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A B S T R A C T   

Volcanic ash cloud detection is a crucial component of volcano monitoring and a valuable tool for investigating 
ash cloud dispersion, which is paramount for enhancing the safety of human settlements and air traffic. The latest 
generation of high-resolution satellite sensors (e.g., EUMETSAT MSG Spinning Enhanced Visible and InfraRed 
Imager, SEVIRI) provides radiometric estimates for monitoring volcanic clouds on a global scale efficiently and 
timely. However, these radiometric intensities are not always discriminative enough to detect volcanic ash clouds 
due to the spectral limitations of these instruments and the complex nature of some volcanic clouds, such as low 
concentration resulting in an averaged detected radiometric estimate comparable to the background. Here, we 
evaluate the ability of a Convolutional Neural Network (CNN) to detect and track the dispersion of volcanic ash 
clouds into the atmosphere, exploiting a variety of spatial and spectral intensity information mainly coming from 
SEVIRI Ash RGB images. We train a deep CNN model through transfer learning, and demonstrate that the trained 
models overcome the limitations of algorithms based solely on pixel intensity, whether traditional or machine 
learning, resulting in increased performance compared to other methods. We illustrate the operation of this 
model using the paroxysmal explosive events that occurred at Mt. Etna between 2020 and 2022.   

1. Introduction 

Volcanic ash clouds are generated by violent explosive eruptions, 
releasing hot silicate fragments called pyroclasts and volcanic gases 
(Self, 2006). They can rise to heights of up to 50 km as heat is transferred 
from the hot pyroclasts to entrained air from the surrounding atmo
sphere (Gilbert and Sparks, 1998; Pyle, 1998). Once aloft, they can drift 
for thousands of kilometers from the eruptive vent, depending on wind 
speed and the wind shear, and can persist in the atmosphere for an 
extended period. Common components found in a volcanic cloud 
include ash particles, tiny fragments of volcanic rocks and mineral 
crystals, and gases such as water vapor, sulfur dioxide (SO2), and carbon 
dioxide (CO2) (Durant et al., 2009; Hunton et al., 2005). These com
ponents can pose various hazards to both the environment and human 
health. Ash particles released into the atmosphere can damage aircraft 
engines, impact the human respiratory system if inhaled, and affect 
infrastructure when heavy accumulations occur (Chen and Zhao, 2015; 
Gudmundsson, 2011; Wilson et al., 2012). Furthermore, a high level of 
SO2 in a volcanic cloud can contribute to the formation of acid rain when 
SO2 combines with water vapor and may cause acute respiratory 

symptoms among people living near an active volcano (Ishigami et al., 
2008; Williams-Jones and Rymer, 2015). Observing and tracking vol
canic clouds are crucial to enhance the safety of human settlements and 
air traffic. 

Nowadays, Earth Observation (EO) sensors onboard orbiting satel
lites are the primary means widely used by operational monitoring 
centers, such as the Etna Volcano Observatory (EVO), to forecast the 
movement of volcanic ash clouds. However, to accomplish this, they first 
need to know that an eruption has occurred (Pavolonis et al., 2018; 
Scollo et al., 2009; Webley et al., 2009). The detection of volcanic clouds 
involves identifying the areas affected by the presence of volcanic ash 
and gases emitted during a volcanic eruption. Sawada (1987) was the 
first to investigate volcanic clouds using satellite images, although the 
detection rate was quite low, probably due to the interference from 
meteorological clouds and the limitations of the instruments of that time 
(Sawada, 1996). Automatically detecting volcanic clouds using satellite 
remote sensing data is challenging yet crucial due to their potential 
impact on aviation, human health, and the environment. In this context, 
an automatic detection model with high accuracy is essential for iden
tifying volcanic clouds band retrieving important information such as 
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Volcanic Cloud Top Height, their components (ash, SO2, ice, etc.) and 
their quantities, spread direction, and distance covered. 

Classical methods for detecting volcanic clouds rely on establishing 
thresholds to discriminate pixels within a volcanic cloud. The widely 
used technique, known as the “Brightness Temperature Difference” 
(BTD), was developed by Prata (Prata, 1989a, 1989b). This method is 
based on the difference between the brightness temperature (BT) of two 
images acquired at slightly different wavelengths within the 8 to 12 μm 
range of the infrared spectrum. Volcanic ash clouds predominantly 
consist of silicate particles, and their interaction with infrared radiation 
differs from that of ice and water, the primary components of conven
tional meteorological clouds. Specifically, in the presence of volcanic 
ash, the BT measured above the ash cloud increases as the wavelength 
extends in the infrared region of the electromagnetic spectrum, resulting 
in negative values of BTD. Conversely, this trend reverses for layers of 
ice or water particles, commonly found in meteorological clouds, lead
ing to positive values of BTD. This method is also called “Reverse Ab
sorption” due to this characteristic. However, in cases of mixtures, the 
capability to distinguish between components diminishes proportion
ally, and, in some cases, becomes ineffective, such as when ash particles 
are entirely enveloped by ice (Rose et al., 1995). 

The evolution of machine learning (ML) has significantly enhanced 
its potential as a powerful tool for developing automatic models to 
detect volcanic clouds. ML algorithms have become more sophisticated 
and versatile, enabling complex pattern recognition and feature 
extraction (Amato et al., 2022; Corradino et al., 2021). Over the last 
decade, various ML techniques have been applied to detect volcanic 
clouds using satellite data. For instance, a neural-network-based model 
was applied to Sentinel-3 SLSTR (Sea and Land Surface Temperature 
Radiometer) to detect volcanic ash plumes (Petracca et al., 2022). 
Additionally, supervised techniques like support vector machines (SVM) 
have proven effective for this task. SVMs perform well in high- 
dimensional feature spaces and are less prone to overfitting, making 
them advantageous when dealing with limited labeled data (Torrisi, 
2022; Torrisi et al., 2022). ML models can be implemented for real-time 
monitoring of volcanic cloud detection, providing timely alerts for 
aviation safety and hazard assessment. For example, VACOS (Volcanic 
Ash Cloud properties Obtained from SEVIRI) is a new retrieval algorithm 
that utilizes SEVIRI (Spinning Enhanced Visible and Infrared Imager) 
data and artificial neural networks to identify volcanic clouds and 
retrieve parameters such as mass column concentration, cloud top 
height, and the effective particle radius (Piontek et al., 2021). 

