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Abstract: Potential CO2 leakage from deep geologic reservoirs requires evaluation on a site-specific
basis to assess risk and arrange mitigation strategies. In this study, a heterogeneous and realistic
numerical model was developed to investigate CO2 migration pathways and uprising time in a
shaly overburden, located in the Malaysian off-shore. Fluid flow and reactive transport simulations
were performed by TOUGHREACT to evaluate the: (1) seepage through the caprock; (2) CO2-rich
brine leakage through a fault connecting the reservoir with seabed. The effect of several factors,
which may contribute to CO2 migration, including different rock types and permeability, Fickian and
Knudsen diffusion and CO2 adsorption in the shales were investigated. Obtained results show that
permeability mainly ruled CO2 uprising velocity and pathways. CO2 migrates upward by buoyancy
without any important lateral leakages due to poor-connection of permeable layers and comparable
values of vertical and horizontal permeability. Diffusive flux and the Knudsen flow are negligible
with respect to the Darcy regime, despite the presence of shales. Main geochemical reactions deal with
carbonate and pyrite weathering which easily reach saturation due to low permeability and allowing
for re-precipitation as secondary phases. CO2 adsorption on shales together with dissolved CO2

constituted the main trapping mechanisms, although the former represents likely an overestimation
due to estimated thermodynamic parameters. Developed models for both scenarios are validated
by the good agreement with the pressure profiles recorded in the exploration wells and the seismic
data along a fault (the F05 fault), suggesting that they can accurately reproduce the main processes
occurring in the system.

Keywords: carbon capture and storage; CO2 migration; fluid flow and reactive transport simulations;
Sarawak Basin

1. Introduction

Carbon capture and storage (CCS) is a promising technology able to stabilize and
reduce the atmospheric concentration of anthropogenic CO2 by storing this greenhouse gas
underground in deep geologic formations [1–3]. In order to minimize hazards associated
with this technology and to ensure a safe storage of CO2 at depth, possible leakage risks
from the reservoir have to be carefully evaluated.

Three main leakage processes in CO2 storage are commonly reported in literature [4–7]:
(1) over-pressurization in the CO2 storage reservoir that exceeds the capillary breakthrough
pressure of the caprock [8], (2) leakage through fault/fracture systems that forms due
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to regional tectonic, fault reactivation or creation of new fractures if injection exceed the
minimum rock strength [9,10], and (3) chemical degradation and/or mechanical failure of
the cementing of uncased, poorly maintained or undocumented wells [11,12].

Although porosity, permeability, capillary entry pressure [13–15] and injection pres-
sure [7] mainly control the fluid flow and the transport processes in porous media, CO2
migration can be also ruled by chemical processes. CO2, indeed, is a highly reactive fluid
and when it comes into contact with the host rock and the caprock can produce minerals
alteration which may, in turn, sensibly alter porosity and permeability [16]. Therefore, the
effect of geochemistry on fluid flow should be always considered [17].

In the frame of a feasibility study for CO2 storage—Enhanced Gas Recovery (EGR), the
goal of this paper is to evaluate the overburden capacity to retain CO2 at depth and investigate
possible migration pathways and the uprising timescale of CO2 in case of leakage. The
structure we focused on is located in a basin off-shore Malaysia and consists of a carbonate gas
field with a heavy CO2 contamination of 70%, overlined by a heterogeneous shaly overburden.
Fluid-flow and reactive transport models were simulated by TOUGHREACT code [18,19]
to achieve our objective. In particular, we investigated the CO2 leakage from the top of
the reservoir into the overburden (Scenario 1) and the leakage of CO2 throughout a fault
connecting the reservoir with the seabed (Scenario 2; Figure 1). We neglected leakage from
wells since it is strictly dependent on well-bore built characteristics (e.g., cement type, casing).
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a diameter comparable to the mean free path of the gas molecules, non-Darcy flow 
conditions may be established [22]. In such a case, gaseous molecules will collide more 

Figure 1. 2D sections of selected structures showing the investigated CO2 leakage scenarios: (a)
overpressurization of carbonate reservoir; (b) leakage through the FO5 fault. The legend represents
the clay content of rock formations (volume fraction). White lines highlight the Seal 6 and Seal 4
horizons. The black (not active) and red (active) lines represent the FO5 fault.

Numerical simulations of shale overburden are challenging since the porous medium
is not homogeneous, and the permeability is generally low. Therefore, a realistic rep-
resentation of heterogeneity is a pre-requisite to effectively predict the CO2 migration
pathways [20,21] along the overburden. In shales, which contain very narrow pores with a
diameter comparable to the mean free path of the gas molecules, non-Darcy flow conditions
may be established [22]. In such a case, gaseous molecules will collide more often with the
pore walls and not very frequently with other molecules [23,24]. This additional flux, due
to molecular interaction with porous medium [23], enhances the gas flow rate and should
be considered in the models together with advective flow.
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Shale contain clay minerals and organic matter. Due to its micropore structure, shale
has the capacity to absorb CO2, mitigating leakage impact in case of CO2 migrating through-
out the caprock. Indeed, the very narrow pores of shales create intimate fluid-rock interac-
tions that could lead to the physical adsorption of gas, trapping leaked CO2 [7]. Ref. [25]
investigated the CO2 sorption capacity for Belgium black shale which is about 7.9 kg/t of
the formation, while [26] showed the sorption capacity for CO2 is around 5.5 kg/t for the
Muderong Shale (Australia).

Depending on specific objectives, numerical modelling studies often considered the above
mentioned topics separately and/or used a simplified approach to optimize the computational
effort. As an example, the heterogeneity of the porous medium was often not taken into
account or was analyzed using geostatistical approaches and random models [27] resulting in
less accurate prediction of the subsurface plume behavior [28]. As an alternative, coarse grids
were employed by upscaling rock properties to reduce the cells number thus incurring in an
overestimation of CO2 solubility [29] and migration velocity [28]. On the contrary, simulations
involving high resolution models considered a limited extension of the domain [20].

In numerical simulations, geochemical processes are sometimes neglected because the
time-scale for reactions is retained too long to have significant effect in the short time, thus
missing the effect of fast-kinetic minerals on fluid flow. Moreover, performing fully coupled
reactive transport models is still challenging due to the low computational efficiency of
multiphase flow, especially when pertinent mineralogical assemblage is considered [30,31].

