.25° grid, the results of the checkerboard test 
show that the actual spatial resolution is ∼1°, corresponding to about 100 km (Text S1 in Supporting Informa-
tion S1). This is consistent with the resolution achieved by Zhang et al. (2016) in the Yunnan region of China and 
by Fu et al. (2015) in Washington and Oregon. The high spatial density of the southern California GNSS network 
allowed Carlson et al. (2022) to reach a spatial resolution of 80 km, while when considering larger study areas as 
in Borsa et al. (2014) and in Ferreira et al. (2019) the spatial resolution decreases to 200–300 km.

We remove the annual and semiannual components in SWC time series using the same approach used for GNSS 
displacement and Po river level measurements (see Figure S7 in Supporting Information S1), and apply a PCA 
using one PC on the trend components. Because of the monthly temporal resolution of the GRACE products, 
LWE data are analyzed using a slightly different strategy: we remove the annual and semiannual components from 
the original time series instead of estimating the trend components, as done for GNSS and GLDAS time-series.

As for the GLDAS and GNSS data sets, the filtered time series are analyzed with a PCA with one PC. Figure 6 
shows the temporal evolutions of the basin-averaged water content expressed as EWHgnss, SWC from GLDAS 
and LWE from GRACE, while Figure 7 shows the spatial distributions of water loss from January 2010 to August 
2022 (2021.00–2022.58, yellow box in Figure 6), estimated from GLDAS and GRACE, respectively. Figure 6 
shows that the drought time interval, defined in Section 3.1 and shown in Figure 3a considering the SPEI-12, Po 
level and GNSS data, is also consistent in SWC and LWE time series from GLDAS and GRACE, respectively. 
It is worth noting that both SWC and LWE show local minima in 2012 and 2017, with the SWC just a little bit 
delayed in 2017 compared to the other two products. Considering also the SPEI-12 and the Po river level temporal 
evolutions shown in Figure 3a, we observe that all the data set considered shows local minima in 2012, 2017 and 
2022. The only exception is the SPEI-12, which has a local maximum at the beginning of 2017 and a minimum at 
the end of 2017. The disagreement between the SPEI-12 temporal evolution and the other products is significant 
only in this specific time interval, while the overall agreement is good.

Figure 6. Comparison among the temporal evolutions of the regional-averaged water content expressed as EWHgnss (red), 
SWC (purple) and Liquid Water Equivalent Thickness (green). Since equivalent water height is obtained from Global 
Navigation Satellite System detrended data; both Global Land Data Assimilation System and Gravity Recovery and Climate 
Experiment data have also been detrended for consistency.
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The temporal evolution of the basin-averaged water content estimated by the three models is very similar 
(Figure 6), suggesting that the water storage variations may be dominated by its superficial content, captured by 
GLDAS. The spatial distribution of the water loss occurring in the 2021.00–2022.58 time interval (Figure 7) is 
different depending on the considered data set; nonetheless, averaging on the Po basin surface, we obtain water 
loss values of the order of about 69, 73, and 90 Gtons from GNSS, GLDAS, and GRACE, respectively in this 
period.

Figure S8 in Supporting Information  S1 shows a comparison in terms of regional-averaged water loss and 
spatial distribution of LWE thickness change in the 2021.00–2022.58 time interval obtained using the Gravity 
Information Service of the German Research Center for Geosciences (GRAVIS, Boergens et al., 2020) and the 
Center for Space Research of the University of Texas (CSR, Save, 2020; Save et al., 2016) GRACE products. 
Regional averaged water loss values according to CSR and GRAVIS products are 139 and 124 Gtons, respec-
tively. However, because of a higher temporal variability of LWE values from different GRACE products, and in 

Figure 7. Water loss occurred in the 2021.00–2022.58 time interval in terms of (a) SWC from Global Land Data 
Assimilation System and (b) Liquid Water Equivalent Thickness from Gravity Recovery and Climate Experiment.
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particular of the CSR one, the water loss estimation may vary significantly with small changes in the considered 
time interval.