ML approaches have demonstrated promise in detecting volcanic 
clouds due to their ability to learn complex patterns from data. Super
vised ML requires large, high-quality labeled datasets for training, which 
can be challenging to obtain due to the relatively infrequent occurrence 
of volcanic eruptions. Additionally, volcanic cloud detection datasets 
can be highly imbalanced, with a small number of positive examples 
(volcanic cloud) and a large number of negative examples (non-volcanic 
cloud or background). Imbalanced datasets can lead to biased model 
predictions, favoring the majority class while neglecting the minority 
class. Thus, specialized techniques are required to address the imbalance 
(Dempsey et al., 2022; Ardid et al., 2023). Effective feature engineering 
may also be necessary to extract relevant information from remote 
sensing data, although this process can be time-consuming. From this 
perspective, deep learning (DL) enables the development of deep neural 
networks capable of learning intricate relationships in data, reducing the 
need for manual feature engineering (Amato et al., 2023). DL models 
can capture local spatial and higher order features crucial for detecting 
subtle volcanic features in imagery. Recently, we successfully applied 
Deep Convolutional Neural Networks (CNNs) to ASTER satellite thermal 
images, allowing us to learn volcanic spatial local features and detect 
subtle volcanic thermal anomalies comparable in intensity with the 
background (Corradino et al., 2023). These techniques typically require 
a huge volume of labeled data when trained from scratch. However, a 
pre-trained deep learning model trained on large datasets to accomplish 

a specific task and can be fine-tuned for another task, i.e. the weights 
learned by the pre-trained model are used as starting values for training 
a new model. This technique, called transfer learning, leverages 
knowledge learned from vast datasets to improve model performance 
with limited labeled data. Nonetheless, DL presents some limitations, 
such as the complexity of the model architecture and its black box na
ture, meaning that the models yield output without explicitly revealing 
the underlying decision-making process. This complexity makes inter
pretability difficult (Li et al., 2022). Nevertheless, different approaches 
have been proposed to enhance CNN interpretability (Zhang et al., 
2018). 

Here, we developed a new deep learning segmentation model to 
improve the accuracy of volcanic cloud detection in satellite images. 
Image segmentation involves partitioning an image into multiple 
coherent regions, commonly used for identifying objects and bound
aries. Our model is a hybrid of U-Net (Shelhamer et al., 2017) and 
VGG16 (Simonyan and Zisserman, 2014), incorporating transfer 
learning to simplify the U-Net architecture, thus speeding up training 
and reducing computing resources. This hybrid model is tailored to 
process and analyze SEVIRI Ash RGB images. After training on labeled 
images and validation on new data, it can be applied to any new SEVIRI 
Ash RGB image. We implemented this model using Google Colab, a 
cloud-based platform facilitating the deployment of models on distrib
uted computing resources, ideal for processing large datasets efficiently. 
Subsequently, we applied the model to analyze a long sequence of 
paroxysmal events at Mt. Etna volcano (Italy) between 2020 and 2022. 

2. Satellite data 

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is a 
pivotal instrument aboard the geostationary weather satellite Meteosat 
Second Generation (MSG), managed by the European Organization for 
the Exploitation of Meteorological Satellites (EUMETSAT). Operating 
from a geostationary orbit, SEVIRI is a multispectral imaging radiometer 
that furnishes continuous, high-resolution observations of the Earth’s 
atmosphere and surface. Its primary mission is to monitor weather and 
climate-related phenomena across Europe and Africa. SEVIRI captures 
data across various spectral bands, including visible, near-infrared, and 
infrared wavelengths. With 12 spectral channels covering a broad range 
of wavelengths, it facilitates the observation of diverse meteorological 
and environmental features. SEVIRI delivers high spatial resolution 
images, with a pixel size of approximately 3 km at the sub-satellite point. 
Continuously scanning the Earth’s full disk, SEVIRI captures images 
every 15 min in both the visible and infrared spectra (Aminou, 2002). 

Access to SEVIRI images is facilitated through the EUMETSAT API in 
Python, enabling interaction with the EUMETSAT Data Store. This 
interface empowers users to search for products based on collections and 
apply filters based on data attributes, region of interest, timeliness, and 
coverage. Specifically, we utilized the MSG Level 1.5 Image Data 
product, which encompasses image data corrected for all undesired 
radiometric and geometric effects, geolocated using a standardized 
projection, and calibrated and radiance-linearized. The Level 1.5 im
ages, provided in a geostationary projection (GEOS Projection), were 
georeferenced to the EPSG:4326—WGS 84 reference system. 

3. Methods 

Image segmentation, a fundamental field in computer vision, aims to 
group similar regions of an image into distinct class labels, extending 
beyond simple classification to precisely delineate the object bound
aries. A basic segmentation technique is thresholding, which categorizes 
pixels into two classes based on a predefined threshold. Pixels above the 
threshold are assigned one class (often represented as 1), while those 
below the threshold are assigned the other (typically represented as 0). 
Thresholding is particularly effective when there is a clear difference in 
pixel values between the two classes, allowing for straightforward 
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selection of the threshold. However, its performance can be limited in 
scenarios where manual selection of threshold values is required. To 
overcome this limitation and automate the threshold selection process, 
machine learning can be employed. Previously, we developed a Support 
Vector Machine (SVM) model for automatically detecting volcanic 
clouds using SEVIRI Ash RGB images, relying on spectral characteristics 
of the data. However, this approach may mistakenly classify parts of 
meteorological clouds as volcanic clouds due to spectral similarities. To 
address this issue, Convolutional Neural Networks (CNNs) provide a 
valuable solution. Their ability to automatically learn spatial hierarchies 
of features from data enhances their accuracy in discriminating complex 
patterns, such as distinguishing between volcanic and meteorological 
clouds. Even when spectral characteristics are closely matched, CNNs 
excel in identifying subtle spatial differences, making them advanta
geous for accurate cloud classification. 