Finally, gas adsorption, non-Darcy flow and Fickian diffusion are significant mecha-
nisms but they are generally considered only in shale-gas reservoir modelling [32] without
coupling geochemical reactions.

With respect to previous works, this study attempts to investigate at the same time
various key processes of fluid migration in heterogeneous shaly overburden as Knudsen
diffusion, Fickian molecular diffusion, CO2 sorption on clays and the effects of geochemical
reactions on CO2 migration. A very realistic numerical model was developed by using
the large amount of available site-specific data, obtained during the well drilling as cores,
wireline logs, seismic data, laboratory analyses and experiments. This site-specific informa-
tion provided an accurate description of 3D strata geometry and lithology, porosity and
permeability distributions in the reservoir and in the overburden formations.

Understanding the effects of these phenomena on fluid flow will help us effectively
improve our knowledge on fluid migration throughout shales. Moreover, due to the
widespread diffusion of shaly overburden, the results obtained in this study can be easily
exported to other sites potentially suitable for CO2 geological storage.

2. Site Description and Characterization

The investigated area is located north of Central Luconia Province offshore Sarawak
Basin, East Malaysia. The Luconia Province, extends for 240 × 240 km and is one of the
largest of the southeast Asia carbonate provinces [33]. Its structural-stratigraphy evolu-
tion is closely related to the opening of the South China Sea [34–36] which started in the
Oligocene and has established a regional pattern of horst and graben structures [37]. During
Early to Late Miocene carbonate deposition started on structural highs of siliciclastics [38]
and over 250 carbonate platforms have formed across the province. The interplay among
eustatic sea-level, basinal tectonics and clastic sediment supply, governed intermittent car-
bonate and siliciclastic deposition, producing VIII regional cycles with several transgressive
and regressive sequences. The structure, on which this study focuses, is constituted by
Pliocene sediments (VI and VII cycles), separated by rapid and widespread transgressions
discordantly overlaying a middle Miocene carbonate reservoir (V cycle). The overburden
formations consist mainly of interbedded silt, silty clay and shale intervals and can be di-
vided in three main horizons based on the contrast in sonic-log velocity (from the top): soft
sediments lying below sea bed, the Seal 6 and the Seal 4 overlying the reservoir (Figure 1).
Based on the quick correlation of lithofacies from well log information, the presence of silt
layers is prominent in Seal 6, while the shale dominates Seal 4 with some intercalation of
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silt. The carbonate reservoir, hosting a saline aquifer (26 g/L), is approximately 2 km below
sea-level, where the water depth is about 120 m. A gas cap contaminated by 70% of CO2 is
present, with a water-gas contact at 2200 m depth.

Several faults, connecting the reservoir to the overburden, are present in the investi-
gated system. All of them remain within the Seal 4 top except the FO5, which connects the
reservoir to soft sediments reaching 300 m depth.

Three wells were drilled to investigate the structure, providing the main information
about lithology, geothermal and geobaric gradients. Petrophysical investigations (i.e., X-Ray
Diffraction combined with Rietveld refinement, X-Ray Fluorescence, electron microscopy
and microanalysis), carried out on core samples [39], show that the shaly overburden
(Seal 6 and Seal 4 formations) is mainly composed of quartz and anorthite (from 35 to
51% w/w). Fe-Illite, kaolinite and chlorite participate from 31 to 40% w/w with minor Fe-
muscovite (11% w/w). Finally, minor amounts of calcite, dolomite and Fe-rich carbonates
belonging to dolomite-ankerite series are present (from 7 to 14% w/w). Unfortunately, core
samples of soft sediments were not available for analysis. The carbonate reservoir is mainly
constituted by calcite, dolomite and Fe-rich carbonates belonging to dolomite-ankerite
series (76% w/w). Minor quartz, anorthite, Fe-muscovite (14% w/w) and clay minerals
(Fe-illite, chlorite and kaolinite, 10% w/w) are also present. Pyrite is present in all the
samples even if in unquantifiable amounts (<1% w/w).

Temperature and pressure gradients show a hydrostatic trend from the surface to
around 1400 m depth (76 ◦C and 15 MPa), roughly corresponding to Seal 4 top. From this
horizon to the reservoir a high temperature-high pressure zone is present (about 133 ◦C
and 315 MPa at about 1900 m, top reservoir).

3. Numerical Modeling

TOUGHREACT V2 [18,19] code is used to perform a fully-coupled, simultaneous
solution of mass and energy balance for multi-component, multi-phase fluids in permeable
media coupled with a multiphase extension of Darcy’s Law. The full description of the
TOUGHREACT governing equations are reported in [19].

The hot fluid circulation in the system is simulated using a modified ECO2N module
(see Section 3.1), which incorporates CO2-H2O equations of state in the temperature and
pressure range 0–300 ◦C and 0–600 bar, respectively. The contribution of the other gasses
present in the gas cap was neglected.

The relative permeability of gas and liquid phases is calculated from the van Genuchten–
Mualem model [40,41] and capillary pressures from van Genuchten’s function [41] accord-
ing to the method described by [42]. The parameters used for these functions (Table 1) were
indirectly obtained by MICP analysis [39] on core samples for Seal 6, Seal 4 and reservoir,
after conversion from mercury to subsurface CO2-water values.

Table 1. Parameter for TOUGHREACT capillary pressure [41] and relative permeability [40,41] functions.

Sample λ Slr 1/P0 P Sgr

Seal 6—soft sediments 0.243 0.274 3.211 × 10−8 1.200 × 108 0.041
Seal 4 0.223 0.209 2.872 × 10−7 1.200 × 108 0.051

Reservoir 0.327 0.539 8.412 × 10−8 1.200 × 108 0.008
λ: is the van Genuchten pore-size distribution index, obtained by fitting MICP data; Slr: irreducible liquid
saturation; P0: pressure scaling parameter; P: maximum capillary pressure; Sgr: irreducible gas saturation.