The poor spatial resolution of GRACE measurements makes LWE spatial distribution more uniform than esti-
mates from GLDAS and GNSS and unable to detect possible concentrations of water loss at the scale of the Po 
river basin. Both SWC and EWHgnss show the largest values in the southern portion of the basin, in the northern 
Apennines and Maritime and Ligurian Alps.

Differently from SWC, EWHgnss negative anomalies are also large in the northern sector of the Po basin. In 
particular, in the Lombardian Alps and Prealps, in agreement with the SPEI-12 map (Figure 1), and in the 
Central Alps, where there might be a side effect with the Adige river basin, where geodetic uplift is among 
the highest of the study area (Figure 3). The reason for the spatial discrepancies between SWC and EWHgnss 
estimates can be a consequence of the GLDAS limitations in resolving the spatial distribution of the water 
loss in the mountain sectors, in the presence of high topographic gradients and diverse use of the soil, as in 
the investigated area. It is also worth considering that GNSS vertical displacements can contain signals that 
might cause an incorrect estimation of the water content. In fact, the inversion is made on the displacements 
reconstructed by the PC1. This statistical approach allows us to identify a common displacement signal 
that is assumed to have the same temporal evolution in all the GNSS stations, but different amplitudes. The 
amplitude associated with this signal might be imprecise, especially in GNSS sites characterized by noisy 
time-series or for stations affected by more localized processes such as water pumping and other anthropo-
genic activities.

Importantly, estimates of water loss values depend on the Green's function used to invert the displacements 
data. Several authors (e.g., Argus et al., 2017; Chanard et al., 2014), point out that a gravitating, spherical Earth 
model is preferred in this context, since non gravitating, half-space models, can understate elastic vertical 
displacements up to a factor of 2.5. Moreover, the results are not very sensitive to the Earth's structure: assum-
ing two different models for the Earth, PREM and the Gutenberg Bullen A Earth structure (Farrell, 1972), 
Argus et al. (2017) find that the difference between the displacements caused by a 450 km × 60 km load is 
only 4%.

5. Conclusions
We analyze vertical ground displacements from GNSS stations located in the Po river basin, a significant and 
important industrial and agricultural district at European level. We find that inter-annual and multi-annual changes 
in vertical trends clearly respond to meteo-climatic forcing and serve as a reliable, near real-time, independent 
approximation of drought indexes. Differently from meteorological drought indicators, the measure of vertical 
displacements allows estimating the severity of hydrological drought in terms of spatial and temporal evolution 
of water volume loss, which is crucial for managing the problem of water scarcity. During the last dry period that 
has affected the study region, from the beginning of 2021 to the summer of 2022, we observe a regional geodetic 
uplift signal. This uplift reaches values of up to 7 mm and exhibits spatial variations across the area. We interpret 
this phenomenon as a result of variable water loss and subsequent reduced load, enabling us to estimate the spatial 
distribution of EWH. We estimate that approximately 70 Gtons of water was lost in the Po river basin from 2021 
to August 2022. This estimate aligns with values obtained from GLDAS but is lower than the estimate derived 
from GRACE. Additionally, while the temporal evolution of EWH estimated by GNSS, GLDAS, and GRACE 
shows similarities, the spatial patterns differ significantly. EWHgnss, despite a formal resolution of 100 × 100 km, 
due to a decrease in GNSS stations availability from 2021, still offers the best estimates of water loss in the Po 
basin.

Our findings are also relevant for studying active tectonics and geodynamics. The Apennines and Alps, in fact, 
exhibit long-term uplift signals resulting from various multiscale processes (Sternai et al., 2019). Accounting 
for the hydrological origins of trend variations is crucial to improve accuracy and prevent misinterpretation of 
transient signals or biases in velocity estimates, especially in case of short time-series.

