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ABSTRACT
This study investigates the dynamics of magmatic intrusions based on the joint analysis of analog and numerical models.
By injecting different fluids from the bottom of a solidified gelatin block, we simulate the propagation of magmatic intrusions
through the crust and record their shapes, trajectories, and velocity as they rise towards the surface. Additionally, wemake use of
a 2D fluid-filled crack propagation model constrained by our experimental observations. The numerical simulations demonstrate
that our viscous fluid-filled crack experiments, conducted with silicon-oil injections, propagate in the same regime as typical
basaltic intrusions. The comparison between analog and numerical results allow us to define the domain of validity of the
numerical model and its limit of applicability. This study provides new insights into the processes that control the propagation
of magmatic intrusions and our ability to reproduce them using analog and numerical models.

RÉSUMÉ
Cette étude combine modélisation analogique et numérique pour étudier la dynamique des intrusions magmatiques. Des huiles
de silicone visqueuses sont injectées pour simuler la forme, la trajectoire et la vitesse des intrusions magmatiques. Les pa-
ramètres et les observations des expériences alimentent le modèle 2D d’éléments frontière de propagation dynamique, ce qui
permet de caractériser le régime de propagation des injections d’huiles. Nous montrons que ce régime est semblable à celui
d’une intrusion basaltique et que notre modèle numérique peut reproduire avec précision le comportement de ces intrusions,
lorsque les variations de vitesse sont réduites. La comparaison des résultats analogiques et numériques permet donc d’étendre
le domaine de validité du modèle numérique. Notre étude apporte de nouvelles informations sur les mécanismes régissant la
propagation des intrusions magmatiques, et met en évidence le potentiel de l’utilisation de modèles analogiques et numériques
pour améliorer notre compréhension du processus d’intrusion magmatique.

KEYWORDS: Viscous-fluid flow; Analog experiments; Numerical modeling; Magmatic intrusion; Propagation regimes.

1 INTRODUCTION
Magma is a complex, multiphase, viscous fluid that propa-
gates through the brittle crust by creating and opening frac-
tures. Magmatic intrusions can lead to volcanic eruptions oc-
curring in new, and sometimes unexpected, locations within
a volcanic field. The associated hazards can have severe con-
sequences for over 1 billion people (14.3 % of the global pop-
ulation) living within 100 km of a Holocene volcano in 2015
[Freire et al. 2019]. Therefore, improving our understanding
of the dynamics of magmatic intrusions is a significant moti-
vation.
Direct observations of magmatic intrusions (or dykes) are
only possible when they solidify and become exposed through
erosion. As they travel through the crust, they can be tracked
by the induced seismicity, deformation, and gravity changes.
While these techniques provide accurate information for rela-
tively shallow intrusions, their accuracy decreases for deeper
intrusions. Understanding dyke dynamics therefore relies on
the use of analog and numerical models in which the in-
trusions are generally described as growing fluid-filled frac-
tures governed by the competition of two main dissipative
processes, namely the viscous flow and the rock fracturing
[Rivalta et al. 2015]. In the past, two main modeling ap-
∗Q s.furst@geomar.de