Molecular diffusion was considered in simulating transport of aqueous CO2. As shown
by [39,43] geochemical reactions and adsorption on shales can significatively retard CO2
diffusion front where the concentration gradient is larger. Therefore, two different diffu-
sion coefficients were used for fluid flow and reactive transport simulations. A constant
value of 2.8 × 10−11 m2/s, obtained by reaction-diffusion laboratory experiments, performed
on core samples [39] at in-situ condition, was used for the fluid flow model; whereas a
coefficient of 1.61 × 10−10 m2/s was applied for the reactive transport model. The lat-
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ter was computed reproducing, by modeling with TOUGHREACT, the reaction-diffusion
laboratory experiments and considering CO2 adsorption and geochemical reactions (see
Section 3.3) processes. No temperature and pressure dependence of diffusion coefficient was
modelled, since CO2 reaction-diffusion experiments show comparable values ranging from
2.8 to 3.12 × 10−11 m2/s after 5 days at different temperatures (75, 105 and 145 ◦C) [39].

In order to take into account also the non-Darcy flow regime, Knudsen diffusion [44]
was included in the model. In TOUGHREACT the Knudsen diffusion is simulated by
correcting the permeability as a function of the pressure:

ka = k
(

1 +
b
P

)
(1)

where ka is gas permeability (m2); k is permeability at infinite pressure (m2), P is pressure
(MPa) and b is the Klinkenberg slippage factor (MPa) [44] which is used to calibrate
permeability measurements when the pore space approaches the mean free path of the gas.
Based on N2 permeameter measurements on the core samples, a b value of about 0.07 MPa
was estimated and employed in the model.

3.1. Code Modification

The original TOUGHREACT V2 code by means of the ECO2N model [45,46] repro-
duces fluid properties for temperature and pressure within the ranges 10 ◦C < T < 110 ◦C,
p < 600 bar, and salinity conditions up to halite saturation. To simulate the relatively high
temperature gradient of the investigated site, TOUGHREACT source code was modified to
account for temperatures up to about 300 ◦C and for the effect of water on thermo-physical
properties of CO2 rich phase (according to [46]), excluding water boiling. This includes
density, viscosity, and specific enthalpy of fluid phases as functions of temperature, pres-
sure and composition, as well as partitioning of mass components H2O, NaCl and CO2
among the different phases.

The modified code uses the original model for mass partitioning of [46] but includes
also the new high temperature model (>109 ◦C) of [47]. The modified code was validated
by comparisons with the results reported in [47] and in the TOUGH2-ECO2H manual [48].

3.2. Geochemical Modeling

Geochemical calculations were performed under the local equilibrium assumption for
aqueous species, whereas mineral dissolution and precipitation proceeded under kinetic
conditions. The general transition state theory [49–51] equation (Equation (2)), which includes
temperature dependence of the rate constants and reaction terms for acid (H+) and neutral
mechanisms [50,52,53], was used. For carbonate reactions, the carbonate mechanism [54],
which includes the reaction order n with respect to PCO2, was also considered.

r = S
[(

k298−acidexp
[
−Ea−acid

R

(
1
T − 1

298.15

)]
an1

H+

)
+
(

k298−neutexp
[
−Ea−neut

R

(
1
T − 1

298.15

)]
+
(

k298−baseexp
[
−Ea−base

R

(
1
T − 1

298.15

)]
an1

OH−

))
](1 − Ω)

(2)

where r is the kinetic rate (mol/m2 s; positive values indicate dissolution, while negative
values refer precipitation), S is the specific reactive surface area (m2/g), k298.15 is the rate
constant at 298.15 K (mol/m2 s), Ea is the activation energy (J/mol), R is the gas constant
(8.314 J/molK), T is the absolute temperature (K), a is the aqueous activity of the species,
n is the order of the reaction, and Ω is the mineral saturation index.

All the kinetic parameters employed in Equation (2) are taken from [52]. In the model
we used the siderite as a proxy for Fe-rich carbonates belonging to dolomite-ankerite series,
to take into account the non-negligible iron content (3.69%–17.78%) observed at SEM-EDS
analyses [39]. Reaction-diffusion experiments performed on core samples show comparable
alteration velocity of calcite and Fe-rich carbonates at the CO2 reaction front, after 2 and



Minerals 2023, 13, 1016 6 of 21

5 days [39]. Therefore, we used the same kinetic parameters for calcite and siderite Values
of muscovite and smectite were used as proxy for Fe-muscovite and Fe-illite, respectively.

Specific reactive area of minerals (Table 2) was computed as geometric area on the basis
of SEM-EDS images [39] assuming that mineral grains have spherical, cylindrical or plate-
like shape. The geometric area was calibrated by a numerical model with TOUGHREACT
reproducing diffusion experiments (see Section 3.3).

Table 2. Mineralogical composition (volume fraction) and specific reactive area (S, m2/m3) used in
reactive transport model (RTM) simulations. Laboratory data (XRD, XRF, SEM-EDS) of Seal 4 and
Seal 6 were recomputed in function of the 7 clay content classes identified. For reservoir formation no
clay content classes were defined due to the low content.

Clay Class 0–0.063 0.063–0.142 0.142–0.282 0.282–0.422 0.422–0.562 0.562–0.702 >0.702 Res. S 106 (m2/m3)

Seal 4
Kaolinite 1.16 3.76 7.78 12.92 18.06 23.20 28.27 6.38
Fe-Illite 1.91 6.20 12.83 21.30 29.77 38.24 46.59 4.50
Chlorite 0.09 0.29 0.59 0.98 1.37 1.76 2.15 5.11
Quartz 52.90 48.95 42.85 35.06 27.27 19.48 11.79 1.78

Fe-celadonite
(Fe-muscovite) 17.46 16.18 14.21 11.68 9.16 6.63 4.14 3.58

Anorthite 7.23 6.70 5.88 4.84 3.79 2.75 1.72 2.34
Siderite 11.38 10.54 9.26 7.61 5.97 4.32 2.70 2.15

Dolomite 5.08 4.71 4.14 3.40 2.67 1.93 1.21 1.19
Calcite 1.80 1.67 1.47 1.21 0.95 0.69 0.43 1.32
Pyrite - - - - - - - 0.09
Seal 6

Kaolinite 0.83 2.69 5.56 9.23 12.90 16.57 20.19 17.73
Fe-Illite 2.01 6.53 13.50 22.41 31.33 40.24 49.03 12.50
Chlorite 0.32 1.04 2.14 3.56 4.97 6.39 7.78 14.20
Quartz 55.07 50.96 44.62 36.51 28.41 20.30 12.31 4.83