We have developed a hybrid DL algorithm in Google Colab to auto
matically detect and recognize the volcanic ash clouds from SEVIRI Ash 
RGB images. This approach utilizes thermal infrared satellite observa
tions not only for detecting volcanic clouds based on the presence of 
thermal anomalies at a specific time, but also for identifying numerous 
volcanic features based on their thermal and geometric characteristics. 
After training the model on labeled samples and validating its perfor
mance on new images, it can be applied to new unlabeled images. Its 
ability to generalize and make predictions on unseen data makes it 
suitable for near real-time monitoring of volcanic clouds. Our schematic 

framework involves three main steps: (a) Input Features Preparation, (b) 
Segmentation, and (c) Performance Evaluation, as illustrated in Fig. 1. 
These three steps are described in more detail below. 

3.1. Input feature preparation 

We collected SEVIRI images of Sicily, covering the area from 36.5 to 
39.5 degrees north latitude and from 12 to 18 degrees east longitude. 
This region encompasses Mt. Etna and its surrounding areas, which are 
frequently affected by volcanic clouds following explosive eruptions. We 
used SEVIRI Ash RGB images as input features of the proposed hybrid 
architecture. The SEVIRI Ash RGB image is an RGB (Red, Green, Blue) 
composite created by combining the IR8.7, IR10.8, and IR12.0 channels. 
This combination produces a false-colour image that highlights the 
presence of volcanic ash and sulfur dioxide (SO2) resulting from volcanic 
eruptions. The construction of this product involves combining the 
brightness temperature (BT) of the three SEVIRI thermal infrared (TIR) 
channels and enhancing each channel within specific BT ranges 
(EUMETSAT SEVIRI Ash RGB Guide). An Ash RGB image is obtained as 
follows:  

• Red Channel: BT12.0 − BT10.8 (range [− 4 K, +2 K]);  
• Green Channel: BT10.8 − BT8.7 (range [− 4 K, +5 K]);  
• Blue Channel: BT10.8 (range [243 K, 303 K]). 

Fig. 1. General scheme representing the three main steps of the hybrid deep learning (DL) algorithm: (a) Input Features Preparation, (b) Segmentation and (c) 
Performance Evaluation. 
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The red channel is particularly effective for ash detection, utilizing 
the inverse of the “reverse absorption” method. This means that the 
Brightness Temperature Difference (BTD) is negative for thin ice clouds 
and positive for thin ash clouds. Consequently, thin volcanic ash tends to 
exhibit a strong reddish colour, while meteorological clouds contribute 
minimally. The green channel highlights the presence of SO2 by 
comparing the SO2 absorption band at 8.7 μm with the non-absorbing 
10.8 μm band. Lastly, the 10.8 μm channel in the blue spectrum pro
vides a high contrast background for ash detection and eliminates the 
influence of cumulonimbus clouds. In summary, areas of volcanic ash 
clouds generally appear red when little SO2 is present and yellow when 
significant SO2 is present. In the absence of ash, SO2 appears green. 

To enhance the visual discrimination of different features within a 
SEVIRI Ash RGB image, we applied decorrelation stretch. This technique 
removes the high correlation commonly found in multispectral datasets 
to produce a more colorful composite image. The decorrelation stretch 
process requires three bands for input and is based on three main steps 
(Campbell, 1996):  

• The original bands are first transformed into their principal 
components;  

• The transformed variables are then stretched separately;  
• The inverse of the principal component transformation is applied. 

Each image initially has dimensions 100x100x3 and is then resam
pled to 500x500x3 to match the input dimensions required by our ar
chitecture. These images are then saved in PNG format and are ready for 
use by the DL model. Training and testing datasets are created by 
gathering images containing extended volcanic clouds with character
istic shapes, as it is crucial to include representative samples of the ob
ject we aim to segment. The eruptive events at Mt. Etna considered for 
the training and testing datasets are as follows: 21 February 2021, 22 
February 2021, 28 February 2021, 4 March 2021, 12 March 2021, 9 
August 2021, 10 February 2022, and 21 February 2022. Detailed 
description of these eruptive episodes are provided in our precedent 
work (Torrisi et al., 2023). A comprehensive list of all 66 paroxysms 
occurring at Mt. Etna between 2020 and 2022 is described by Calvari 
and Nunnari (2022). For each event, the ratio between training and 
testing images remains consistent: 70% for training and 30% for testing, 
with images randomly selected for both sets. Additionally, we adopt 
data augmentation techniques to increase the size of the training data
set, appling random transformations such as image rotation, flipping, 
and skew to existing data (van Dyk and Meng, 2001). Consequently, the 
proposed hybrid architecture is trained on a set of 372 SEVIRI Ash RGB 
images and then applied to 65 SEVIRI Ash RGB images. Table 1 displays 
the number of training and testing images for each explosive event. 
Ground truth images are obtained by meticulously labeling SEVIRI Ash 
RGB images through visual inspection, indicating the true class of each 
pixel. In this case, it is a binary classification, with the two classes being 
“volcanic cloud” or “background”. For the training dataset, we choose to 
use a sequence of images related to several volcanic explosive eruptions 
of Mt. Etna occurring between 2020 and 2022. The selection of test 
images is made to include volcanic clouds resulting from various erup
tions of Mount Etna occurring during different non-consecutive periods 
within the timeframe of 2020 to 2022. 