proaches have developed, each considering one of the two
dissipative processes as dominant, thereby addressing two
end-member regimes for the propagation of fluid-filled cracks:
the viscous- and fracture-dominated regimes. The viscous-
dominated regime is well described by the lubrication theory,
and analytical solutions were first given by Lister [1990] and
Spence and Turcotte [1990]. It refers to the propagation of a
viscous fluid-filled crack connected to a pressurized reservoir,
whose dynamics are driven by the reservoir’s excess pressure
and the buoyancy of the fluid, neglecting the fracturing pro-
cess at the tip. The fracture-dominated regime is described
by Weertam’s theory [Weertman 1971], which considers the
propagation of a fluid-filled crack isolated from a reservoir and
driven solely by the fluid’s buoyancy. However, Weertman’s
crack theory does not account for the effect of fluid viscosity
and, consequently, does not provide information on the crack
propagation velocity. When neither of the two primary dissi-
pative processes can be neglected, more complex approaches
are necessary, which consider both fracture and viscous forc-
ing [Dontsov and Peirce 2015; Detournay 2016; Lecampion et
al. 2018; Zia and Lecampion 2020; Möri and Lecampion 2021;
Furst et al. 2023].
So far, analog experiments of dyke propagation have in-
volved various experimental set-ups, fluids with different den-
sities and viscosities (air, water, glycerine, synthetic, and veg-
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etable oils), and host-materials that deform either elastically,
as solidified gelatin, or plastically, as compacted granular ma-
terials [Galland et al. 2018; Kavanagh et al. 2018b]. The choice
of the set-up depends on the parameters, conceptual mod-
els, and configurations being tested [Rivalta et al. 2015; Gal-
land et al. 2018; Kavanagh et al. 2018b]. Studies have investi-
gated crack geometries and their kinetics under the influence
of different density contrasts between fluids and hosts [e.g.
Takada 1990; Lister 1991; Taisne and Jaupart 2011], stress
fields [e.g. Watanabe et al. 2002; Acocella 2005; Menand et al.
2010; Maccaferri et al. 2019; Pinel et al. 2022], free surface
effects [e.g. Rivalta and Dahm 2006], and mechanical layer-
ing of host materials [e.g. Rivalta et al. 2005; Kavanagh et al.
2006]. Yet a fundamental parameter for a magmatic intrusion
is its propagation velocity. A compelling asset of laboratory
experiments using gelatin as host material is its transparency,
which allows for the direct observation of the injected fluids
and their flow patterns [Kavanagh et al. 2018a; Williams et
al. 2022; Pansino et al. 2023], along with crack propagation
velocities [Takada 1990; Heimpel and Olson 1994; Rivalta et
al. 2005; Rivalta and Dahm 2006; Taisne and Jaupart 2011;
Pinel et al. 2022]. Several studies have focused on the veloc-
ity of air-filled cracks [e.g. Takada 1990; Heimpel and Olson
1994; Rivalta et al. 2005; Rivalta and Dahm 2006; Taisne and
Jaupart 2011], while Watanabe et al. [2002] described velocity
variations of oil-filled crack under heterogeneous stress fields.
Recently, Maccaferri et al. [2019] and Pinel et al. [2022] carried
out numerical simulations of fluid-filled crack propagation ex-
periments using a two-dimensional boundary element model
for non-viscous fluids [Maccaferri et al. 2011]. These simula-
tions yielded further understanding of the dominant physical
processes observed in the experiments, characterizing the rela-
tive influence of buoyancy and a heterogeneous external stress
field on the propagation path and velocity.

In most cases, experiments focusing on fluid velocity have
used fluids with relatively low viscosity, leading to propaga-
tion in the fracture-dominated regime. In contrast, magma vis-
cosities may vary by several orders of magnitude [McLeod and
Tait 1999; Takeuchi 2011]. Basaltic magmas typically range
from a few tens of Pa·s for 2021 Cumbre Vieja (Spain) eruption
[Castro and Feisel 2022], to 104 Pa·s for magma from Mt Etna
(Italy) [Harris and Allen 2008], with typical values of 102 Pa·s
for Piton de la Fournaise (France) [Grasso and Bachèlery 1995].
Rhyolitic magmas can reach more than 104 Pa·s [Spera 2000;
Takeuchi 2011]. However, the propagation regime depends on
the balance between the viscous dissipation, which increases
with magma viscosity, and the energy required for fracturing
the rocks, which increases with fracture toughness. While
magma viscosity can be relatively well constrained, effective
rock fracture toughness values are more uncertain, and the
assessment of the propagation regime of magmatic intrusions
may sometimes be very challenging [Rivalta et al. 2015]. Nev-
ertheless, it is generally assumed that in most cases, the prop-
agation regime of magmatic intrusions may not be fully domi-
nated by fracturing processes [e.g. Einarsson and Brandsdottir
1980; Buck et al. 2006; Traversa et al. 2010]. To fill the lack
of fluid-filled crack propagation experiments in the viscous-
dominated regime, we adopted a multimethod approach com-

