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S U M M A R Y 

This study presents a new robust statistical framework, in which to measure relative differences, 
or deviations from a hypothetical reference value, of Gutenberg–Richter b -value. Moreover, it 
applies this method to recent seismicity in Italy, to find possible changes of earthquake mag- 
nitude distribution in time and space. The method uses bootstrap techniques, which have no 

prior assumptions about the distribution of data, keeping their basic features. Excluding Cen- 
tral Italy, no significative b -value variation is found, revealing that the frequency–magnitude 
distribution exponent is substantially stable or that data are not able to reveal hidden variations. 
Considering the small size of examined magnitude samples, we cannot definiti vel y decide if the 
higher b -values in Central Italy, consistently founded by all applied tests, have a physical origin 

or result from a statistical bias. In any case, they indicate short-lived excursions which have 
a temporary nature and, therefore, cannot be associated solely to spatial variations in tectonic 
frame work. Both the methodolo gical issues and the results of the application to seismicity 

in Italy show that a correct assessing of b -value changes requests appropriate statistics, that 
accurately quantify the low accuracy and precision of b -value estimation for small magnitude 
samples. 

Key words: Monte Carlo methods; Statistical methods; Computational seismology; Statisti- 
cal seismology. 
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 I N T RO D U C T I O N  

he b -value, meant as a measure of the relative amount of large to
mall ear thquakes, tur ns out to be, on average, equal to 1.0, at re-
ional scale (Frohlich & Davis 1993 ; Kagan & Jackson 2000 ). Any-
ay , peculiar seismicity , such as volcanic or induced earthquakes

Wiemer et al. 1998 ; Henderson et al. 1999 ) or specific tectonic
egimes (Schorlemmer et al. 2005 ), seems to show departures from
he universal value, indicating that the spatial and temporal hetero-
eneity of b -values is an important clue for forecasting potentially
arge earthquakes and for seismic hazard assessment (Wyss et al.
000 ; Wiemer & Wyss 1997 ; Schorlemmer & Wiemer 2005 ). 

On the other hand, some research studies, more focused on sta-
istical proprieties of earthquakes magnitude distribution, show that
he apparent variability in b -values may be misunderstood. For ex-
mple, Amor èse et al. ( 2010 ) show that the hypothesis of variation
n b -values in southern California to the depth of the crust was re-
ected on the grounds of not being statistically significant. Kamer
 Hiemer ( 2015 ) show that b -values in some tectonically differ-

nt locations of California are distributed within a very limited
ange and that the larger variability, reported in previous studies,
s mainly due to subjective arbitrariness. These and many other
tudies draw attention on non physical factors of b -value differ-
nces: network-related discrepancies in the magnitude computation
r earthquake detection, bias introduced by binning magnitudes or
epartures from the Gutenberg–Richter Law, influence of specific
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
roperties of magnitude samples, such as low size and dynamic
ange (Kamer & Hiemer 2015 , Marzocchi et al. 2020 , Herrmann &

arzocchi 2021 ; Geffers et al. 2022 , 2023 ). All of them conclude
hat particular care is, then, required when we face with b -values
stimation and we judge their v ariations. Specificall y, particular at-
ention must be paid in e v aluating completeness magnitude, M c , that

ay significantly affect b -value estimation (Roberts 2015 ; Marzoc-
hi et al. 2020 ; Geffers et al. 2022 ). More generally, the analysis of
patial and temporal heterogeneity of b -values requires statistically
obust methodologies and a rigorous testing of possible differences
Kagan 1999 ). 

Based on above two viewpoints, for and against (or more cau-
ious, at least, on) b -value variations, the calculation reliability for
esearch on the spatiotemporal heterogeneity of b -values still needs
o be solved, and the significance of b -value computations for hazard
ssessment and forecasting capabilities needs to be further investi-
ated. 

In this study, we deal with two points. First, we discuss how the
ow accuracy and precision of b -value estimate, for small sample
izes and magnitude ranges (Marzocchi et al. 2020 ; Geffers et al.
022 , 2023 ), affect the statistical measures of b -value variation and
e develop a robust statistical framework in which to test b -value
if ferences. Secondl y, we appl y this statistical approach to investi-
ate the temporal and spatial heterogeneity of b -value, in space–time
indows that are not associated with seismic sequences, in Italy. The

nfluence of tectonic regimes on the earthquake size distribution in
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
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Italy has been analysed by Gulia & Wiemer ( 2010 ) and Gulia et al. 
( 2010 ). By building a seismotectonic zonation, consisting of large- 
scale tectonic zones, they show that reverse faulting is associated 
with lower b -values than those associated with strike-slip and nor- 
mal faulting, although no statistical test was performed to assess 
the significance of the reported b -value differences. Later, Taroni 
et al. ( 2021 ) investigated the spatial variability of the magnitude 
frequency distribution in Ital y, b y a weighted maximum-likelihood 
approach, that has the advantage of gradually decreasing the impor- 
tance of observations with distance, under the hypothesis of spatial 
continuous changes of b -value. The significance of detected spatial 
variability of b -values was, then, tested with respect to a spatially 
uniform b -value, by a Bayesian approach. 