Future works aim at integrating GNSS with InSAR observations in order to improve the spatial resolution of 
EWH to a few tens of meters, as demonstrated by Ghorbani et al. (2022), and to collect and analyze in situ meas-
urements, such as water well, when available. This integration would enhance our understanding of the phenom-
enon and provide more detailed information on water loss and recharge dynamics.
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Data Availability Statement
The EWH is estimated by inverting the GNSS data using the GNSS2TWS software (https://github.com/
jzshhh/gnss2tws). The code gnss2ewh_main.m was slightly changed and is available at https://doi.org/10.6084/
m9.figshare.24551167.v1. The trend filtering on the time series is performed using the L1tool software 
(https://github.com/wudingcheng/l1tool). The stacking of the GNSS time series is performed using the GNSS_TS_
NRS code (https://github.com/CL-Xiong/GNSS-TS-NRS, He et al., 2020). GLDAS data was downloaded from 
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary?keywords=GLDAS (Beaudoing and 
Rodell, 2020) and available at https://doi.org/10.6084/m9.figshare.24551167.v1 for this study region (GLDAS_
NOAH025_until202303daily.nc4). GRACE data provided by the Center for Space Research of the University of 
Texas (CSR) was downloaded from http://www2.csr.utexas.edu/grace (https://doi.org/10.15781/cgq9-nh24) and 
available at https://doi.org/10.6084/m9.figshare.24551167.v1 for this study region (CSR_GRACE_6,13,43,47.
nc). GRACE/GRACE-FO Mascon data provided by the NASA Jet Propulsion Laboratory (JPL) are availa-
ble at http://grace.jpl.nasa.gov and at https://doi.org/10.6084/m9.figshare.24551167.v1 for this study region 
(GRCTellus.JPL.200204_202305.GLO.RL06.1M.MSCNv03_PoBasin_0.25.nc). GRACE data provided by the 
Gravity Information Service of the German Research Center for Geosciences (GRAVIS) are available at https://
doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS and at https://doi.org/10.6084/m9.figshare.24551167.v1 for 
this study region (GRAVIS-3_PoBasin_0.25.nc). The data set of the displacements caused by the atmospheric 
loading are downloaded from http://rz-vm115.gfz-potsdam.de:8080/repository/  (LSDM-based model). SPEI-
12 data was downloaded from https://spei.csic.es/map/maps.html#months=1#month=0#year=2023GNSS. The 
data set used to generate Figure 1a is spei12_full, while Figure 3a is generated using spei12_PoBasin025.nc. 
Both are available at https://doi.org/10.6084/m9.figshare.24551167.v1. GNSS time series data are available from 
https://doi.org/10.6084/m9.figshare.24486841.v1. The maps have been made using the GMT software (Wessel 
et al., 2019). The Po river level measurements are provided by the Regional Agency for Environmental Protection 
of Veneto region (ARPAV; https://wwwold.arpa.veneto.it/arpavinforma/bollettini/dati-storici) and available at 
https://doi.org/10.6084/m9.figshare.24551167.v1 (Po_level_updated23_L1tool_output_2023.txt). The Principal 
Component Analysis on GRACE and GLDAS data is performed using the vbICA code (https://data.mendeley.
com/datasets/n92vwbg8zt/1) (Gualandi & Pintori, 2020). The MIDAS software is available at http://geodesy.unr.
edu/MIDAS_release/. The repository https://doi.org/10.6084/m9.figshare.24551167.v1 also contains: 

 -  the code (filter_NTAL.m) and data (ESMGFZ_NTAL_cf_v1.0_2010_202307_daily_full.nc) to remove the 
effect of the atmospheric loading from the time series;

 -  the polygons of the Po river basin (Po_River_Basin_Italy.gpx) and of the Po river basin extended by 1° 
(PO_basin_buffer_1.0.dat);

 -  the code display_results.m, which allows us to generate the figures (or input data for the figures) 1c, 2e, 3b, 4, 
6, 7, and S8. This code should be placed in the same directory of gnss2ewh_main.m. Please note that the code 
reads four .mat files containing the results of the PCA decomposition on GRACE and GLDAS data. These files 
are also available in this repository;

 -  the function checkerboard_test.m, which is a modification of the function checkerboard_test.m available in 
https://github.com/jzshhh/gnss2tws. This new function allows to generate the inputs for plotting Figure 5.