bining a recently developed numerical model [Furst et al. 2023]
with new laboratory experiments, using silicon oils character-
ized by significantly higher viscosities (up to 9.7 Pa·s) com-
pared with those in previous studies. Our primary objective
is to analyze the influence of viscosity on the shape, velocity,
and trajectory of fluid-filled cracks. Additionally, to illustrate
the influence of a heterogeneous stress field, we also consid-
ered the stress perturbation induced by surface loading as a
case study.
The laboratory experiments were analyzed using the 2D
boundary element model of Furst et al. [2023], that simulates
the behavior of fluid-filled cracks as observed in our analog ex-
periments, encompassing their shape, trajectory, and velocity.
The physical parameters we measured during the analog ex-
periments were employed to set and constrain the numerical
simulations. By quantitatively comparing the outcomes of our
oil-filled crack experiments with the results from our numeri-
cal simulations, we were able to characterize the propagation
regimes of our experiments based on the relative contribution
of viscous- and fracture-energy dissipation rates. Finally, we
discuss these results in the light of parameters associated with
typical magmatic intrusions.

2 ANALOG EXPERIMENTS OF FLUID-FILLED CRACK
PROPAGATION IN A SOLIDIFIED GELATIN BLOCK

Please note that all the variables used through the manuscript
are listed, along with their definitions, in the “List of notation”
(Table 1).

2.1 Experimental set-up
Analog experiments were conducted in the new experimental
laboratory at ISTerre in Le Bourget-du-Lac, France. We per-
formed fluid-filled crack propagation experiments, using air
and silicon oils injected into a transparent brittle-elastic gelatin
block (Figure 1). We used a plexiglas tank with a rectangular
base and dimensions 𝐿𝑡 × 𝑙𝑡 ×𝐻𝑡 = 40 × 20 × 35 cm (Figure 1)
in which we poured 18 L of salty gelatin (corresponding to a
height 𝐻gel of 22.5 cm, cf. Figure 1) by dissolving the gelatin
powder into salty water at 65 °C (2 wt.% gelatin, 15 wt.% salt).
The addition of salt was intended to increase the density of the
gelatin and provide greater buoyancy for our oil-filled cracks
[Acocella 2005; Kavanagh et al. 2006; Ritter et al. 2013]. The
gelatin tank was cooled down in a refrigerator for 20 to 30
hours to reach a temperature of 5 °C. In order to maintain
a uniform stiffness of the gelatin surface, a thin layer of oil
was applied over the surface before the gelatin cooled and
solidified, preventing water evaporation which could other-
wise cause the gelatin to strengthen. Throughout the cooling
and during the experiments, we used two thermocouples to
continuously record the ambient temperature and the tem-
perature inside the gelatin block. It was crucial to keep the
gelatin within the range of 5 to 15 °C to ensure its elasticity
[Kavanagh et al. 2013; van Otterloo and Cruden 2016]. For
each tank, we measured the density (ρgel) and rigidity (µgel)
of the gelatin before starting the experiment, when the tem-
perature 𝑇gel reached its lowest value (Table 2). To determine
density, we left 100 mL of liquid gelatin to solidify alongside
the tank. After solidification the gelatin volume was reduced,
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Table 1: List of notation.

Symbol Definition Unit

General parameters and experimental set-up
𝑔 gravity acceleration m·s−2

𝑡 time s
𝑥, 𝑧 coordinate system cm
𝐿𝑡 × 𝑙𝑡 × 𝐻𝑡 tank dimensions cm
𝐿𝑙 × 𝑙𝑙 load dimensions cm
𝑚𝑙 mass of the applied load g
𝑥𝑠 , 𝑧𝑠 position of the crack tip

when applying a load
cm

𝑑𝑙 horizontal distance at the
surface between crack tip
and center of the load

cm

𝑀tot mass of gelatin and water g
ρ𝑤 density of water kg·m−3

Gelatin parameters
ρgel density of the gelatin kg·m−3

𝑇gel temperature during the ex-
periments

◦C

𝐻gel height cm
𝑀gel mass of gelatin g
𝑉gel volume of solidified gelatin mL
µgel shear modulus Pa
ν Poisson’s ratio -
𝐾I stress intensity factor Pa·m1/2