3.2. CNN architecture: UNet-VGG16 

A Fully Convolutional Network (FCN) is a type of convolutional 
neural network (CNN) architecture designed for pixel-level tasks, 
particularly in the domain of image segmentation. It employs only 
locally connected layers, such as convolution, pooling, and upsampling. 
FCN can work for variable image sizes, as long as all connections remain 
local. By not incorporating dense layers, the network benefits from a 
reduction in parameters, leading to a faster training process. Hence, an 
FCN has the capability to classify every pixel within an image, and its 

architecture comprises two main blocks: an encoder and a decoder. The 
encoder path reduces the input matrix size by increasing the number of 
feature maps, whereas the decoder path restores the matrix to its orig
inal size while minimizing the number of feature maps, so that the 
segmentation results can be compared with the ground truth at each 
pixel. In this work, we use the U-Net as an FCN architecture. It was first 
designed and applied in 2015 for processing biomedical images (Ron
neberger et al., 2015). In biomedical cases, the focus is not only to 
distinguish whether there is a disease but also to localize the area of 
abnormality. For this reason, U-Net is popular for fast and precise seg
mentation of images. It is a U-shaped encoder-decoder network archi
tecture, which consists of four encoder blocks and four decoder blocks 
that are connected via a bridge: input images are fed into an encoder 
architecture to capture high-level contextual information, which is 
subsequently transmitted to a decoder architecture to recover spatial 
details and generate pixel classification results (Tomar, 2021; Weng 
et al., 2019). Due to its complexity, the U-Net architecture can require a 
significant amount of time for execution. To address this challenge, a 
new model combining the U-Net architecture with VGG16 is proposed. 
This aims to reduce the complexity of U-Net and to speed up the 
execution times. The encoder block of the U-Net is replaced with a 
VGG16 due to its similarity to U-Net’s encoder path, the smaller number 
of parameters, and the easy accessibility to parameter weights, which 
are used in the new model (Kanaeva and Ivanova, 2021). 

VGG16, also known as VGG-Net, is a convolutional neural network 
with 16 layers (three fully connected layers and 13 convolutional 
layers). It is a relatively extensive network with a total of 138 million 
parameters, but its simplicity is its main attraction (Simonyan and Zis
serman, 2014). The model achieves 92.7% top-5 test accuracy in 
ImageNet, which is a dataset of over 14 million images belonging to 
1000 classes. It replaces large kernel-sized filters with multiple 3 × 3 
kernel-sized filters one after another. A general scheme of the proposed 
model is shown in Fig. 2. 

3.3. Training 

Instead of training from scratch, we adopt transfer learning to 

Table 1 
SEVIRI Ash RGB images used to build the training and testing dataset. For each 
event, the series of images between the start date and the end date is considered. 
The last two columns of the table represent the total number of images used for 
the training and testing phase, respectively, after the application of the Data 
Augmentation technique.  

Event Start date End date N◦ training 
images (with 
DataAug) 

N◦ testing 
images 

21 
February 

2021 

21 February 
2021 00:12 

UTC 

21 February 
2021 04:57 

UTC 
72 8 

22 
February 

2021 

22 February 
2021 23:27 

UTC 

23 February 
2021 02:57 

UTC 
102 12 

28 
February 

2021 

28 February 
2021 07:42 

UTC 

28 February 
2021 10:57 

UTC 
42 6 

4 March 
2021 

4 March 2021 
07:57 UTC 

4 March 2021 
12:27 UTC 60 8 

12 March 
2021 

12 March 2021 
07:57 UTC 

12 March 2021 
11:57 UTC 60 6 

9 August 
2021 

9 August 2021 
03:27 UTC 

9 August 2921 
04:27 UTC 

0 8 

10 
February 

2022 

10 February 
2022 22:12 

UTC 

10 February 
2022 23:12 

UTC 
0 13 

21 
February 

2022 

21 February 
2022 12:27 

UTC 

21 February 
2022 15:27 

UTC 
36 4   

Total 372 65  
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enhance the accuracy of the output, saving training time and requiring 
less training data. Transfer learning is a popular approach in deep 
learning, where pre-trained models developed for a specific task serve as 
the starting point for computer vision and natural language processing 
tasks. This is primarily due to the significant computational and time 
resources required to develop neural network models in these domains. 

The VGG16 model, initially trained on the ImageNet dataset, utilizes 
its pre-trained layers for feature extraction. We implement the freezing 
of convolutional layers, preventing the weights of these frozen layers 
from being updated during backpropagation. Additionally, we set the 
pooling layers to trainable mode to fine-tune the pre-trained model. This 
means that the weights of these layers are updated during back
propagation, allowing the adjustment of the pre-trained model with 
respect to the new dataset and aiming to achieve the best possible result. 

The proposed hybrid VGG16-UNet model has been trained with a 
learning rate of 0.001. The Adaptive Moment Estimator (Adam) opti
mizer (Kingma and Ba, 2017) is utilized to minimize the focal loss, an 
improved version of the cross-entropy (CE) loss based on the Down 
Weighting technique, which reduces the influence of easy example on 
the loss function, ensuring that predictions on hard examples improve 
over time rather than becoming overly confident with easy ones (Nayak, 
2022). Thus, focal loss aims to address the class imbalance problem 
typically affecting satellite image segmentation tasks (Corradino et al., 
2023), which may still be present because many volcanic clouds occupy 
a very small portion of the image compared to the background. 

3.4. Testing and performance evaluation 

The trained model is then applied to testing images, defined as out- 

of-sample since they were not seen during the training phase. To assess 
the performance of the model, we constructed a confusion matrix and 
evaluated various performance indices. For binary classification, the 
confusion matrix is a 2 × 2 table that compares the actual target values 
with those predicted by the ML model. The confusion matrix consists of 
four components:  

• True positives (TP): the number of real positives correctly predicted 
as positive;  

• True negatives (TN): the number of real negatives correctly predicted 
as negative;  

• False positive (FP): the number of real negatives wrongly predicted 
as positive;  

• False negative (FN): the number of real positives wrongly predicted 
as negative. 

Precision and recall are two important performance metrics for bi
nary classification obtained from the confusion matrix, where precision 
measures the accuracy of the positive predictions made by the model. 
High precision means that when the model predicts a positive class, it is 
likely to be corrected. 

precision =
TP

TP + FP 

Recall, also known as sensitivity and true positive rate, measures 
how well the model correctly identifies all positive instances. High recall 
indicates that the model is effective at finding positive instances. 