Following the above mentioned studies, we perform a spatio- 
temporal scanning of b -value in Italy, in light of recent recommen- 
dations to ensure statistical rigour (Marzocchi et al. 2020 ; Geffers 
et al. 2022 and references therein). Particular care is devoted to test 
the significance of possible different b -values and to avoid misun- 
derstanding caused by poor statistical approaches. The final goal of 
this paper is to create a statistical framework in which it is possible 
to test the significance of possible b -value variations. 

2  S E I S M I C  DATA  

In this study, we analyse the data collected in the Italian Seismic 
Bulletin (BSI, Bollettino Sismico Italiano; http://terremoti.ingv.it/ 
en/iside ; http://terremoti.ingv.it/en/bsi ) of the Istituto Nazionale di 
Geofisica e Vulcanologia (INGV). Locations and magnitudes of 
earthquakes are e v aluated in real-time in the surveillance room of 
the INGV in Rome and then revised by the analysts of the BSI 
(all events with M L ≥ 3.5 are quickly revised, whereas the stan- 
dard re vie w is done for smaller e vents, within an agreed timeframe; 
Marchetti et al. 2016 ). The earthquake data come from the man- 
ual picking of seismic signals recorded by the National Seismic 
Network of the INGV, of which a significantly re-organized ar- 
rangement came into operation at 16 April 2005 (Amato & Mele 
2008 ); therefore, only earthquakes after this time, and before 01 
January 2022, are analysed in this study. Moreover, we select events 
shallower than 30 km in depth, that is about 95 per cent of all earth- 
quakes, that occurred within the collection area, pre viousl y defined 
for the CSEP Italian earthquake forecast experiment (Schorlemmer 
et al. 2010a ). To improve the quality of data, we apply the following 
selection constraints. 

(i) Since this study is focused on eventual b -value changes not 
associated with large earthquakes, we ruled out the most intense 
phases of major seismic sequences, having a main shock with M L 

≥ 5.5: the 2009 L’Aquila (main event 2009 April 6, M L 5.9, M w 

6.1), the 2012 Emilia (main event 2012 May 20, M L 5.9, M w 5.8) 
and the 2016–2017 Central Italy (main event 2016 October 30, M L 

6.1, M w 6.5) sequences (Table 1 ; Fig. 1 ). Ho wever , these sequences 
were investigated by Lombardi ( 2023 ), who found no firm evidence 
for shor t-ter m b -v alue v ariations. 

(ii) The seismicity that occurred in the Sicilian (Etna, Eo- 
lian Islands and Pantelleria) and Campanian (Vesuvius, Phle- 
graean Fields and Ischia Island) volcanic areas (Table 1 ; Fig. 1 ) 
is removed from the catalogue, since the data of these ar- 
eas are inhomogeneous, being obtained by both national and 
regional monitoring networks ( https://www.ingv.it/en/monitoring- 
and- infrastructure/monitoring- networks/ingv- and- its networks). 

(iii) Starting in 2015, the BSI only revises events with magnitude 
above M L 1.5 (Marchetti et al. 2016 ), corresponding to the detection 
magnitude of a significant part of the national network (Schorlem- 
mer et al. 2010b ). This threshold is raised in exceptional cases, as 
the first 2 yr of 2016–2017 Central Italy sequence, which is, how- 
ev er, e xcluded from the present anal ysis. An yw a y, w e decided to 
consider events with M L ≥ 1.5 and revised by BSI analysts. 

By applying these constraints, we select about 152 000 events 
(Fig. 1 ). 

3  S PAT I O - T E M P O R A L  b  - VA LU E  S E R I E S  

To search for any spatio-temporal variation of b -value in Italy, we 
perform a spatio-temporal scan of b and M c parameters, using the 
Normalized Distance (ND) test (Lombardi 2021 , 2023 ), at α = 0.01 
significance level. This method adopts the geometric distribution 
for magnitudes, which account for rounded measurements at first 
decimal place (Bender 1983 ; Marzocchi & Sandri 2003 ; Tinti & 

Mulargia 1987 ; Lombardi 2021 ). Even if rounded magnitudes do 
not significantly affect the b -value estimation (Marzocchi & Sandri 
2003 ), at least for g rouping inter val δM = 0.1, we prefer adopting 
a discrete distribution, to make best use of statistical tests (Spinelli 
2001 ; Haschenburger & Spinelli 2005 ), which are the focus of this 
work. 

The cumulative density function for magnitudes is 

F ( M | b) = 1 − (1 − p) i+ 1 i = 0 , 1 , ... (1) 

where M = M c + i · δM , δM = 0.1 and p = 1 − e b · ln(10) · δM . In the
following, f ( M | b ) will mark the related probability density function 
of F ( M | b ). Without loss of generality, we may assume M c = 0, by 
considering shifted magnitudes M − M c . The Maximum Likelihood 
Estimate (MLE) of b , ˆ b , and the associated asymptotic error, σˆ b , 
are, then, given by 

ˆ b = 

− ln (1 − ˆ p ) 

ln (10) · δM 

and σˆ b = 

ˆ p 

ln (10) · δM · √ 

N · (1 − ˆ p ) 
, (2) 

where ˆ p = 

δM 

( ̄M + δM) 
, N is the sample size and M̄ is the average 

magnitude in the data (Tinti & Mulargia 1987 ; Lombardi 2021 ). 
The formula for σˆ b refers to the asymptotic gaussian distribu- 

tion of the MLE estimator, obtained by applying the Limit Central 
Theorem, that may be unreliable for small sample size. Moreover, 
the small accuracy of MLE estimator for small magnitude ranges 
(Geffers et al. 2022 , 2023 ) calls into question the indiscriminate use 
of this formula. 