𝐾𝑐 fracture toughness Pa·m1/2

𝐾
exp
𝑐 2D estimation by air injec-

tions
Pa·m1/2

𝐾sim𝑐 numerical estimation based
on oil injections

Pa·m1/2

𝐸 𝑓 fracture energy Pa·m

Symbol Definition Unit

Fluid crack characteristics
ρ 𝑓 density of the fluid kg·m−3

ρair density of the air kg·m−3

Δρ = ρgel − ρ 𝑓 kg·m−3

η viscosity of the fluid Pa·s
𝑉 volume of injected fluid mL
𝑣 crack velocity cm·s−1

𝐿head crack head length cm
ℎmax maximum crack head open-

ing
cm

𝑑 depth of the transition be-
tween the head and the tail
of the crack

cm

𝑤 width cm
𝑢 fluid velocity cm·s−1

𝑅𝑒 Reynolds number -
δ dip of the crack ◦

γ strike of the crack ◦

𝐿𝑐 critical head length in the
fracture-dominated regime

cm

𝐿∗ critical head length in the
viscous-dominated regime

cm

Numerical model parameters and outputs
𝑁 number of dislocation ele-

ments
-

𝑙 dislocation length cm
𝐴0 area of the initial fluid body cm2

𝑣𝑖 input velocity cm·s−1

𝑣𝑡ℎ theoretical velocity from
Spence and Turcotte [1990]

cm·s−1

𝑥𝑖 , 𝑧𝑖 initial tip position cm
𝑧∗ normalized depth -
ℎtail mean tail opening mm
Δ𝐸 energy release Pa·m
Δ𝐸𝑣 viscous dissipation Pa·m
𝐷 term linking linearly Δ𝐸 to

𝑣 (Equation 3)
Pa·m·s

𝑅 proxy for the regime of
propagation

-
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and characterized by mass 𝑀gel. By adding water until the
gelatin returned to its original volume, we also measured the
total weight (𝑀tot). Knowing the density of the water (ρ𝑤), we
computed the volume of the added water as (𝑀tot−𝑀gel)/ρ𝑤,
which corresponds to the volume loss during gelatin solidifi-
cation, providing 𝑉gel. We consistently obtained very similar
density values of ρgel ∼ 1109 ± 7 kg·m−3 for all experiments.
The rigidity µgel was estimated by measuring the subsidence
induced by applying a load at the surface of the gelatin block,
following the numerical method from Maccaferri et al. [2019]
and Smittarello et al. [2021]. Note that the gelatin adheres to
the tank walls, which is taken into account in the numeri-
cal model by applying a zero displacement condition to the
tank walls. The rigidity depended on the temperature of the
gelatin, with lower temperatures resulting in higher rigidity
values (Table 2). For the solid gelatin, a Poisson’s ratio (ν)
close to 0.5 was assumed [Kavanagh et al. 2013].
We prepared five gelatin blocks and conducted a series of
injections using holes located at the bottom of the tank and
spaced 2 cm apart (Figure 1). We performed 16 air injec-
tions with different volumes, 7 injections with M1000 silicon
oil, and 3 with M10000 silicon oil (Table 2). In the case of
air injections, we carried out several injections in the same
tank to estimate the gelatin’s fracture toughness, which cor-
responds to the critical value of the stress intensity factor
(𝐾2DI = Δρ𝑔[𝐿head/2]