Fig. 2. VGG16 + UNet architecture is a deep learning hybrid architecture that combines a VGG16 model, renowned for its reduced complexity and use of a smaller 
number of parameters, with the UNet, which excels particularly in the domain of image segmentation. 
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recall =
TP

TP + FN 

Traditional performance metrics like accuracy can be misleading 
when dealing with unbalanced datasets, since they tend to be biased 
towards the majority class. A model that predicts the majority class for 
all instances may achieve high accuracy, but it provides little value if it 
fails to detect the minority class. Therefore, since the background class 
contains a significantly greater number of pixels compared to the vol
canic cloud class (i.e., an unbalanced dataset), we need to use perfor
mance indices to address this problem. The F1-score is a good 
performance metric for unbalanced datasets. The F1 score assesses the 
predictive skill of a model by elaborating on its class-wise performance 
rather than an overall performance, as done by accuracy. It combines the 
precision and recall scores of a model. 

F1 =
2TP

2TP + FN + FP 

F1-score gives equal importance to precision and recall, making it 
useful when aiming to strike a balance between correctly identifying the 
minority class (recall) and avoiding false positives (precision). 

3.5. Comparison with existing methods 

We compared the outcomes of our proposed DL model with the re
sults of other techniques existing in the literature: the classical Bright
ness Temperature Difference (BTD) approach and the support vector 
machine (SVM). The BTD approach involves taking the difference be
tween two bands and setting an appropriate threshold: pixels with 
values below the threshold are categorized as “volcanic cloud”, while 
those exceeding this threshold are considered “background”. In SEVIRI 
data, the BTD image is generated by computing the difference between 
the IR band at 10.8 μm and the IR band at 12.0 μm, with a selected 
detection threshold (DT) set to 0 K (Prata, 1989a). However, BTD is 
sensitive to variations in atmospheric conditions, such as water vapor 
content and cloud cover, which can introduce noise and affect the ac
curacy of the detection (F. Prata and Lynch, 2019). Moreover, BTD 
primarily focuses on temperature differences and lacks spatial infor
mation, making it less suitable for tasks like precise volcanic cloud 
tracking and segmentation. On the other hand, SVM is a supervised 
machine learning algorithm with the goal of finding the optimal hy
perplane or set of hyperplanes that best separates data points into 
different classes. We used an SVM classifier with a radial basis function 
as a kernel, the spread of the kernel (γ) set to 0.5 and the cost parameter 
set to 10. This model was trained on samples of SEVIRI Ash RGB images, 
labeled as “volcanic cloud” or “background”, and was tested on new 

SEVIRI Ash RGB images, showing good accuracy (Torrisi et al., 2022). 
The results from these different methods are going to be compared 

with the outcomes of the DL model. We constructed a confusion matrix 
for each method and then calculated the precision, recall, and F1-score, 
which are the primary evaluation metrics. 

4. Results 

The VGG16-UNet model was tested on a dataset of 65 images, 
defined as out-of-sample since they were not seen during the training 
phase. For simplicity, we show the results of the application of the model 
to three out-of-sample images related to the events occurred at Mt. Etna 
on 23 February 2021, 9 August 2021, and 10 February 2022 (respec
tively in Figs. 3, 4, and 5). For each case, we present the SEVIRI Ash RGB 
image (Figs. 3a, 4a, and 5a) used as input of the model, the ground truth 
labels (Figs. 3b, 4b, and 5b) and the corresponding segmented outcome 
(Figs. 3c, 4c, and 5c). The SEVIRI AshRGB image in Fig. 3a shows the 
volcanic cloud produced during the event of the 23 February 2021, 
which is mainly composed of SO2 (green pixels) and is moving north 
west. The volcanic clouds in Fig. 4a and 5a are characterized mainly by 
ash (red pixels), SO2 (green pixels) and both the components (yellow 
pixels). 

From these three illustrative cases, it becomes evident that the pro
posed VGG-16 model performs effective segmentation of volcanic clouds 
in SEVIRI Ash RGB images. The model demonstrated its capability to 
detect all the three volcanic clouds, even with different components such 
as SO2, ash, and ice. The first is primarily characterized by SO2 and ice, 
the second by SO2 and ash, while the last encompasses all these com
ponents. Considering the ground truth as a reference, there are instances 
where the model tends to classify more pixels as volcanic clouds, 
resulting in a higher number of false positives. In the presence of thin 
meteorological clouds, as observed in the bottom-left part of Fig. 3a, the 
model exhibits proficiency in discriminating them accurately (Fig. 3c). 
However, occasional misclassifications occur, as seen in Fig. 4c, where 
certain parts of thick meteorological clouds are erroneously labeled as 
volcanic clouds. 

The accuracy of the proposed VGG16-UNet model was computed 
using precision, recall and F1-score as performance indices. A confusion 
matrix was constructed by comparing the model’s predictions with the 
actual ground truth labels for all testing images (see Table 2 for the 
confusion matrix of the model with focal loss). 

Once the confusion matrix is obtained, the performance metrics 
(precision, recall and F1-score) are calculated. To evaluate the perfor
mance of the proposed model using focal loss, a comparison with a 
model using standard cross-entropy (CE) and the same settings is shown 
in Table 3. 