Note that the whole statistical development, described below, 
depends on assumption represented by eq. (1). Further models might 
be certainly considered for magnitudes, such ad the tapered GRL 

(Main & Burton 1984 ; Kagan 1991 ). An yw ay, the discrimination 
between models requires a number of data, which is not compatible 
with constraints of present study (Marzocchi et al. 2020 ; Geffers 
et al. 2022 ). 

Considering the moderate seismic rate of Italy, we have to apply 
an adequate subsampling scheme, to avoid too small samples. The 
ND test is applied on intersecting samples of NT e vents, temporall y 
moved forward through the catalogue by 1 per cent of NT events. 
Note that the b -value maps are not equally distributed in time, since 
they follow the temporal evolution of seismicity. Each sample is 
spatially distributed in sub-samples, having locations inside over- 
lapping circles, covering the whole Italian mainland (excluding the 
Sicilian and Campanian volcanic zones and the almost aseismic 
Sardinia island), with centers C j , equally spaced at distance D = 

0.4 ◦. The radius R of each cell may be fix ed (Fix ed Radius, FR, 
method) or defined by the NR nearest neighbor events to C j (Vari- 
able Radius, VR, method). Finally, since the b -value estimator may 

http://terremoti.ingv.it/en/iside
http://terremoti.ingv.it/en/bsi
https://www.ingv.it/en/monitoring-and-infrastructure/monitoring-networks/ingv-and-its
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Table 1. Spatio-temporal details on seismicity ruled out form the analysis. 

Coordinates polygon vertices Temporal period 

seismic sequence L’Aquila 2009 12.70E 42.00N 06 Apr 2009 / 05 Apr 2010 

12.70E 43.30N 

13.80E 43.30N 

13.80E 42.00N 

seismic sequence Emilia 2012 10.60E 44.50N 20 May 2012 / 19 May 2013 

10.60E 45.30N 

11.90E 45.30N 

11.90E 44.50N 

seismic sequence Central Italy 2016–2017 12.70E 42.00N 24 Aug 2016 / 23 Aug 2018 

12.70E 43.30N 

13.80E 43.30N 

13.80E 42.00N 

Sicilian volcanic area Etna 14.70E 37.50N 06 Apr 2005 / 31 Dec 2021 

14.70E 37.90N 

15.30E 37.90N 

15.30E 37.50N 

Sicilian volcanic area Eolian Islands 14.84E 38.32N 16 Apr 2005 / 31 Dec 2021 

14.84E 38.48N 

14.28E 38.48N 

14.28E 38.63N 

15.00E 38.63N 

15.00E 38.71N 

15.11E 38.71N 

15.11E 38.87N 

15.32E 38.87N 

15.32E 38.71N 

15.18E 38.71N 

15.18E 38.58N 

15.07E 38.58N 

15.07E 38.32N 

Sicilian volcanic area Pantelleria 11.87E 36.69N 16 Apr 2005 / 31 Dec 2021 

11.87E 36.89N 

12.12E 36.89N 

12.12E 36.69N 

Campanian volcanic 

area 

Vesuvius Phlegraean Fields 

Ischia Island 

13.78E 40.63N 16 Apr 2005 / 31 Dec 2021 

13.78E 40.92N 

14.53E 40.92N 

14.53E 40.63N 

b  

D  

c  

m  

w  

a  

o  

(  

(  

o  

r
 

h  

(  

(  

m  

t  

r  

5  

o  

V

 

I  

w  

d  

s  

e  

d  

I  

r  

g  

b
 

(  

l  

z  

p  

i  

I  

a  

q  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggae068/7613571 by guest on 11 M

arch 2024
e strongly biased for small sample sizes, N and magnitude ranges,
M , covered by data (Geffers et al. 2022 ; Lombardi 2023 ), we

onsider samples that (a) cover a magnitude range DM ≥ 2.0, the
inimum value suggested to correctly estimate and test a GR model
ith b = 1.0 (Geffers et al. 2022 ) and (b) have more than 50 events

bove M c . Dif ferent anal yses are performed to e v aluate the impact
f spatiotemporal subsampling on results. In the following, FRA1
 NT = 1000 and R = 100), FRA2 ( NT = 5000 and R = 50) and VRA
 NT = 5000 and NR = 300) mark two analyses with FR method and
ne analysis with VR method, respectively. For VRA we consider
adii below 200 km. 