References
Argus, D. F., Fu, Y., & Landerer, F. W. (2014). Seasonal variation in total water storage in California inferred from GPS observations of vertical 

land motion. Geophysical Research Letters, 41(6), 1971–1980. https://doi.org/10.1002/2014GL059570
Argus, D. F., Landerer, F. W., Wiese, D. N., Martens, H. R., Fu, Y., Famiglietti, J. S., et al. (2017). Sustained water loss in California's mountain 

ranges during severe drought from 2012 to 2015 inferred from GPS. Journal of Geophysical Research: Solid Earth, 122(12), 10559–10585. 
https://doi.org/10.1002/2017JB014424

Baronetti, A., González-Hidalgo, J. C., Vicente-Serrano, S. M., Acquaotta, F., & Fratianni, S. (2020). A weekly spatio-temporal distribution of 
drought events over the Po Plain (North Italy) in the last five decades. International Journal of Climatology, 40(10), 4463–4476. https://doi.
org/10.1002/joc.6467

Beaudoing, H., Rodell, M., & NASA/GSFC/HSL. (2020). GLDAS Noah land surface model L4 3 hourly 0.25 x 0.25 degree V2.1, Greenbelt, 
Maryland, USA. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/E7TYRXPJKWOQ

Bi, H., Ma, J., Zheng, W., & Zeng, J. (2016). Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan 
Plateau. Journal of Geophysical Research: Atmospheres, 121(6), 2658–2678. https://doi.org/10.1002/2015jd024131

Blewitt, G., Kreemer, C., Hammond, W. C., & Gazeaux, J. (2016). MIDAS robust trend estimator for accurate GPS station velocities without step 
detection. Journal of Geophysical Research: Solid Earth, 121(3), 2054–2068. https://doi.org/10.1002/2015JB012552

Boergens, E., Dobslaw, H., & Dill, R. (2020). COST-G GravIS RL01 continental water storage anomalies. V. 0005. GFZ Data Services. https://
doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS

Acknowledgments
This work was supported by the INGV 
Departmental Strategic Project MUSE. 
We thank GNSS data providers (see 
Serpelloni et al. (2022) for references), 
and in particular private networks 
providers. Some of the figures are created 
using the Generic Mapping Tools (GMT) 
software (Wessel et al., 2019).

 23335084, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
003326 by Ingv, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/jzshhh/gnss2tws
https://github.com/jzshhh/gnss2tws
https://doi.org/10.6084/m9.figshare.24551167.v1
https://doi.org/10.6084/m9.figshare.24551167.v1
https://github.com/wudingcheng/l1tool
https://github.com/CL-Xiong/GNSS-TS-NRS
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary?keywords=GLDAS
https://doi.org/10.6084/m9.figshare.24551167.v1
http://www2.csr.utexas.edu/grace
https://doi.org/10.15781/cgq9-nh24
https://doi.org/10.6084/m9.figshare.24551167.v1
http://grace.jpl.nasa.gov
https://doi.org/10.6084/m9.figshare.24551167.v1
https://doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS
https://doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS
https://doi.org/10.6084/m9.figshare.24551167.v1
http://rz-vm115.gfz-potsdam.de:8080/repository/
https://spei.csic.es/map/maps.html#months=1#month=0#year=2023GNSS
https://doi.org/10.6084/m9.figshare.24551167.v1
https://doi.org/10.6084/m9.figshare.24486841.v1
https://wwwold.arpa.veneto.it/arpavinforma/bollettini/dati-storici
https://doi.org/10.6084/m9.figshare.24551167.v1
https://data.mendeley.com/datasets/n92vwbg8zt/1
https://data.mendeley.com/datasets/n92vwbg8zt/1
http://geodesy.unr.edu/MIDAS_release/
http://geodesy.unr.edu/MIDAS_release/
https://doi.org/10.6084/m9.figshare.24551167.v1
https://github.com/jzshhh/gnss2tws
https://doi.org/10.1002/2014GL059570
https://doi.org/10.1002/2017JB014424
https://doi.org/10.1002/joc.6467
https://doi.org/10.1002/joc.6467
https://doi.org/10.5067/E7TYRXPJKWOQ
https://doi.org/10.1002/2015jd024131
https://doi.org/10.1002/2015JB012552
https://doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS
https://doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS


Earth and Space Science

PINTORI AND SERPELLONI

10.1029/2023EA003326

13 of 13

Borsa, A. A., Agnew, D. C., & Cayan, D. R. (2014). Remote Hydrology. Ongoing drought-induced uplift in the Western United States. Science, 
345(6204), 1587–1590. https://doi.org/10.1126/science.1260279

Boyko, O., Reggiani, P., & Todini, E. (2022). Post-processing climate projections of precipitation for the Po river basin: Will Italy’s North become 
water-constrained? Hydrology Research, 53(11), 1414–1427. https://doi.org/10.2166/nh.2022.063

Carlson, G., Werth, S., & Shirzaei, M. (2022). Joint inversion of GNSS and GRACE for terrestrial water storage change in California. Journal of 
Geophysical Research: Solid Earth, 127(3), e2021JB023135. https://doi.org/10.1029/2021JB023135

Chanard, K., Avouac, J. P., Ramillien, G., & Genrich, J. (2014). Modeling deformation induced by seasonal variations of continental water in 
the Himalaya region: Sensitivity to Earth elastic structure. Journal of Geophysical Research: Solid Earth, 119(6), 5097–5113. https://doi.
org/10.1002/2013JB010451

Dill, R., & Dobslaw, H. (2013). Numerical simulations of global-scale high-resolution hydrological crustal deformations. Journal of Geophysical 
Research: Solid Earth, 118(9), 5008–5017. https://doi.org/10.1002/jgrb.50353

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. 
https://doi.org/10.1016/0031-9201(81)90046-7

Enyu, D., Chen, F., Jia, H., Wang, L., & Yang, A. (2023). Spatiotemporal evolution and hysteresis analysis of drought based on rainfed-irrigated 
Arable Land. Remote Sensing, 15(6), 1689. https://doi.org/10.3390/rs15061689

Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics and Space Physics, 10(3), 761–797. https://doi.
org/10.1029/rg010i003p00761

Ferreira, V., Ndehedehe, C., Montecino, H., Yong, B., Yuan, P., Abdalla, A., & Mohammed, A. (2019). Prospects for imaging terrestrial water 
storage in South America using daily GPS observations. Remote Sensing, 11(6), 679. https://doi.org/10.3390/rs11060679

Fu, Y., Argus, D. F., & Landerer, F. W. (2015). GPS as an independent measurement to estimate terrestrial water storage variations in Washington 
and Oregon. Journal of Geophysical Research: Solid Earth, 120(1), 552–566. https://doi.org/10.1002/2014JB011415

Ghorbani, Z., Khosravi, A., Maghsoudi, Y., Mojtahedi, F. F., Javadnia, E., & Nazari, A. (2022). Use of InSAR data for measuring land subsid-
ence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran. Scientific Reports, 12(1), 13998. https://doi.org/10.1038/
s41598-022-17438-y