Fe-celadonite
(Fe-muscovite) 13.77 12.76 11.20 9.21 7.22 5.23 3.27 9.95

Anorthite 17.03 15.78 13.86 11.39 8.93 6.47 4.04 6.50
Siderite 3.93 3.64 3.20 2.63 2.06 1.49 0.93 5.98

Dolomite 3.43 3.18 2.79 2.30 1.80 1.30 0.81 3.30
Calcite 2.62 2.43 2.13 1.75 1.37 1.00 0.62 1.32
Pyrite - - - - - - - 0.02

Reservoir
Kaolinite 4.70 17.73
Fe-Illite 3.85 12.50
Chlorite 1.59 14.20
Quartz 10.04 4.83

Fe-celadonite
(Fe-muscovite) 1.57 9.95

Anorthite 2.05 6.50
Siderite 0.64 5.98

Dolomite 11.63 3.30
Calcite 63.94 0.99
Pyrite 1.00 0.05

Thermoddem database [55] was re-computed by SUPCRT92 [56] code at a pressure of
22.6 MPa, representing the centroid pressure of the structure.

CO2 adsorption in clay rocks was modelled by adding a fake “mineral” (CO2ads) to the
thermodynamic database. This approach allowed us to simulate chemical reactions between
the surface of the adsorbent (clays) and the adsorbate molecules (CO2) as a function of clay
minerals volume fraction and PCO2. [57] evaluated the CO2 sorption potential on shales
and provided fitting parameters of experimental data for Langmuir, Freundlich and Toth
isotherm equations at 473, 623 and 773 K. In this work, Freundlich model (Equation (3))
with kF and m parameters [57] was chosen because the CO2 partial pressure (term P) is
internally computed in TOUGHREACT:

C = kF×P1/m (3)
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where C (mmol/g) is the amount of CO2 adsorbed, kF is the Freundlich equilibrium constant
(mmol kPam/g), m is a parameter reflecting the heterogeneity of the system [58] and P is
the CO2 partial pressure.

To rewrite the Freundlich adsorption isotherm in the TOUGHREACT database formalism,
i.e., using HCO3

− and H+ as primary species, we can consider the following equation:

PCO2 =
[H+]

[
HCO−

3
]

k1kh
(4)

and substitute the PCO2 (Equation (4)) in Equation (3), thus obtaining:

log [Cads] = log kF +
1
m
(
log
[
H+
]
+ log

[
HCO−

3
]
− log k1 − log kh

)
(5)

where Cads is the amount of adsorbed CO2 in shales, [H+] and [HCO3
−] are the activities of

ionic species, k1 and kh are the equilibrium constant of carbonic acid dissociation and the
solubility constant of CO2, respectively.

LogCads were computed using kF and m parameters as provided at temperatures of 473,
623 and 773 K [57] and further interpolated to temperatures required by TOUGHREACT
database (Table 3). To compute CO2ads equilibrium constants, the dissolution reaction
reported in Table 3 was added in the thermodynamic database.

Table 3. Dissolution reaction and relative equilibrium constant (LogCads) of CO2(ads) phase added to
the THERMODDEM database.

Mineral Dissolution Reaction LogCads
0 ◦C

LogCads
25 ◦C

LogCads
60 ◦C

LogCads
100 ◦C

LogCads
150 ◦C

LogCads
200 ◦C

LogCads
250 ◦C

LogCads
300 ◦C

CO2ads CO2ads + H2O = H+ + HCO−
3 −7.3403 −7.0983 −7.0033 −7.0973 −7.4013 −7.8483 −8.4203 −9.1573

LogCads values follow the TOUGHREACT format, i.e., at eight different temperatures (0, 25, 60, 100, 150, 200, 250
and 300 ◦C) and pressures (1 bar from 0–100 ◦C, and after vapor pressure).

Since kinetic parameters for CO2ads are not available, reaction at equilibrium condition
was assumed.

3.3. Reaction-Diffusion Experiments Model

Diffusion coefficient (1.61 × 10−10 m2/s) for Reactive Transport Model (RTM) and
specific reactive area of minerals (Table 2) were initially obtained by reaction-diffusion
experiments (Figure 2) and laboratory analyses performed on core samples [39], respec-
tively. Data were successively calibrated by a simplified numerical model, reproducing
the experiments and considering CO2 adsorption and geochemical reactions. The 1D
model, representing the rock specimen, is 0.55 cm long, fully saturated in pure water and
discretized by a uniform grid of 100 cells (0.05 mm each one). An infinite boundary element
of the same dimension, with CO2(g) saturation of 0.5 at in situ temperature for Seal 6, Seal 4
and reservoir samples (i.e., 75 ◦C, 105 ◦C, 415 ◦C and 140 ◦C, respectively) and 60 bar of
PCO2, was added at the left side of the domain, representing the part of the specimen in
contact with CO2-rich water. No flow was assigned to the right boundary of the domain.
Simulations were performed with the modified version of TOUGHREACT (see Section 3.1)
by using input data and parameters as above described.
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4. Models Parameters

The numerical simulations were performed using both fluid flow and reactive trans-
port models to evaluate the impact of CO2 reactions on leakage pathways and timescales.

Existing 3D models of the area based on seismic and well log data analysis, which
include geometries of the main horizons (i.e., seabed, Seal 6, Seal 4, top reservoir), faults
nearby the reservoir and main petrophysical properties (bulk density, total and effective
porosity, permeability, clay content), were provided by Petronas, with a vertical resolution
of 20 m and a horizontal resolution of 200 m × 200 m. These data were used to build and
populate the computational domains employed in the numerical simulations (see Section 5).

A heterogeneous porous medium was modeled by using provided 3D models of clay
content, porosity and both vertical and horizontal permeability [59]. These data, with
a resolution of 20 m, were mapped at the cells of the domain defining 15 different rock
types based on the clay content values. In particular, each cell of the domain was classified
in 7 classes: silt (<0.063 fraction volume of clay content); silty clay (0.063–0.142 fraction
volume of clay content), and five shale rocks (clay1: 0.142–0.282; clay2: 0.282–422; clay3:
0.422–0.562; clay4: 0.562–0.702 and clay 5 > 0.702 fraction volume of clay content) both for
Seal 6-soft sediments and Seal 4; whereas a rock type constituted by carbonates was defined
for the reservoir. Porosity values range from 9 to 35% in the reservoir and from 20 to 33%
in the Seal 4 and Seal 6. Permeability was set to 1 × 10−13 m2 for the reservoir, whereas
for the overburden three permeability models were created based on different approaches.
Permeability Model A is generated from clay and porosity values after calibration with
core lab analyses [59]; Model B assumes the same permeability distributions of Model A
but imposes a fix value of 0.003 mD for the five shale rocks, in agreement to average per-
meability measurements in other wells in the investigated area (Petronas communication);
Model C scaled down the permeability values of Model A by a factor of 100 in shale rock
type. In all the permeability Models, horizontal permeability is always higher than vertical
one, with an average ratio ranging from 0.16 to 0.88.