By applying FR and VR strategies, we select samples covering
ighl y v ariable time interv als, ranging from about 20 d to 6 months
with a median of 3 months) for FRA1, from 6 months to 2 yr
with a median of 1 yr) for FRA2 and from 1 month to 2 yr (with a
edian of 1 yr) for VRA. The radius of cells for VRA goes from 7

o 200 km, with a median of about 100 km, depending on seismic
ate of each zone. The number of events above M c goes from 50 to
83 (with a median of 97) for FRA1, from 50 to 884 (with a median
f 96) for FRA2 and from 50 to 300 (with a median of 134) for

RA. a
We find that the values of ˆ b are, on average, larger in Central
taly (zone A; median ˆ b equal to 1.2), than the rest of territory,
hatever subsampling method would be used (Fig. 2 ). The spatial
istributions of median and confidence limits at 99 per cent of ˆ b
how similar results for all sampling methods. Lower ˆ b (median ˆ b
qual to 0.9) are close to national borders, but this is an artifact of
ifferent network detection inside and outside them. The Nor ther n
taly region may be analysed only by VRA, due to lower seismic
ate of this zone. The nor theaster n zone (zone B) stands out for the
reater precision of b estimations, since both 99 per cent confidence
ounds of ˆ b are close to 0.8. 

The lower completeness magnitude is estimated in Central Italy
zone A), where the 99 per cent percentiles of M c is mostly be-
ow 2.0 (Fig. 3 ). This is due to good network detection of this
one (Schorlemmer et al. 2010b ), but also to removal of two im-
ortant sequences from database, during which M c significantly
ncreased. The largest incompleteness is observed in Nor ther n
taly (zone B) and in Sicily (zone C), where M c reaches 2.8
nd 2.5, respecti vel y, both for the occurrence of stronger earth-
uakes and for the lower network detection in part of these

reas. 



732 A. M. Lombardi 

Figure 1. Map of the events that occurred in Italy, from 16 April 2005 to 31 December 2022, above 30 km of depth and with magnitude above M L 1.5. Solid 
black lines mark areas in which seismicity is ruled out, as explained in main test and Table 1 . 
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4  S TAT I S T I C A L  T E S T S  

In this study, a special focus is laid on the significance of changes in 
b -v alue parameter. Specificall y, a set of statistical tests is performed, 
at 0.01 significance le vel, de voted to judge (a) if estimated b -values 
are significantl y dif ferent b y a reference v alue b 0 and (b) if there are 
temporal and/or spatial significant variations in b -value time-series. 

A proper approach to test b -value changes relies on a correct 
e v aluation of uncertainty of b -values estimator. Traditionally, this is 
assumed asymptotically (for large N ) normal, both for exponential 
(Aki 1965 ; Shi & Bolt 1982 ) and for geometric (Bender 1983 ; Tinti 
& Mulargia 1987 ; see also eq. 2) magnitudes. In any case, a detailed 
study of the spatiotemporal features of b -v alues usuall y deals with 
small data sets, for which the b -value estimator may be slightly 
accurate and precise (Geffers et al. 2022 , 2023 ). In these cases, 
a mistaken assumption on ˆ b uncertainty may affect the results of 
statistical tests for checking b -value changes (Schorlemmer et al. 
2003 ; Amor èse et al. 2010 ; Marzocchi et al. 2020 ); therefore, the 
use of bootstrap resampling to estimate more realistic errors in ˆ b is 
recommended (Schorlemmer et al. 2003 ; Amor èse et al. 2010 ). 

We go into detail of this topic in the Supplementary Informa- 
tion, for both exponential and geometric magnitude distribution, by 
means of simulations. Specifically, we check the reliability of the 
asymptotic predicted distribution on simulated data, for different 
values of real b -value b and sample size N . It shows that the distri- 
bution of b -value MLE significantly differs from a Gaussian one, 
for DM below a threshold, that depends on the (unknown) b and 
N (see Figs S1 and S2 ). Unfortunately, an analytic formula for the 
statistical distribution of the conditional (to N and DM ) MLE of b 
cannot easily computed and, therefore, we propose, in the following, 
a non-parametric approach. 

In this study two types of tests are performed: (a) the t -test, 
assessing an hypothesis on population average, which is closely re- 
lated to b -values estimator (eq. 1) and (b) the log-likelihood ratio 
test, comparing the goodness of fit of data to two specified distri- 
butions (Snedecor & Cochran 1989 ; Casella & Berger 2001 ). Since 
the aleatory uncertainty on ˆ b depends on covered magnitude range 
DM , besides on sample size N (Geffers et al. 2022 ; Lombardi 2023 ), 
we construct statistical tests conditioned to both N and DM , to guar- 
antee a rigorous judgement. This may be reached by generating 
synthetic data, that represent the sample distribution under the null 
hypothesis H 0 of a test, and, at the same time, account for values 
of N and DM of sample under testing. The easiest way to control 
both N and DM in simulations is to apply non-parametric boot- 
strap resampling algorithms (Efron & Tibshirani 1993 ). The use of 

art/ggae068_f1.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae068#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae068#supplementary-data
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Figure 2. Maps of percentiles in time series of ̂  b : the 99 per cent confidence bounds and the 50th percentile are plotted for FRA1 (panels a, b, c), FRA2 (panels 
d, e, f) and VRA (panels g, h, i). Zones marked by A and B refer to Central and Nor theaster n Italy regions, cited in the main text. 
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imulations has also advantage of ruling out arbitrary assumptions
n distribution of test statistics under H 0 , valid only under specific
onditions. 