√︁
π[𝐿head/2]) as the crack velocity ap-

proaches zero [Smittarello et al. 2021]. For silicon oil injec-
tions, no more than three injections were performed in the
same tank, in order to increase the total number of fluid-filled
fracture propagation experiments. This ensures very similar
gelatin conditions for all the experiments carried out within
the same tank, which helps comparing thoroughly the out-
comes of those experiments. In fact, although our experiments
are generally consistent in terms of gelatin’s physical proper-
ties, variations in the rigidity of different tanks (Table 2) may
occur based on different cooling times, subsequently affecting
fracture toughness [Kavanagh et al. 2013].
Both M1000 and M10000 silicon oils have the same den-
sity, ρ 𝑓 = 970 kg·m−3 (supplier specifications), but they dif-
fer in terms of viscosity: η = 0.97 Pa·s and η = 9.7 Pa·s at
room temperature (∼20 °C), respectively. The density of air,
ρair ∼ 1.2 kg·m−3, is negligible compared to the density of
gelatin. Once the fluid is injected in the gelatin, a fluid-filled
crack forms and propagates upwards due to buoyancy. Air-
filled crack shapes are characterized by a tear-drop profile,
pinch-closed at the bottom of the crack (Figure 2A), and their
cross-sectional shape can be predicted by Weertman’s theory
[Weertman 1971]. Oil-filled cracks display a more complex
shape, with a concentrated volume of oil at the crack head and
an open crack tail maintained by the viscosity of the oil (Fig-
ure 2B to D), which can be described by the lubrication theory
[Lister 1990; Rubin et al. 1998; Roper and Lister 2007]. The
crack exhibits a tear-drop shaped head region where buoy-
ancy forces prevail, and a narrower tail region where viscous
forces dominate.
Due to the viscosity of the oil and the relatively small den-
sity difference between the oil and gelatin (Δρ ∼ 135 kg·m−3),
the propagation velocity of oil-filled cracks is relatively slow

(≤ 0.009 cm·s−1), which can sometimes result in oil leakage
from the bottom of the gelatin tank during the injection pro-
cess. Such leakage may occur when the upper tip of the de-
veloping crack moves too slowly upward, leaving insufficient
space for the complete formation of the oil-filled crack within
the gelatin block. To mitigate this issue, we adjusted the in-
jection rate of the oil to a slow speed of approximately 0.05–
0.2 mL·s−1. Furthermore, to enhance the visualization of the
shape of the oil-filled cracks, we colored a large volume of oil
(>50 mL) by mixing a few drops of green dye to M1000 sili-
con oil and blue dye to the M10000 oil (Figure 2). We did not
notice any significant effect of the small amount of dye added
on the viscosity of the oil.
In four experiments performed using the M1000 silicon oil,
we placed a loading mass on the surface of the gelatin to in-
duce a heterogeneous stress field within the block. This al-
lowed us to investigate the impact of this stress field on the
path and velocity of crack propagation, following the approach
of Watanabe et al. [1999] and Maccaferri et al. [2019]. We used
a rectangular loading plate with dimensions 𝐿𝑙 × 𝑙𝑙 = 14 ×
6 cm and a mass 𝑚𝑙 = 30.0 g (Figure 1B). Additional weights
were added to reach a total mass up to 110.4 g. We define a
coordinate system with origin at the center of the gelatin sur-
face, a horizontal axis (𝑥) rightwards oriented, and a vertical
axis (𝑧) downwards oriented (Figure 1B). During the experi-
ments with the loading plate, once the crack had reached a
certain depth 𝑧𝑠 , the load was added on the gelatin surface at
a horizontal distance 𝑑𝑙 from the crack tip. In order to be able
to process the results, and perform 2D numerical simulations
of these experiments, we required for the crack plane to be
perpendicular to the 𝑥-axis of our reference frame.
Among all the experiments, two were excluded from anal-
ysis. The first one (EXP2101-I3) was discarded due to time
gaps in the recorded videos, while the second one (EXP2103-
I1) was excluded because of the orientation of the crack plane,
that did not allow for the application of our 2D numerical
model.

Table 2: Physical properties of the gelatin tanks prepared for
this study: tank number, concentrations of gelatin and salt,
density (ρgel), temperature at the beginning and at the end of
the injections (Tgel), number of injections and rigidity (µgel).