For each of the 15 rock types, specific heat capacity and thermal conductivity were
indirectly defined as a function of thermal properties of all rock forming mineral phases
with respect to their abundances as obtained by XRPD analysis [60–62]. The domain is fully
saturated by water. Since Seal 6-soft sediments are in hydrostatic equilibrium with sea a
NaCl mass fraction of 0.034 was assigned; whereas 0.02 NaCl mass fraction, corresponding
to salinity of the reservoir (Petronas data), was used for Seal 4 and reservoir.

In the RTM model, initial mineralogical and aqueous composition was assigned
for each of the 15 defined rock types. The solid phases were defined on the basis of
core samples laboratory analysis (XRPD, XRF and SEM-EDS) [39] and recomputed to
redistribute the average mineral percentage as a function of the clay content (Table 2). For
soft sediments (top domain) the same mineral assemblage of Seal 6 was used, since no
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laboratory information on this section of overburden is available, whereas for the reservoir
the composition obtained by the corresponding rock sample was used. To accomplish
the high Fe content in muscovite, Fe-Celadonite (KFeAlSi4O10(OH)2) was used in the
models instead of muscovite (KAl2(AlSi3)O10(OH)2) since it is the Fe-K end-member of
muscovite-celadonite series.

Mineral assemblage already includes primary and potential secondary phases. More-
over, analysis and diffusion experiments show primary carbonate dissolution and weather-
ing of pyrite to form secondary carbonates belonging to siderite-ankerite series. Therefore,
no secondary minerals were added to the model.

In agreement with fluid flow conditions, a typical seawater composition (35 g/L) was
used for Seal 6-soft sediments; whereas a 26 g/L NaCl equivalent water was used for Seal 4
and reservoir.

5. Leakage Scenarios

CO2 leakage from the carbonate reservoir toward the seabed may occur for different
processes over different timescales. Two scenarios were formulated; the Scenario 1 represents
the leakage from the top of the reservoir in the overburden and the Scenario 2 supposes the
leakage of CO2 throughout the F05 fault connecting the reservoir to seabed (Figure 1).

The domain geometry is derived from the interpolation of the layer interfaces on the
computational grid. In the horizontal direction, the cell resolution is variable with a finer
value (20 m) near the reservoir and the F05 fault, and coarser (200 m) at the outermost
boundary. Vertical resolution is always 20 m. The lateral boundaries are far enough to
prevent boundary conditions affecting the numerical solutions.

Dirichlet boundary conditions for pressure and temperature are assigned to the top
boundary at the sea level and bottom boundary. Initial temperature and pressure of the
model follow the geothermal and geobaric gradient estimated from wells data measure-
ments. No flow conditions are assigned to the lateral boundaries.

A CO2 mass fraction of 3.7 × 10−5 is assigned to the cells of the domain which are
outside the reservoir (CO2(aq) content of seawater).

The domain of Scenario 1 is constituted by a 3D axi-symmetric model using a section
running from the center of the reservoir top along E-W direction for about 5 km (Figure 3a).
The domain extends vertically from the sea bottom down to 2200 m (the depth of the
current gas-water contact).

The distribution of permeability (Model C) is shown in Figure 3b. The gas cap was
modeled as a CO2 gas bubble within the reservoir by assigning to its cells a gas saturation
equal to one, a CO2 partial pressure of 25 MPa, i.e., corresponding to 70% of total pressure
and a fixed temperature of 133 ◦C. Except for the cells within the reservoir, initial temperature
and pressure of the model follow the geothermal and hydrostatic gradients of the area.

No flow boundary conditions assigned to the left lateral side of the domain warrant
the symmetry condition of the flow along the axis of symmetry.

In the second scenario, we hypothesized the uprising of CO2 along the FO5 fault. The
fault is about 3 km far from the edge of the reservoir and crosses the overburden up to 300 m
depth (Figure 1b). The domain is constituted by a 2D model using a profile starting from
the K5-3 well toward west for about 7 km (Figure 4a) and crossing the FO5 fault. Vertically,
the profile extends from sea bottom down to −2800 m. The distribution of permeability
Model C is shown in Figure 4d. The rock properties were mapped over a section defined
by the E-W section and clearly show a dislocation across the FO5 fault. A damage zone of
300 m width (PETRONAS communication, Figure 4b) is estimated from seismic data and
modeled around the FO5 fault. Values of 10 mD and 1 mD were assigned to the damage
zone for permeability Models A and C, respectively, which are around 100 times higher
than the shale permeability in the overburden rock formations. The permeability of the
damage zone falls in the range of 1–10 mD reported in literature for fractured shales [63]
and represents the worst possible scenario.
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Note that the seismic section is reflected as if in a mirror with respect to the numerical domain of
Scenario 2. (c) Distribution of porosity and rock type and (d) distributions of horizontal (permH) and
vertical (permV) permeabilities for Model C in the computational domain. The P well is positioned
on the left lateral boundary of the domain. The black line represents the FO5 fault. Permeability
Model A is shown in Figure S2 in Supplementary Material.
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The performed simulation in Scenario 2 assumes that the reservoir water phase, at the
bottom of the domain, is saturated in CO2, since its depth is below the gas water contact
level (2200 m depth). On the cells belonging to the domain bottom, a mass fraction of
0.05 is assigned, which corresponds to the CO2 saturation at in situ condition (temperature,
pressure and salinity) after equilibrium with carbonates (e.g., calcite). The CO2(aq) mass
fraction is estimated using the solubility models of [64,65].

6. Results and Discussion
6.1. Scenario 1—Leakage from Reservoir

In Scenario 1, simulations were set up to reconstruct the pressure gradient measured
in exploration wells and investigate the possible migration of CO2 from the top of the
carbonate reservoir throughout the overburden.