All applied statistical tests are described below, whereas in the
ppendix we report results of simulation studies, performed to

ssess their robustness. 

.1 The maximum magnitude ( M max ) test 

ny judgement of this study on b -values is done considering the
alues of N and DM . Therefore, we apply a preliminary test, devoted
o judge if the maximum magnitude, M max , and, then, the magnitude
ange, DM , of a sample with N earthquakes is compatible with what
xpected for b 0 = 1.0 (null hypothesis H 0 ). The cumulative density
unction for M max depends on N , beyond b , and is given by 

F M max ( M | b) = [ F ( M | b)] N . (3) 

o, we can compare each value of M max with the 99 per cent confi-
ence interv al, gi ven b y b 0 , and reject b 0 for subsamples having a
alue of M max outside it. 
We find that DM values are all inside the confidence intervals,
i ven b y eq. ( 3 ) with b = b 0 ; therefore they are all consistent with
 0 , at significance level α = 0.01, for all three analyses FRA1,
RA2 and VRA (Fig. 4 ). 

.2 The one-sample bootstrap goodness of fit tests 

he first set of tests is devoted to judge if values ˆ b are significantly
if ferent b y a reference v alue b 0 = 1.0 (null hypothesis H 0 ). To
his end, we adopt two tests: the bootstrap t , BT, test, checking if
ean magnitude is as expected under H 0 , and the bootstrap Log-
ikelihood Ratio (BLLR) test, that judges reliability of H 0 , by mean
f Log-Likelihood Ratio (Kalbfleisch 1985 ). 

The BT test for a magnitude sample S = { M 1 ,..., M N } , with
ean μ( S ) and standard deviation σ ( S ), consists of following

teps: 

(i) We compute the t -statistic 

[ S ] = 

μ( S ) − M 

∗

σ ( S ) / 
√ 

( N ) 
, (4) 

art/ggae068_f2.eps
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Figure 3. The same of Fig. 2 , but for M c . Zones marked by A, B and C refer to Central Italy, Nor ther n Italy and Sicily regions, cited in the main text. 
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where M 

∗ = 

(1 −p 0 ) 
p 0 

· δM is the mean expected for geometric vari- 
ables with distribution F ( M | b 0 ). 

(ii) We produce N B bootstrap samples S j , j = 1,..., N B , from S . 
(iii) We compute the quantity 

t ′ [ S j ] = 

μ( S j ) − μ( S) 

σ ( S) / 
√ 

( N ) 
(5) 

on all S j ; their distribution represents the uncertainty of t -statistic 
under H 0 , for a sample with size N and range DM (Efron & Tibshi- 
rani 1993 ). 

(iv) We reject H 0 if t [ S ] is out the (1 −α) per cent empirical 
confidence interval, identified from values t ′ [ S j ]. 

The BLLR test compares the goodness of fit of geometric distri- 
butions with parameter b 0 and ˆ b , whether to decide if the second is 
significantly better. For each magnitude sample S = { M 1 ,..., M N } , 
the BLLR test consists of following steps (Davison & Hinkley 
1997 ): 

(i) We estimate b -value on S , ˆ b , and we compute the statistic 
of Log-Likelihood Ratio Test (Kalbfleisch 1985 ) for ˆ b and b 0 , 
gi ven b y 

L L R( S; ̂  b , b 0 ) = −2 ln 

[ 

L L ( S; ̂  b ) 

L L ( S; b 0 ) 

] 

; (6) 

where 

L L ( S; b) = 

N ∏ 

i= 1 
f ( M i | b) (7) 

is the log-likelihood of the geometric distribution (eq. 1), with pa- 
rameter b , for a sample S . 

(ii) We produce N B bootstrap samples S j , j = 1,..., N B from S , and 
we estimate b -values on all S j (marked by ˆ b j ). 

(iii) We compute L L R( S j ; ̂  b j , ̂  b ) for all S j , which represent the 
distribution of LLR under the null hypothesis (Davison & Hinkley 
1997 ); therefore we reject H 0 if the proportion of L L R( S j ; ̂  b j , ̂  b ) 
exceeding L L R( S; ̂  b , b 0 ) is larger than α. 

We apply both BT and BLLR tests, by producing N B = 10 5 boot- 
strap resampling of all detected subsamples. The two tests identify 
anomalous b -values on the same subsamples. FRA1 and FRA2 
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Figure 4. Plot of p -values of M max test for all subsamples and (a) FRA1, (b) FRA2 and (c) VRA. All of them are inside (0.05, 0.995) interval and, then, M max 

values are in agreement with the null hypothesis b = b 0 = 1. 
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etect anomalous high b -v alues, mostl y in Central Italy and for
ubsamples with lower DM and M c , whereas no significant anomaly
s recognized by VRA (Fig. 5 ). Very scattered and occasional low
 are detected in all three analyses, in border cells, due to inclusion
f larger events out of national boundaries, where the detection is
igher. No zone shows systematic anomalies, since each cell has
0 per cent, at least, of estimated b -values not significantly dif-
erent from 1.0. The reason for which we do not find anomalous
igh b -values by VRA, differently from when we apply FRA1 and
RA2, is due to the different sampling methods. Considering the
igh seismic rate and the good detection of this zone, subsamples
dentified by VRA refer to smaller areas respect to FRA1 and FRA2
nd cover smaller magnitude ranges DM . In more than 99 per cent
f anomalous cases reco gnized b y FRA2, VRA identifies samples
ith DM < 2 and/or N < 50, which, therefore, do not satisfy the

equests to be selected and are kept out from the analysis. 