Fig. 3. Volcanic cloud produced during the event occurred at Mt. Etna on 23 February 2021 at 01:27 UTC. (a) SEVIRI Ash RGB Image, (b) Ground truth, (c) Output of 
the deep learning model. 
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We applied the BTD technique, the SVM, and the VGG16-UNet model 
to three test images taken on 23 February 2021 at 06:12 UTC, 28 
February 2021 at 08:57 UTC, and 9 August 2021 at 03:27 UTC (Fig. 6). 
Fig. 6a, e, and i show the SEVIRI Ash RGB images of the three reference 
events, used as input for the SVM and the VGG16-UNet model. In Fig. 6b, 
f, and l, green pixels correspond to the volcanic cloud classification by 
the BTD technique; the orange pixels in Fig. 6c, g, and m represent the 

pixels classified by the SVM model as volcanic cloud, while the red pixels 
in Fig. 6d, h, and n represent the volcanic cloud classification performed 
by the VGG16-UNet model. The blue outline observed in the images 
corresponds to the actual contour of the volcanic cloud. For all the three 
cases depicted in Fig. 6, the BTD technique exhibits limitations in 
identifying all the pixels contained within a volcanic cloud. The choice 
of the threshold depends on different factors, such as atmospheric con
ditions, the presence of meteorological clouds, or the view zenith angle. 
A higher zenith angle produces a higher BTD threshold and vice versa. 
The performance indices related to the application of the BTD technique, 
the SVM, and the VGG16-UNet models to the three events of Fig. 6 are 
calculated and displayed in the histograms of Fig. 7. Fig. 7a, b, and c 
correspond, respectively, to the events of 23 February 2021 at 06:12 
UTC, 28 February 2021 at 08:57 UTC, and 9 August 2021 at 03:27 UTC. 

Finally, since the BTD technique cannot be automatically applied to 
different case studies, we did not include it as a comparison method for 
evaluating the overall performance across the entire dataset. Therefore, 
we solely applied the SVM model to the testing dataset and quantified its 
performance by calculating precision, recall, and F1-score (Table 4). 

5. Discussion 

5.1. VGG16-UNet model performance 

The hybrid architecture demonstrates high performance levels, 

Fig. 4. Volcanic cloud produced during the event occurred at Mt. Etna on 9 August 2021 at 03:42 UTC. (a) SEVIRI Ash RGB Image, (b) Ground truth, (c) Output of 
the deep learning model. 

Fig. 5. Volcanic cloud produced during the event occurred at Mt. Etna on 10 February 2022 at 22:12 UTC. (a) SEVIRI Ash RGB Image, (b) Ground truth, (c) Output of 
the deep learning model. 

Table 2 
Confusion matrix calculated on the 65 testing images (79.61e5 samples) with 
percentage values.   

Actual values 

Volcanic cloud Background 

Predicted values Volcanic cloud 2.2e5 (89%) 0.01e5 (0.5%) 
Background 0.8e5 (11%) 76.6e5 (99.5%)  

Table 3 
Performance indices.   

Cross-Entropy Focal Loss 

Precision 0.29 0.88 
Recall 0.90 0.91 

F1-score 0.74 0.90  
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achieving an average accuracy of 0.90. The various performance indices 
presented in Table 3 indicate that the results obtained with focal loss are 
superior to those obtained with cross-entropy (CE). Precision, recall and 
F1-score values obtained with focal loss are all above 0.85 (specifically 
0.88, 0.91 and 0.90), whereas those obtained with CE are lower (spe
cifically 0.29, 0.90 and 0.84). This suggests that focal loss is the more 
suitable choice as a loss function, as it effectively handles unbalanced 
classes. The precision for focal loss, at 0.88, is slightly lower than the 
recall value of 0.91. This difference primarily arises from occasional 

Fig. 6. Comparison between the detection capability of the brightness temperature difference (BTD) technique, the SVM and the VGG16-UNet model, for the event of 
23 February 2021 at 06:12 UTC, the 28 February 2021 at 08:57 UTC, and the 9 August 2021 at 03:27 UTC. The blue outline observed in the images corresponds to the 
actual contour of the volcanic cloud. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Histograms to compare the performance indices (precision in blue, recall in orange and F1-score in green) of the brightness temperature difference (BTD) 
technique, the SVM, and the VGG16-UNet model, for the events of (a) 23 February 2021 at 06:12 UTC, (b) the 28 February 2021 at 08:57 UTC, and (c) the 9 August 
2021 at 03:27 UTC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Comparison of the performance indices (precision, recall, and F1-score) of the 
Support Vector Machine (SVM) model and the proposed VGG16-UNet model.   

Precision Recall F1-score 

SVM 78% 71% 74% 
VGG16-UNet 88% 91% 90%  
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misclassifications by the VGG16-UNet model, leading to increased false 
positives and a corresponding decrease in precision. Despite the pres
ence of an unbalanced dataset, the high F1-score indicates that the 
model successfully balances between making positive predictions and 
correctly identifying relevant instances for 90% of the samples. 

The VGG16-UNet model with focal loss is then considered in our 
analysis due to its superior performance compared to the model trained 
with cross-entropy and its effectiveness in handling imbalanced data
sets. The image segmentation results related to the events of 23 February 
2021 at 01:12 UTC, 9 August 2021 at 03:27 UTC, and 10 February 2022 
at 21:57 UTC (Figs. 3, 4, and 5, respectively) exemplify the application 
of the model with focal loss. 

5.2. Traditional versus ML versus DL techniques 

We applied the BTD technique, the SVM, and the VGG16-UNet model 
to three test images (out-of-samples): the 23 February 2021 at 06:12 
UTC, the 28 February 2021 at 08:57 UTC and the 9 August 2021 at 03:27 
UTC (Fig. 6). 