In the fluid flow model, the numerical simulation outputs provide the distributions of
gas saturation (Sg) and CO2 mass fraction (XCO2) in the liquid phase over time. Depending
on the permeability model, after 10,000 years gaseous CO2 upraises at about −800 m
in permeability Model A (Figure S3), −1600 m in Model B (Figure S4) and −1700 m in
permeability Model C (Figure 5a). The aqueous CO2 distribution has a similar behavior.
After 300,000 years the XCO2 = 0.04 (i.e., 0.98 mol/L) reaches −800 m in Model B (Figure S4)
and −1300 m in Model C (Figure 5b). As a consequence, the upward propagation velocity
is faster for Model A (77 m/1000 y) than Models B and C (2 m/1000 y and 1 m/1000 y,
respectively). Since Models A and C represent the two permeability end-members, hereafter
only results of these two Models will be presented and discussed.
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The comparison between the Darcy and diffusive flux (permeability Model C is reported
in Figure 6, whereas Model A is shown in Figure S5) shows that the latter mainly contributed
at the propagation front in low permeability systems, where the contribution of the diffusive
flow becomes more important, owing to the higher CO2 concentration gradient.

The range of flow regimes in shales depends on the pore throat sizes and the pressures.
Knudsen diffusion becomes important with pores on the order of a few micrometers and
low pressures. Based on measured Klinkenberg slippage factor (0.07 MPa), the estimated
Knudsen coefficient at reservoir/caprock condition is on the order of 10−4, which is in a
range where the flow is mainly in the Darcy regime and hence Knudsen diffusion could be
considered negligible [23].

In all permeability Models CO2 migrates mainly upward due to the buoyancy effect
and no lateral propagation is observed. This may be due to the lack of lenses of high
permeability rocks in the analyzed E-W section. Then, to examine if the presence of
higher permeability lenses may favor lateral migrations, other sections were explored by
inspecting the presence of well-developed and connected lenses with clay content lower
than 0.142 fraction volume. Along a N-S section, running from the top of the reservoir
toward North (Figure 7), a network of connected lenses at a depth of about 1400 m was
found. Therefore, further simulations were performed by setting up a computational
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domain along this section. Simulation results for permeability Models A and C show that
notwithstanding the presence of connected horizontal higher permeability lenses, no lateral
CO2 migration is achieved (Figure 8 for Model C and Figure S7 for Model A) and both the
uprising depth and velocity of CO2 are very similar to those obtained along the E-W section.
Moreover, the average vertical to horizontal permeability ratio in our system ranges from
0.16 to 0.88, so the two permeabilities are similar.
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the computational domain derived for the section. Permeability Model A is shown in Figure S6 of
Supplementary Material.
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Ref. [66] investigated the CO2 migration in heterogeneous formations (alternating
shale- and sand-rich layers), partially filled with oil and limited sealing capabilities, de-
veloping a sequestration strategy based on simultaneous multi reservoir layer injection.
They suggested that injected CO2 spreads out laterally in small permeable layers driven
by buoyancy. Where CO2-brine capillary pressure exceeds the threshold pressure CO2
can move vertically according to a combination of lateral and vertical migration, until it is
trapped by dispersion trapping.

Differently to what is proposed by [66], in our systems the permeability ratio (permV/pe-
rmH) is not small enough to generate lateral leakages from the reservoir. Furthermore, we
simulated migration from reservoirs and not simultaneous injection in sandy layers, which
would have maximized lateral dispersion of CO2. On the other hand, we cannot exclude the
20 m grid resolution may not be enough to reveal smaller lenses that might lead to lateral
leakages. However, we found in the Seal 6 upper levels, hints of lateral migration after
300,000 y when considering permeability Model B (Figure S4 in Supplementary Material).

The preferential vertical migration in a heterogeneous system was modeled also by [67],
for the Ketzin storage site. They found that with a permeability ratio of 0.33 the main
migration process is the buoyancy and that to have a lateral migration a permV/permH
ratio of 0.01 is needed.

Figure 9 shows the pore pressure profiles measured in the three wells and those
computed by simulations for permeability Model C (results for permeability Model A are
shown in Figure S8 of Supplementary Material) in both E-W and N-S sections at steady state
conditions (after 300,000 years). Simulated results are in good agreement with field data,
mirroring the gas migration and providing validation of the developed model for Scenario 1.
Depending on the permeability Model and section, the depth of the overpressured area
changes from 1300 m to 1500 m. The best fit is reached for permeability Model C along the
N-S section. Over time the pore pressure propagates from the reservoir until the top of
Seal 4, which therefore does not constitute an effective barrier to CO2 uprising.

In order to investigate the effect of geochemical reactions on CO2 migration, a reactive
transport model was implemented. The addition of the chemistry in the model generates a
little lower convergence with respect to pure fluid flow and gives a significant increase in
the runtime. Then, to optimize computational time and considering the pressure profile
results, only permeability Model C was investigated by RTM.

As expected, the RTM simulations show that the main reactions occur in the reservoir
and at the reservoir-caprock interface.

Figure 10 shows carbonate weathering after 10,000 years. Calcite dissolves up to
1 × 10−4 vol.% in a restricted area in the upper part of the reservoir and along the reservoir-
caprock interface (Figure 10a). Dolomite and siderite dissolution (up to 1 × 10−4 vol.% and
8.6 × 10−4 vol.%, respectively; Figure 10b,c) affects a wider portion of the reservoir from the
top to almost the bottom of the domain. Consequently, porosity (Figure 10d) increases at the
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reservoir-caprock interface (up to 0.054%). Kaolinite dissolves (up to −1.0 × 10−4 vol.%;
Figure 11b) in the reservoir and in Seal 4 and Seal 6, whereas it forms in soft sediments.
Also pyrite slightly dissolves in the reservoir and in all the Seal 4, following the carbonate
weathering zone, whereas it precipitates at the reservoir-caprock interface. Quartz little
forms in the reservoir while it dissolves in the overburden.
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A weathering zone develops also from the top of the reservoir penetrating into Seal 4
up to about 300 m with the dissolution of dolomite and siderite. At the reaction front,
waters rich in salts, originated by mineral dissolution, move away from the CO2-rich
zone (e.g., back diffusion within the reservoir) mixing with “fresh” formation waters and
allowing the precipitation of secondary minerals. This occurs for calcite and siderite which
slightly form in the Seal 4. The extent of these reactions is moderate, since the pH in shale
doesn’t fall below 6.7 (after 10,000 years) and the liquid phase becomes easily saturated in
dissolved minerals reaching the equilibrium condition due to low flow velocity.