.3 The bootstrap two-samples tests 

he second phase of testing analysis is devoted to check relative
ifferences of b -values, in time and space. Specifically, they are
evoted to judge if two independent (i.e. without events in common)
agnitude samples have equal b -values (null hypothesis H 0 ). Also

n this case, we use a non-parametric test, the two sample t -test
Snedecor & Cochran 1989 ), and a parametric one, the two-samples
og-Likelihood Ratio test (Kalbfleisch 1985 ). Moreover, we apply
ootstrap resampling to take into account basic features of samples
nder testing and to rule out arbitrary assumptions on distribution
f test statistics under H 0 . 

The two-samples bootstrap t -test, 2S-BT, is used to deter-
ine if two population means are equal (Snedecor & Cochran

989 ). Given two independent samples S 1 = { M 

1 
1 , ..., M 

1 
N 1 

} and
S 2 = { M 

2 
1 , ..., M 

2 
N 2 

} , the test statistic, if equal variances are as-
umed, is given by 

T 2 S ( S 1 , S 2 ) = 

μ( S 1 ) − μ( S 2 ) 

s ·
√ 

1 
N 1 

+ 

1 
N 2 

, (8) 

here s = 

√ 

( N 1 − 1) · σ ( S 1 ) 2 + ( N 2 − 1) · σ ( S 2 ) 2 

N 1 + N 2 − 2 
is the pooled

ariance of S 1 and S 2 . 
Also in this case, we apply a bootstrap version of this test, con-

isting of following steps: 

(i) For a couple of samples ( S 1 , S 2 ), we compute T 2 S ( S 1 , S 2 ). 
(ii) We combine S 1 and S 2 and produce N B bootstrap resampling

 j , j = 1,..., N B . 
(iii) For all j , we compute the quantities T ′ 2 S ( S 

1 
j , S 

2 
j ) , where S 1 j 

nd S 2 j are the samples given by the first N 1 and the last N 2 elements
f S j , respecti vel y; their distribution represents the uncertainty of
 2 S -statistic under H 0 . 
(iv) We reject H 0 , if T 2 S ( S 1 , S 2 ) is out the (1 −α) per cent empirical

onfidence interval, identified from values T ′ 2 S ( S 
1 
j , S 

2 
j ) . 

The 2S-BT test is similar to significance test proposed by
mor èse et al. ( 2010 ), also based on bootstrap resampling, which,
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Figure 5. Results of bootstrap goodness of fit tests BT and BLLR, which are consistent in identifying b -values anomalies. Red and green circles mark the 
anomalous high and low b -v alues, respecti vel y, for all panels, whereas grey circles mark b -values consistent with H 0 . (a) Map of cells for which values of ˆ b 
are available by FRA1. (b) The same of (a) but for FRA2. (c) The same of (a) but for VRA. (d) Time versus ˆ b plot for all subsampling identified by FRA1. 
(e) The same of (d) but for FRA2. (f) The same of (d) but for VRA. (g) Magnitude range DM versus sample size N of all subsamples for which b -value is 
estimated by FRA1. (h) The same of (g) but for FRA2. (i) The same of (g) but for VRA. (j) Maximum magnitude M max versus completeness magnitude M c of 
all subsamples for which b -value is estimated by FRA1. (k) The same of (j) but for FRA2. (l) The same of (j) but for VRA. 
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ho wever , does not include sample variances or uncertainty on b - 
value estimations. 

The second test, the two-sample log-likelihood ratio test, 2S- 
LLRT, judges if S 1 and S 2 have the same distribution, by mean 
of Log-Likelihood Ratio test (Kalbfleisch 1985 ). In this case, the 
statistic test is 

L L R 2 S = L L R 2 S ( S 1 , S 2 ; ̂  b 1 , ̂  b 2 ) = −2 ln 

⎡ 

⎣ 

L L ( S 1 ; ̂  b 1 ) + L L ( S 2 , ̂  b 2 ) 

L L ( S 1 , 2 ; ̂  b 1 , 2 ) 

⎤ 

⎦ , (9) 

where S 1, 2 is the sample obtained by combining S 1 and S 2 , and ˆ b 1 , 2 
is the estimated b-value for S 1, 2 . We apply this test to all couples of 
independent magnitude subsamples, in order to take into account 
both possible temporal and spatial b -values variations. The test for 
each couple of magnitude samples S 1 and S 2 consists of following 
steps: 

(i) We estimate b -value on the magnitude samples S 1 and S 2 , ˆ b 1 
and ˆ b 2 , and we compute L L R 2 S . 
(ii) We produce N B bootstrap resampling from S 1, 2 , we split each 
of them in two samples S 1 ∗j and S 2 ∗j , j = 1,..., N B , with size N 1 and 

N 2 , respecti vel y, and estimate b -v alues ˆ b 1 ∗j and ˆ b 2 ∗j . 