Analyzing the event of 23 February 2021 (Fig. 6a), volcanic clouds 
are recognizable in the upper left part of the image, composed mainly of 
ice (dark green part) and SO2 (light green part), and another volcanic 
cloud predominantly composed of ash originating from the crater of Mt. 
Etna. The BTD technique (Fig. 6b) can effectively identify some of the 
pixels inside the volcanic cloud composed of ash. However, since the 
cloud in the upper left part is rich in SO2 and ice, the BTD struggles to 
detect this particular cloud due to the fact that BTD is based on the 
reverse absorption phenomenon, which highlights the contrasting be
haviors of volcanic ash and ice. Both the SVM and the VGG16-UNet 
model successfully achieve the goal of segmenting the volcanic clouds 
(Fig. 6c and Fig. 6d, respectively). It is evident that the SVM exhibits 
limitations in accurately identifying the entire SO2 clouds in the upper 
left portion of the image; however, it classifies the volcanic cloud pre
dominantly composed of ash accurately. The VGG16-UNet model dem
onstrates strong performance in the segmentation of both clouds. Both 
models are proficient at distinguishing the thin meteorological clouds in 
the lower-left part of the image from volcanic clouds. From Fig. 7a, it is 
possible to see that the precision of BTD and SVM (95% in both cases) is 
higher than the recall (52% and 57%, respectively) and the F1-score 
(53% and 60%, respectively). This typically indicates that the model is 
better at accurately identifying true positives while being conservative 
in its predictions. This means that when the system predicts a positive 
case, it’s often correct, but it might miss some actual positive cases. 
Instead, the performance indices related to the VGG16-UNet model are 
higher than 85% (precision: 97%, recall 86%, F1-score: 90%). 

The volcanic cloud produced during the event of 28 February 2021 is 
shown Fig. 6e. This volcanic cloud is composed mainly of ash (red part) 
and SO2 (light green part). In this case as well, the BTD technique 
(Fig. 6f) is able to detect the pixels in the central region of the cloud, 
which contains mainly ash, but not the pixels on the border because they 
primarily consist of SO2 without ash. The outcomes of SVM and VGG16- 
Unet models are depicted in Fig. 6g and Fig. 6h, respectively. In both 
cases, the segmented pixels are mostly inside the actual contour of the 
volcanic cloud (blue contour). Also, in the previous case, the high values 
of precision of the BTD and the SVM (Fig. 7b, respectively 84% and 
99%), compared to recall (63% and 73%, respectively) and F1-score 
(68% and 81%, respectively), show a clear underestimation tendency. 
The VGG16-UNet model exhibits strong performance metrics, with 
precision at 97%, recall at 98%, and an F1-score of 98%, achieving a 
very high level in accurately identifying volcanic clouds. 

Finally, Fig. 6i shows the event of 9 August 2021, characterized by a 
volcanic cloud with ash and SO2 dispersing to the southeast and some 
meteorological clouds in the left parts. The BTD technique (Fig. 6l) de
tects only the pixels mainly characterized by ash, losing more than half 
of the pixels inside the cloud. The VGG16-UNet (Fig. 6n) classifies with a 
good level of accuracy all the pixels inside the volcanic clouds, while the 

SVM (Fig. 6m) fails to detect certain pixels. Especially, it is not able to 
detect the green pixels in the right part of the volcanic clouds, mainly 
characterized by SO2. However, both the SVM and VGG16-UNet model 
misclassified some pixels belonging to the thick meteorological clouds in 
the upper-left part of the image as volcanic clouds. This situation can 
occur because the spectral features of meteorological clouds are some
times similar to those of volcanic clouds. Further investigations are 
needed to address this problem, and one possible solution to enhance the 
ability of the model to distinguish between these two types of clouds is to 
expand the training dataset by introducing more examples of images 
with meteorological clouds. Based on the information presented in 
Fig. 7c, it is evident that the BTD tends to underestimate its predictions, 
due to the high precision (precision: 94%, recall 65%, F1-score: 72%). 
The SVM exhibits performance metrics below 80% (precision: 72%, 
recall 78%, F1-score: 75%), primarily due to its inability to accurately 
classify certain pixels containing SO2 within the volcanic cloud. Addi
tionally, it tends to make misclassifications by incorrectly identifying 
some pixels from a meteorological cloud as volcanic clouds. Finally, the 
VGG16-UNet model presents robust performance metrics, with the 
exception that, in this specific scenario, the recall (94%) is higher than 
both precision and F1-score (respectively 90% and 92%). This occurs 
because the model occasionally tends to overestimate the pixels within 
volcanic clouds mask, leading to an increased number of false positives. 

5.3. Comparison of the Support Vector Machine (SVM) model and the 
VGG16-UNet model 

Overall, the SVM shows good performance in detecting volcanic 
clouds, achieving an average accuracy of 74%. However, it sometimes 
tends to underestimate the segmentation of pixels in the volcanic cloud, 
especially when the cloud is mainly characterized by SO2. In these cases, 
some pixels inside the volcanic cloud are misclassified as background. 
For this reason, the VGG16-UNet model is a recommended alternative, 
offering higher accuracy (approximately 90%) and improved perfor
mance in these specific scenarios. Both approaches may incorrectly 
classify meteorological clouds as volcanic clouds, but the rate of false 
positives is lower for the VGG16-UNet (precision: 88%) compared to the 
SVM (precision: 78%). Reducing the rate of false positive is a chal
lenging yet crucial task for ensuring the effectiveness and reliability of 
volcanic monitoring and alert systems. The proposed VGG16-UNet 
model achieves a better compromise than the SVM in terms of missed 
detection and false alarms. 

The high temporal resolution of SEVIRI allows for almost near real- 
time monitoring of volcanic clouds. This means that their movement and 
changes can be closely tracked, enabling timely responses to potential 
hazards. The combination of the proposed VGG16-UNet model with the 
high temporal resolution of SEVIRI offers the capability to observe and 
track a volcanic cloud from its formation during an eruption to its 
dispersion into the atmosphere. The revisit time of SEVIRI is 15 min (or 
5 min in rapid scan mode), whereas the VGG16-UNet processing time of 
new images is just 1 min. This enables rapid analysis and processing of 
SEVIRI data, potentially facilitating near-real-time monitoring and 
response to volcanic events. 