In the upper and intermediate part of the domain (i.e., Seal 6 and soft sediments),
where CO2 is not present, some reactions occur, consisting of alteration of plagioclase
(anorthite; Figure 11a) to produce kaolinite (Figure 11b) and carbonates. These reactions are
mainly due to the fluid exchange between different lithotypes in close contact, e.g., sand-
shale, that have formation waters composition different from each other.

Fe-Illite, chlorite and Fe-celadonite remain quite stable in the whole domain for the all
simulated time.

Adsorption of CO2 was modeled as a “fake” mineral at the equilibrium condition with
zero initial concentration. After 10,000 years the CO2 is mainly adsorbed in the central
portion of the reservoir (up to 17,200 mol/m3). The adsorbed CO2 distribution substantially
follows the CO2 plume, penetrating in the caprock for about 50 m.

The computed CO2ads is two orders of magnitude higher than that values obtained
in laboratory experiments by e.g., [25,26,68] which found values ranging from 222 to
470 mol/m3. This adsorption overestimation could be due to several factors, which are:
(1) the maximum adsorption capacity of shales is not considered in our model and this
leads to theoretically infinite adsorption capacity; (2) a general feature in CO2 adsorption
isotherms is a continuous decline after a maximum value [26,68]. This declining part of the
isotherms occur at high pressures (>9 MPa; Busch et al., 2008) which has been attributed to
a volumetric effect (volume of the sorbed phase, sample swelling; [69]) not reported in the
results of [57] from which we computed the LogCads; (3) the clays used in [57] experiments
could have some textural differences from the shales considered in this study, affecting
the properties of sorbent phases and their surface parameters. The scarcity of CO2ads data
obtained in different formations and the fact that most of experimental data are measured
at laboratory or at lower temperatures (25–50 ◦C) with respect to those of our system,
create large uncertainties and are likely the reasons for the high adsorption values we
obtained from our simulations compared to other works. Indeed, according to [70] the CO2
adsorption capacity increases with temperature.
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6.2. Scenario 2—Leakage from Faults

In this scenario, the uprising of CO2 along the FO5 fault was investigated. Based
on the simulation results of Scenario 1, CO2 migrates almost upward from the reservoir
without any significant lateral propagation. Therefore, we neglected the possibility that
CO2 leakage from caprock may laterally reach the FO5 fault and then propagate upward
through the fault and directly simulated the uprising from the reservoir.

Results for gas saturation and CO2 mass fraction in the liquid phase for fluid flow
simulations are reported in Figure 12, for permeability model C (results for permeability
Model A, are shown in Figure S9 in Supplementary Material). The CO2 rises through the
damage zone of the FO5 fault, due to the higher permeability with respect to the surrounding
rocks. The rising velocity is obviously controlled by the permeability model. Dissolved CO2
reaches a depth of about 800 m in 4000 years for Model C and the same depth in 500 years
for Model A. The different pressure between the top reservoir, where solubility of CO2 is
controlled by gas over-pressure, and the fault, which has a hydrostatic pressure, leads to
the formation of CO2 bubbles. Over time, bubbles form and slowly rise within the damage
zone reaching a depth of about −1500 in 4000 years for Model C and −1500 m in 500 years
for Model A. The CO2 distribution shows the presence of liquid and gas phases within the
damage zone of the FO5 fault. This phenomenon is visible by the seismic attenuation observed
in the seismic section (Figure 4b), confirming also for this scenario the validity of developed
model to reproduce the investigated system. No CO2 lateral flow, throughout more permeable
lenses, is recognized from the damage zone to the overburden.

Minerals 2023, 13, 1016 17 of 22 
 

 

 
Figure 12. Scenario 2, permeability model C. Distribution of: (a) gas saturation (Sg) and (b) CO2 mass 
fraction in the aqueous phase (XCO2) from depth through fault FO5, at three different time steps 
(1000, 2000 and 4000 years). Results for permeability Model A are shown in Figure S9 in Supple-
mentary Material. 

To reduce the computation effort, RTM simulation was carried out for a period of 
1000 years. Over this time, the CO2(aq) present at the fault bottom enters in the damage 
zone, rises up to the bubble point and forms a gas phase, without substantially differences 
from the fluid flow model. As occurred for Scenario 1, the main reactions regard car-
bonates and adsorbed CO2 around the fault (over 1000 mol/m3). Dolomite (not shown) 
minimally dissolves (−1.5 × 10−5 vol.%) inside the damage zone whereas calcite (1.6 × 10−5 
vol.%) and siderite (1 × 10−4 vol %) precipitate (Figure 13). The precipitation of carbonates 
(carbonation process) in fractures and faults is a very common phenomenon which is fa-
vored by the exsolution of CO2 along the rising flow-path. Also pyrite slightly forms (5 × 
10−6 mol/L) in the lower part of the fault, where highest CO2(aq) concentrations are present 
(Figure 13d). Among silicate minerals, kaolinite slightly dissolves (−1.25 × 10−5 vol.%) in-
side the damage zone, whereas it precipitates in the soft sediments (1.9 × 10−3 vol.%) due 
to anorthite dissolution (−1 × 10−3 vol.%). Kaolinite dissolves also in the Seal 4 and Seal 6, 
mirroring the rock type distribution (Figure 4c). 

Other carbonates and silicate reactions in the overburden, not directly related to CO2 
interaction, can be ascribed to reactions between different lithotypes in close contact, e.g., 
sand-shale, that have different formation waters composition. Reactions in soft sediments 
are mainly due to the presence of marine water filling the sediments. Indeed, seawater 
composition favors clays formation as a result of the submarine weathering of feldspars 
[71]. 

Figure 12. Scenario 2, permeability model C. Distribution of: (a) gas saturation (Sg) and (b) CO2 mass
fraction in the aqueous phase (XCO2) from depth through fault FO5, at three different time steps (1000,
2000 and 4000 years). Results for permeability Model A are shown in Figure S9 in Supplementary Material.