Gualandi, A., & Pintori, F. (2020). vbICA code. Mendeley Data, V1. https://doi.org/10.17632/n92vwbg8zt.1
Gualandi, A., Serpelloni, E., & Belardinelli, M. E. (2014). Space-time evolution of crustal deformation related to the Mw 6.3, 2009 L’Aq-

uila earthquake (central Italy) from principal component analysis inversion of GPS position time-series. Geophysical Journal International, 
197(1), 174–191. https://doi.org/10.1093/gji/ggt522

Gualandi, A., Serpelloni, E., & Belardinelli, M. E. (2016). Blind source separation problem in GPS time series. Journal of Geodesy, 90(4), 
323–341. https://doi.org/10.1007/s00190-015-0875-4

He, X., Yu, K., Montillet, J.-P., Xiong, C., Lu, T., Zhou, S., et al. (2020). GNSS-TS-NRS: An open-source MATLAB-based GNSS time series 
noise reduction software. Remote Sensing, 12(21), 3532. https://doi.org/10.3390/rs12213532

Jiang, Z., Hsu, Y.-J., Yuan, L., Feng, W., Yang, X., & Tang, M. (2022). GNSS2TWS: An open-source MATLAB-based tool for inferring daily 
terrestrial water storage changes using GNSS vertical data. GPS Solutions, 26(4), 114. https://doi.org/10.1007/s10291-022-01301-8

Jiang, Z., Hsu, Y.-J., Yuan, L., & Huang, D. (2021). Monitoring time-varying terrestrial water storage changes using daily GNSS measurements 
in Yunnan, southwest China. Remote Sensing of Environment, 254, 112249. https://doi.org/10.1016/j.rse.2020.112249

Jiang, Z., Hsu, Y. J., Yuan, L., Tang, M., Yang, X., & Yang, X. (2022). Hydrological drought characterization based on GNSS imaging of verti-
cal crustal deformation across the contiguous United States. The Science of the Total Environment, 823, 153663. https://doi.org/10.1016/j.
scitotenv.2022.153663

Knappe, E., Bendick, R., Martens, H. R., Argus, D. F., & Gardner, W. P. (2019). Downscaling vertical GPS observations to derive watershed-scale 
hydrologic loading in the northern Rockies. Water Resources Research, 55(1), 391–401. https://doi.org/10.1029/2018WR023289

Kositsky, A. P., & Avouac, J. P. (2010). Inverting geodetic time series with a principal component analysis-based inversion method. Journal of 
Geophysical Research, 115(B3), B03401. https://doi.org/10.1029/2009JB006535

Montanari, A., Nguyen, H., Rubinetti, S., Ceola, S., Galelli, S., Rubino, A., & Zanchettin, D. (2023). Why the 2022 Po River drought is the worst 
in the past two centuries. Science Advances, 9(32), eadg8304. https://doi.org/10.1126/sciadv.adg8304

Pintori, F., Serpelloni, E., & Gualandi, A. (2022). Common-mode signals and vertical velocities in the greater Alpine area from GNSS data. Solid 
Earth, 13(10), 1541–1567. https://doi.org/10.5194/se-13-1541-2022

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., et al. (2004). The global land data assimilation system. Bulletin 
of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381

Save, H. (2020). CSR GRACE and GRACE-FO RL06 Mascon solutions v02. https://doi.org/10.15781/cgq9-nh24
Save, H., Bettadpur, S., & Tapley, B. D. (2016). High-resolution CSR GRACE RL06 mascons version 2. Journal of Geophysical Research: Solid 

Earth, 121(10), 7547–7569. https://doi.org/10.1002/2016JB013007
Serpelloni, E., Cavaliere, A., Martelli, L., Pintori, F., Anderlini, L., Borghi, A., et  al. (2022). Surface velocities and strain-rates in the 

Euro-Mediterranean region from massive GPS data processing. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.907897
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., et al. (2019). Present-day uplift of the European Alps: Evaluating 

mechanisms and models of their relative contributions. Earth-Science Reviews, 190, 589–604. https://doi.org/10.1016/j.earscirev.2019.01.005
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized 

precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., & Landerer, F. W. (2015). Improved methods for observing Earth's time variable 

mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671. https://doi.
org/10.1002/2014JB011547