5.4. Tracking the volcanic cloud: from its areal extension to its velocity 

The utilization of precise automatic algorithms for volcanic cloud 
detection facilitates the prompt retrieval of crucial information 
regarding its dispersion, including areal extension, localization, traveled 
distance, and velocity during eruptive events. In Fig. 8, the tracking of 
the volcanic cloud emitted during the 21 February 2022 event is 
depicted through three time series: the first (blue crosses) indicating 
volcanic cloud extension, i.e. the total number of pixels inside the 
detected volcanic cloud; the second (blue circles) indicating the distance 
traveled by the cloud; and the third (red diamonds) indicating the 
propagation speed of the volcanic cloud. At the bottom of the image, 
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arrows illustrate the advection direction of the volcanic cloud at each 
time step. For each image, the centroid of the identified volcanic cloud is 
determined, and subsequently, the Euclidean distance between the 
centroids of two consecutive images is calculated. These distances are 
then aggregated to ascertain the cumulative distance traveled by the 
cloud at each time step. The propagation velocity is computed as the 
ratio between the distance traveled at each time step and the time in
terval between two SEVIRI acquisitions, which is 15 min. Additionally, 
the advection direction of the volcanic cloud is determined at each step 
by calculating the angle in degrees between two centroids. This analysis 
was conducted considering 20 SEVIRI images acquired on 21 February 
2021 (from 00:12 UTC to 04:57 UTC). Fig. 8 displays three Ash RGB 
images with the red contour of the volcanic cloud identified by the 
VGG16-UNet model. The selection of these three images was made to 
encompass various phases of the eruptive event: the first image captures 
the inception of the volcanic cloud (21 February 2021 at 01:12 UTC), the 
second, the moment when the cloud has expanded to its maximum 
extent (21 February 2021 at 02:57 UTC), and the third, when the cloud 
begins to disperse (21 February 2021 at 04:57 UTC). The volcanic cloud 
is observable from 00:12 UTC (9 pixels), and its size gradually expands 
until 03:57 UTC (189 pixels). Subsequently, the volcanic cloud begins to 
disperse into the atmosphere, resulting in a progressive decrease in the 

number of pixels classified. In this sequence of 20 images from 00:12 
UTC to 04:57 UTC, the volcanic cloud travels a total distance of about 
175 km. This volcanic cloud is predominantly characterized by the SO2, 
as evidenced by the light green pixels inside the volcanic cloud in the 
Ash RGB images. This component typically disperses more slowly 
compared to volcanic ash particles in the atmosphere. SO2 can be 
transported over longer distances and remain in the atmosphere for long 
periods. This behavior is described by the propagation velocity of the 
volcanic cloud, which initially increases gradually (from 0 to 120 km/h) 
and then decreases after 04:12 UTC when the cloud begins to disperse 
into the atmosphere. Another noteworthy insight from Fig. 8 is the 
spread direction of the volcanic cloud. The arrows at the bottom indicate 
that the volcanic cloud is primarily moving towards the west. This in
formation is valuable for evaluating the dispersion patterns of volcanic 
cloud materials and identifying regions potentially affected by this 
dispersion. 

6. Conclusions 

The development of a model capable of automatically detecting and 
tracking volcanic ash clouds in satellite images plays a crucial role in 
aviation safety, public health, and climate research. Leveraging the rich 

Fig. 8. Time series tracking the evolution of the volcanic cloud produced during the event on 21 February 2021: total number of pixels inside the detected volcanic 
cloud (blue x), distance traveled by the cloud (blue circles), and the propagation velocity of the volcanic cloud (red diamond). In the upper part, three images show 
different phases of the eruptive event: the inception of the volcanic cloud (21 February 2021 at 01:12 UTC), the maximum extension of the cloud (21 February 2021 
at 02:57 UTC), and the dispersion of the cloud into the atmosphere (21 February 2021 at 04:57 UTC). At the bottom, arrows indicate the advection direction of the 
volcanic cloud. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

F. Torrisi et al.                                                                                                                                                                                                                                  



Journal of Volcanology and Geothermal Research 448 (2024) 108046

11

spectral and spatial information embedded in satellite imagery, such a 
model can provide timely and accurate monitoring of volcanic activity. 
Particularly, the high temporal resolution of geostationary satellite 
sensors like SEVIRI enables near-real-time analysis, emphasizing the 
need for fast and efficient models for data processing. 

We demonstrated the promising potential of convolutional neural 
networks (CNNs) in accurately identifying volcanic clouds in satellite 
images. The proposed hybrid architecture, VGG16-UNet, combines the 
strengths of VGG16 model (reduced complexity, fewer parameters, and 
easy access to parameter weights) with the capabilities of UNet in image 
segmentation. By utilizing transfer learning, we reduced training times 
and achieved precise segmentation of volcanic clouds in SEVIRI Ash 
RGB images, with a processing time of just 1 min per image. This enables 
rapid analysis of SEVIRI data, potentially facilitating near-real-time 
monitoring by processing new satellite images as soon as they are 
available. Compared to The VGG16-UNet model exhibits better perfor
mance Compared to traditional threshold-based approaches like BTD 
and classical machine learning techniques such as SVM, the VGG16- 
UNet model demonstrated superior performance, achieving an accu
racy of 0.90. This improvement can be attributed to the model’s ability 
to integrate spatial information alongside spectral features, enhancing 
its capability to accurately identify volcanic clouds. 

The integration of the VGG16-UNet model with the high temporal 
resolution of SEVIRI enables continuous observation and tracking of 
volcanic clouds from their formation during an eruption to their 
dispersion into the atmosphere. This marks a significant step towards 
developing a versatile model that can be applied to monitor volcanic 
activity globally. To enhance the model’s generalizability, future efforts 
should include images from diverse volcanic regions in the training 
dataset, ensuring adaptability across different volcanic environments. 
This process ensures that the model becomes adaptable and can effec
tively generalize across diverse volcanoes. This approach is ideal for 
rapidly analyzing larger volumes of data in near-real-time scenarios, and 
its application can provide crucial support to operational monitoring 
centers, contributing to more effective management of volcanic ash 
clouds. 

The application of this technique in near-real-time scenarios can 
provide invaluable support to operational monitoring centers, enabling 
more effective management of volcanic ash clouds and mitigating po
tential risks associated with volcanic eruptions. Overall, our study un
derscores the importance of leveraging advanced computational 
techniques for enhancing volcanic cloud monitoring and management 
efforts. 
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