To reduce the computation effort, RTM simulation was carried out for a period of
1000 years. Over this time, the CO2(aq) present at the fault bottom enters in the damage zone,
rises up to the bubble point and forms a gas phase, without substantially differences from
the fluid flow model. As occurred for Scenario 1, the main reactions regard carbonates and
adsorbed CO2 around the fault (over 1000 mol/m3). Dolomite (not shown) minimally dis-
solves (−1.5 × 10−5 vol.%) inside the damage zone whereas calcite (1.6 × 10−5 vol.%) and
siderite (1 × 10−4 vol %) precipitate (Figure 13). The precipitation of carbonates (carbona-
tion process) in fractures and faults is a very common phenomenon which is favored by the
exsolution of CO2 along the rising flow-path. Also pyrite slightly forms (5 × 10−6 mol/L)
in the lower part of the fault, where highest CO2(aq) concentrations are present (Figure 13d).
Among silicate minerals, kaolinite slightly dissolves (−1.25 × 10−5 vol.%) inside the dam-
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age zone, whereas it precipitates in the soft sediments (1.9 × 10−3 vol.%) due to anorthite
dissolution (−1 × 10−3 vol.%). Kaolinite dissolves also in the Seal 4 and Seal 6, mirroring
the rock type distribution (Figure 4c).
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Other carbonates and silicate reactions in the overburden, not directly related to CO2
interaction, can be ascribed to reactions between different lithotypes in close contact, e.g., sand-
shale, that have different formation waters composition. Reactions in soft sediments are mainly
due to the presence of marine water filling the sediments. Indeed, seawater composition
favors clays formation as a result of the submarine weathering of feldspars [71].

After 1000 years of simulation, all other primary minerals (i.e., quartz, Fe-celadonite,
Fe-illite and chlorite) remain stable along the fault path and in the overburden.

The adsorption of CO2 (Figure 13c) is localized in the damage zone and it is directly
related to CO2(aq) concentration (Figure 13d). Also for this scenario adsorbed CO2 (up to
1190 mol/m3) is one order of magnitude higher than other studies [25,26,68]. The possible
reasons have been already discussed above.

7. Conclusions

In this study, we developed a complex heterogeneous model, built on the basis of 3D
real lithology, porosity and permeability distributions belonging to a deep structure in off-
shore Malaysia basin. Two CO2 leakage scenarios from a carbonate reservoir throughout
a shaly overburden were simulated by fluid flow and reactive transport, focusing on
factors affecting CO2 migration, such as permeability, Knudsen effect, Fickian diffusion,
geochemical reaction and CO2 sorption on clays.

In all considered scenarios the permeability distribution has the main impact on CO2
uprising velocity and pathways. Despite the analysis of various sections and the presence of
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higher permeability lenses in the overburden, CO2 upward migration is driven by buoyancy,
and no lateral propagation is observed. This is also due to comparable values of permV
and permH. This evidence ruled out the possibility that CO2 leaked from the reservoir may
migrate laterally toward the FO5 fault and reach the seabed, as initially supposed.

Results of Scenario 1, well reflected the pressure profile recorded in the explorations
wells, reproducing the overpressured zone below the top of Seal 4 and confirming the
suspected uprising of CO2 from the reservoir to the Seal 4 top. The CO2 migration in
the low permeability Seal 4 is mainly due to the Darcy flow with a minor contribution of
diffusive flow at the Seal 4–Seal 6 interface, where the CO2 concentration gradient is higher.
Although the small dimension of the pore throats of overburden shales, estimated Knudsen
diffusion number is low (<0.001), and the flow regime follows the ideal Darcy’s regime.

When geochemistry is included in the model, mainly carbonate reactions were observed.
Reactions are limited due to both the low mobility of fluid phase and the initial mineral
assemblage already containing all the CO2-induced alteration phases, such as carbonates and
clays. Dissolution of carbonates and pyrite at the reservoir interface slightly increase porosity.
The weathering zone penetrated also into Seal 4 following the CO2(aq) distribution.

In the leakage from the F05 fault Scenario, CO2 upraised from the reservoir along the
damage zone. Due to the different pressure between fault and reservoir, a CO2 bi-phase zone
developed, leading to the formation of CO2 bubbles. The CO2 exsolution favored siderite and
minor calcite precipitation inside the damage zone, reducing porosity and contributing to seal
the fault. In zones where the damage zone is intersected by higher permeability horizontal
lenses, no significant lateral leakages are observed and the CO2 flow was confined within the
fault zone. The seismic attenuation observed in the seismic section along the fault confirms
the presence of fluid in the damage zone, validating the simulated results.

In all considered scenarios CO2 adsorption on shales together with dissolved CO2 represent
the main trapping mechanisms. Modeled adsorbed CO2 is about two orders of magnitude
higher than reported values in the literature. This is likely due to the lack of a maximum
adsorption limit of CO2 in the shales and to the reducing adsorption capacity for pressures
higher than 9 MPa, which are both not considered in our model. Moreover, the higher simulated
temperatures with respect to laboratory experiments and the textural differences from our core
samples and other shales could be the reason for the adsorption overestimation.

This study tried to reach the ambitious goal to improve the understanding of the
effects of key phenomena on fluid flow throughout shales. Despite some assumptions
and estimations of missing parameters, the developed model effectively captures the real
processes of the investigated system as proved by the comparison with available pressure
and seismic data. It can be easily exported to other sites potentially suitable for CO2
geological storage.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13081016/s1, Figure S1: Scenario 1. Permeability distribution in
Models A and B along the E-W section; Figure S2: Scenario 2. permeability distribution in Model A
along the E-W section; Figure S3: Scenario 1, E-W section, permeability Model A. Gas saturation and
CO2 mass fraction distribution over time; Figure S4: Scenario 1, E-W section, permeability Model B. Gas
saturation and CO2 mass fraction distribution over time; Figure S5: Scenario 1, E-W section, permeability
Model A. Darcy fluxes and diffusive fluxes after 300,000 years; Figure S6: Scenario 1. The N-S section
and permeabilities distribution for Model A; Figure S7: Scenario 1, N-S section, permeability Model A.
Distribution of gas saturation and CO2 mass fraction in the liquid phase at different time steps; Figure S8:
Scenario 1, permeability Model A. Pore pressure distribution measured in the three wells with respect
to simulated ones at steady state; Figure S9: Scenario 2, permeability Model A. Distribution of gas
saturation and CO2 mass fraction in the liquid phase at different time steps.
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