Tank Gelatin Salt ρgel Tgel Nb of µgel
# (%) (%) (kg·m−3) (◦C) Inj (Pa)

2101 2.0 15 1107.4 8.9–11.4 5 188
2102 2.0 15 1121.4 6.6–11.1 5 318
2103 2.0 15 1106.4 8.0–13.5 5 195
2104 2.0 15 1105 7.6–13.7 5 188
2105 2.0 15 1105 5.7–15.1 6 313

2.2 Processing tools and methods

We define the propagation velocity (𝑣) of the fluid-filled crack
as the velocity at which the upper tip of the crack moves along
its path. To measure 𝑣, we tracked the position of the crack tip
using the front-view camera footage (Figure 1B) and analyzed
the data using TRACKER software.
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Figure 1: [A] Photography of the experimental set-up with two cameras capturing the injections from the front and the side of
the tank. Another camera is hanging from the support out of the field of vision, and monitors the propagation from top. Two
lamps light the tank from the left and the back sides through white screens. Temperature inside the gelatin box is monitored by
a thermocouple (box hooked on the support to the left above the tank). [B] Scheme of the experimental set-up, location of the
three cameras and the 15 injection holes at the bottom of the tank. For some experiments, we added a load at the surface of the
gelatin, represented by the blue rectangle. The section below the load shows the induced normalized stress.

TRACKER software was also used to measure the length and
dip angle of air-filled cracks during propagation. By tracking
the positions of the upper and lower edges of the crack, we
were able to determine these parameters, as air-filled cracks
close at their bottom end. The lengths and velocities of air-
filled cracks were then used to estimate the gelatin’s fracture
toughness, following the methodology outlined by Smittarello
et al. [2021] (see Section 4.4). However, the same procedure
could not be applied to estimate the length of the crack head
for the oil-filled cracks, as the presence of an open tail be-
hind the crack head made it challenging to identify the lower
end of the crack head. To address this issue, we developed
an automatic processing procedure using the MATLAB Image
Processing toolbox, based on the methodology described by
Galetto et al. [2021]. This procedure facilitated the differentia-
tion between the crack head and its tail. The process involved
comparing time-lapsed photos taken during the propagation of
oil-filled cracks, with a reference "background" photo captured
before the injection. The reference photo was subtracted from
each photo of the propagating oil-filled crack and converted
to grayscale. These grayscale images were then binarized us-
ing a threshold value, which was chosen in order to return
non-zero values in the area of the crack head. Eventually, we
used the function regionprops from MATLAB toolbox to ob-
tain the position, orientation, and length of major and minor
axes of the ellipses that share the same normalized second
central moments with the non-zero region of the image. With
this approach, we measured the crack head length 𝐿head and
dip angle δ, and estimated the average value and standard
deviation of 𝐿head measurements, considering the part of the
propagation path where it remains constant (excluding the in-
jection phase and the interaction with the free-surface).