Wessel, P., Luis, J. F., Uieda, L., Scharoo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The generic mapping tools version 6. Geochemistry, 
Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515

White, A. M., Gardner, W. P., Borsa, A. A., Argus, D. F., & Martens, H. R. (2022). A review of GNSS/GPS in hydrogeodesy: Hydrologic 
loading applications and their implications for water resource research. Water Resources Research, 58(7), e2022WR032078. https://doi.
org/10.1029/2022WR032078

Wu, D., Yan, H., & Yuan, S. (2018). L1 regularization for detecting offsets and trend change points in GNSS time series. GPS Solutions, 22(3), 
88. https://doi.org/10.1007/s10291-018-0756-4

Zhang, B., Yao, Y., Fok, H. S., Hu, Y., & Chen, Q. (2016). Potential seasonal terrestrial water storage monitoring from GPS vertical displace-
ments: A case study in the lower three-rivers headwater region, China. Sensors, 16(9), 1526. https://doi.org/10.3390/s16091526

Zhu, H., Chen, K., Hu, S., Liu, J., Shi, H., Wei, G., et al. (2023). Using the global navigation satellite system and precipitation data to establish the 
propagation characteristics of meteorological and hydrological drought in Yunnan, China. Water Resources Research, 59(4), e2022WR033126. 
https://doi.org/10.1029/2022WR033126

 23335084, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023E

A
003326 by Ingv, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1126/science.1260279
https://doi.org/10.2166/nh.2022.063
https://doi.org/10.1029/2021JB023135
https://doi.org/10.1002/2013JB010451
https://doi.org/10.1002/2013JB010451
https://doi.org/10.1002/jgrb.50353
https://doi.org/10.1016/0031-9201(81)90046-7
https://doi.org/10.3390/rs15061689
https://doi.org/10.1029/rg010i003p00761
https://doi.org/10.1029/rg010i003p00761
https://doi.org/10.3390/rs11060679
https://doi.org/10.1002/2014JB011415
https://doi.org/10.1038/s41598-022-17438-y
https://doi.org/10.1038/s41598-022-17438-y
https://doi.org/10.17632/n92vwbg8zt.1
https://doi.org/10.1093/gji/ggt522
https://doi.org/10.1007/s00190-015-0875-4
https://doi.org/10.3390/rs12213532
https://doi.org/10.1007/s10291-022-01301-8
https://doi.org/10.1016/j.rse.2020.112249
https://doi.org/10.1016/j.scitotenv.2022.153663
https://doi.org/10.1016/j.scitotenv.2022.153663
https://doi.org/10.1029/2018WR023289
https://doi.org/10.1029/2009JB006535
https://doi.org/10.1126/sciadv.adg8304
https://doi.org/10.5194/se-13-1541-2022
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.15781/cgq9-nh24
https://doi.org/10.1002/2016JB013007
https://doi.org/10.3389/feart.2022.907897
https://doi.org/10.1016/j.earscirev.2019.01.005
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1002/2014JB011547
https://doi.org/10.1002/2014JB011547
https://doi.org/10.1029/2019GC008515
https://doi.org/10.1029/2022WR032078
https://doi.org/10.1029/2022WR032078
https://doi.org/10.1007/s10291-018-0756-4
https://doi.org/10.3390/s16091526
https://doi.org/10.1029/2022WR033126

	
          Drought-Induced Vertical Displacements and Water Loss in the Po River Basin (Northern Italy) From GNSS Measurements
	Abstract
	Plain Language Summary
	1. Introduction
	2. Data and Methods
	3. Results
	3.1. Comparison Between Geodetic and Hydrological Measurements
	3.2. Inversion of Vertical Ground Displacements

	4. Discussion
	5. Conclusions
	Data Availability Statement
	References