(iii) We compute L L R 

j∗
2 S = L L R 2 S ( S 1 ∗j , S 

2 ∗
j ; ̂  b 1 ∗j , ̂  b 2 ∗j ) and we re- 

ject the null hypothesis, ˆ b 1 = 

ˆ b 2 , if the proportion of L L R 

j∗
2 S ex- 

ceeding L L R 2 S is larger than α. 

P -values of BT2 and BLLR2 are consistently lower than α = 

0.01 when p -values of BT and BLLR tests are low for one of two 
samples in comparison (Fig. 6 ). In other words, significant relative 
variations of b -values are found when the null hypothesis b 0 = 1 of 
one-sample tests is rejected (or is close to being rejected) for one of 
two samples in comparison, showing that response of two samples 
tests is consistent with results provided by one-sample ones. The 
good degree of consistency among test judgements improves relia- 
bility of statistical inferences and helps to extract more ef ficientl y 

information from data. 
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Figure 6. Comparison of p -values for BLLR and 2S-BLLR tests. (a) Histogram of minimum between two p -values of BLLR test for all couples of subsamples, 
defined by FRA1 and tested by 2S-BLLR test, for which the null hypothesis H 0 is not rejected. (b) The same of (a), but for cases of rejection of H 0 . (c) The 
same of (a), but for subsamples identified by FRA2. (d) The same of (b), but for subsamples identified by FRA2. (e) The same of (a), but for subsamples 
identified by VRA. (f) The same of (b), but for subsamples identified by VRA. 

Figure 7. Comparison of cumulative numbers of time frames in which anomalous b -values are detected by FRA1 (blue) and FRA2 (red). 
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Figure 8. b -Values as a function of dynamic range, for the three analysis: FRA1, FRA2 and VRA. Solid lines represent the best fit of formula proposed by 
Geffers et al. ( 2023 ), to model the bias in estimating b at low magnitude ranges. 
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5  D I S C U S S I O N  A N D  C O N C LU S I O N S  

This study is devoted to quantify the variability of b -value in Italy, 
in time and/or space, that is not associated to evolution of important 
seismic sequences. To achieve this goal some key aspects of statistic 
techniques and data selection have been addressed: 

(i) We assume a discrete, geometric, probability distribution 
for magnitudes, to take into account the first decimal rounding, 
which has a negligible impact on b -value estimation, but may af- 
fect statistical test results (Spinelli 2001 ; Haschenburger & Spinelli 
2005 ). 

(ii) We exclude samples with too low size and/or magnitude 
range, to minimize bias in b -value estimation (Geffers et al. 2022 ). 

(iii) We adopt the ND method (Lombardi 2021 , 2023 ) to estimate 
b , since it includes uncertainty on M c . 

(iv) We appl y dif ferent subsampling methods and parametric set- 
ting, to quantify their impact on results. 

(v) We use non-parametric bootstrap algorithms (Efron & Tib- 
shirani 1993 ; Davison & Hinkley 1997 ) in the testing phase, to 
control basic features of magnitude samples, with particular care 
for range. 

The values of ˆ b are on average larger in Central Italy, whatever 
subsampling method would be used (Fig. 2 ), confirming what Taroni 
et al. ( 2021 ) founded by applying a weighted maximum-likelihood 
estimation method on the whole catalogue (i.e. without temporal 
binning). 

By testing the significance of estimated b -values, we find that 
no zone has a b -value systematically different from 1.0, since more 
than 90 per cent of b -value estimations in each cell is not recog- 
nized as anomalous. This result puts into question the influence of 
tectonic regimes and differential stress on earthquake size distribu- 
tion (Schorlemmer et al. 2005 ; Gulia & Wiemer 2010 ; Taroni & 

Carafa 2023 ) and suggest that possible b -value variations may be 
mostly associated with temporary processes. Spotty anomalously 
low b -values, that is significantly lower than b 0 = 1, are founded 
in boundary zones, but this is an artefact of variation of network 
detection across the borders. Consistently with Taroni et al. ( 2021 ), 
we conclude that no zone has a significantly low b -value. Some 
temporary high b -values, that is significantly larger than b 0 = 1, are 
consistently found in Central Italy by all tests by both FR analyses. 
Again, this result is consistent with Taroni et al. (2021), though 
they do not consider the nature, permanent of temporary, of these 
anomalies, since they analyse only spatial and not temporal changes 
of magnitude distribution. 

The VR method does not identify zones and periods in which 
the magnitude distribution changes. As explained above, this is 
due to sampling method applied by VRA. Indeed, considering the 
high seismic rate of this zone, this method select the NR nearest 
neighbour events close to cell centre and covering a magnitude range 
lower than 2.0; therefore these samples are ruled out from testing. 
Also if the different subsampling methods, applied here, provide 
essentially consistent results (Figs 2 and 3 ), the comparison between 
FR and VR methods draw the attention on the sensitivity of the 
detection of b -values changes to the sampling method, confirming 
that data-driv en strate gies could significantly help to resolv e the 
significance of any apparent b-value variation (Kamer & Hiemer 
2015 ). 

In view of these results, some questions arise. The first concerns 
why we find possibly significant anomalies only in Central Italy. 
Certainly, the low size of samples analysed in this work, which 
lead to relati vel y large aleatory uncertainty and low precision on 
the estimate, is a prob lem, w hichever test we apply: just consider 
that Type II error, that is incorrectly failing to reject the null hy- 
pothesis, cannot be fully controlled, especially for small samples, 
and that, then, anomalies may be undetected. In other word, we 
must remember that the non rejection of an hypothesis does not 
mean that it is true, but only that data are not inconsistent with it. 
Therefore, anomalies out of Central Italy cannot be excluded as a 
possibility. 
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The same concerns the systematic nature of anomalies in Central
taly. We cannot exclude the possibility that b is al wa ys larger than
, but there is indication against this thesis: (1) no anomaly is
ecognized for more than 90 per cent of temporal slots of each cell
nd (2) the seismic activity in this area may be strongly influenced by
he presence of fluids (Miller et al. 2004 ; Chiodini et al. 2004 ) and
f unrecognized anthropic activity (Cattaneo et al. 2014 ), that could
ustify temporary high b -values. It is hardy to analyse each single
ase, of course, and to diagnose the reasons for a different magnitude
istribution, with respect to the rest of the national territory. The
ain question which should be answered is if detected anomalously

igh b -values are real or biased by statistical factors. Certainly, the
verlapping timeframes of subsamples detected as anomalous by
RA1 and FRA2 (Fig. 7 ), which all have seismicity in common, and
onsistency of statistical test results strengthening the hypothesis
f a real variation of magnitude distribution. On the other hand,
ome factors raise doubts on the nature of possible mechanisms.
irst, the anomalies are most recognized for magnitude subsamples
overing a range close to 2.0 and for lower M c (Fig. 5 ), for which
here might be still some bias in b -value estimation (Marzocchi
 Sandri 2003 ; Geffers et al. 2022 ). In this regard, Geffers et al.

 2023 ) provides an analytic expression for the bias to high b at
ow DM . The best fit of ˆ b data, as function of DM , converges to
 -values close to 1.0 and indicates a bias up to DM = 2.5, for all
hree analysis (Fig. 8 ). This result identifies the statistical factors
s the most likely cause of detected anomalous b -values. Secondly,
he sizes of supposed anomalous samples are mostly well lower
han 1000, threshold above which any consideration is statistically
obust (Geffers et al. 2022 ). Finally, erroneously high b -values may
e obtained if the GRL is applied on tapered small data samples
Marzocchi et al. 2020 ; Geffers et al. 2022 ). Therefore, even if no
rm statement can be made about the geophysical rele v ance of b -
alues changes that w e ha ve detected, w e interpret the anomalous
igh b -values to be statistically biased (contrary to Taroni et al.
021 ). 

In conclusion, this work supports a cautious approach towards
ssigning significance to apparent b -values variation, on medium
patio-temporal scales, since it indicates small and occasional
hanges, that are possibly artefacts of statistical bias. This calls
nto question hypotheses, such as correlation of magnitude distri-
ution with crustal stress. The stringent statistical requirements,
dopted in this study, highlight the need to produce improvements
n detecting greater numbers of events, at national scale, that would
trengthen their statistical treatment and help the understanding of
nderlying physical processes. 
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A P P E N D I X :  N U M E R I C A L  S T U DY  

We set up some simulation studies to assess the robustness of all 
bootstrap tests outlined in main text. 

We apply one-sample tests, that is BT and the BLLR tests, on 
10 5 synthetic samples, with size N equal to 50, 100, 300, 500, and 
1000, generated from the geometric distribution (eq. 1 in main text), 
with b 0 = 1. The null hypothesis of all one-sample tests is b = b 0 
and, therefore, the proportion of rejections of null hypothesis on 
simulated samples is the empirical Type I error rate and is expected 
to be close to significance level α. As is well known, the risk of 
committing a Type II error, that is incorrectly failing to reject the 
null hypothesis, cannot be fully controlled and can be minimized 
onl y b y increasing the sample size. 

Tables A1 lists the proportion of rejections of the null hypothesis, 
for BT, BLLR tests, for α = 0.01 and 0.05. The number of bootstrap 
resampling is 10 5 . 

The null hypothesis for the 2S-BT and 2S-BLLR tests is that two 
magnitude samples have the same b -value. The numerical study is 
performed by simulating couples of geometric samples, one of size 
N and one of size 2 N , with b = 1. Table A2 lists the proportion of
rejections of the null hypothesis. Also in this case, the Type I error 
is well controlled. 
-sample tests at significance level α = 0.05 and α = 0.01. These 

N 

300 500 1000 
.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 

94 0.050 0.0089 0.049 0.0091 0.048 
51 0.050 0.008 0.049 0.0073 0.046 

and 2S-BLLR test. In each sample for all values of N and b , and 
 I error of the tests 

N 

300 500 1000 
.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 

59 0.051 0.0061 0.048 0.0092 0.046 
86 0.050 0.0084 0.049 0.0072 0.038 
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