The same procedure was used to measure the width (𝑤),
opening (ℎmax) and strike (γ) of the oil-filled cracks using time-
lapse photos from the top view camera (Figure 2B–D bottom
row). However, it is important to note that due to the refrac-
tion of light in the gelatin block, accurate estimates of these
parameters were only possible during the final stages of crack
propagation, when the thickness of gelatin above the crack is
small enough to allow for a clear view of the crack and to mini-
mize the distortions. For vertical propagation, we determined
these parameters within the last 0.5 cm of propagation and
computed their mean values along with uncertainties. In ex-
periments involving surface loads, we could only evaluate the
opening, strike, and width before applying the loading plate
at the surface (at the crack tip position 𝑧𝑠 ), when the crack
was still propagating along a straight path. To correct for dis-
tortions introduced by measurements at different depths, we
computed correction factors as the ratios between the crack
opening near the surface and the opening at depth 𝑧𝑠 . Using
data from two vertical propagation experiments (EXP2102-I3
and 2105-I4), we obtained correction factors ranging from 1.26
to 1.43 for EXP2102-I3 and from 1.14 to 1.22 for EXP2105-I4,
depending on the value of 𝑧𝑠 . When determining uncertainties
associated with these parameters, we considered errors from
direct measurements as well as errors from the correction fac-
tors. Unfortunately, we were unable to directly measure the
openings of the crack tails due to their small thicknesses and
to the strike angle of the crack, which were on the order of
tenths of millimeters, making them beyond the resolution ca-
pabilities of our laboratory set-up.
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Figure 2: Screenshots from front views (top row) and top views (bottom row) monitored during four different injections for air
and silicon oils. Crack head lengths (𝐿head), widths (𝑤) and openings (ℎmax) are illustrated for each crack. For silicon oil cracks,
an open tail remains while propagating, represented by the crack tail. Vertical cracks induced by an injection of [A] of 5 mL of
air, [B] 20 mL of M1000 silicon oil (the crack separated into two cracks of different volumes: only the biggest one reached the
surface of the gelatin) and [C] 30 mL of M10000 silicon oil. [D] Deflected trajectory of a silicon oil crack, resulting from the
injection of 30 mL of M1000 silicon oil, under a surface load (black rectangle on top of gelatin).

3 NUMERICAL MODEL FOR THE PROPAGATION OF
FLUID-FILLED CRACKS

3.1 Numerical model description

We used the 2D boundary element model recently developed
by Furst et al. [2023] to simulate the shape and velocity of fluid-
filled fracture propagation. This numerical approach com-
bines the fracturing at the crack tip with the transport of a
viscous fluid, enabling the computation of the shape, trajec-
tory, and propagation velocity of a fluid-filled crack, that can
be compared to the measurements obtained from our analog
experiments. The numerical model is particularly well-suited
for analyzing the propagation of viscous oil-filled crack. On
the other hand, air-filled crack experiments, where fluid vis-
cosity is negligible, can be effectively described by the Weert-
man crack theory and modeled using a previous version of the
2D boundary element model for fluid-filled crack propagation
[Maccaferri et al. 2011; Pinel et al. 2017; Pinel et al. 2022]. This
model is applicable for inviscid fluids but does not provide

direct information on the crack propagation velocity. For a
comprehensive description of the approach, we refer to Furst
et al. [2023], while here we will briefly summarize the key prin-
ciples of the model necessary for comparison with the analog
experiments.

Built with the boundary elements technique in plane strain
approximation, this model considers a half-space with a
traction-free surface in which a finite volume of fluid can
propagate driven by buoyancy. The cross-section of the fluid-
filled crack is discretized using 𝑁 dislocation elements of fixed
length. By imposing prescribed boundary conditions at the
center of each dislocation element, the model solves the “crack
problem”. This enables the computation of the opening and
slip of each dislocation, given the stress boundary conditions,
which include fluid overpressure and shear tractions acting at
the element’s center. The overpressure is defined as the excess
fluid pressure with respect to the confining stress. The fluid
pressure profile accounts for the contribution of three compo-
nents: 1) the depth-dependent hydrostatic pressure profile, 2)
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the pressure term due to the compressibility of the fluid, and
3) the viscous pressure change induced by a Hagen-Poiseuille
flow. The confining pressure is a combination of an isotropic,
depth-dependent lithostatic pressure and the normal compo-
nent of any other possible source of crustal stress (i.e. tectonic
or topographic). To simulate the propagation of the fluid-filled
crack, a new dislocation element is added at the crack tip, and
the model computes the new overpressure profile and crack
shape accordingly.
At each propagation step, the model computes the change in
potential energy considering the contributions from strain and
gravitational energies. This computation establishes the con-
ditions for crack propagation or arrest, as well as constraints
on the crack propagation velocity. If the amount of potential
energy released by the system (Δ𝐸 ), is sufficient to fracture the
medium, crack growth is allowed [Dahm 2000], and the prop-
agation procedure is iterated. Mathematically, this means that
Δ𝐸 > 𝐸 𝑓 · 𝑙 , where

𝐸 𝑓 = 𝐾
2
𝑐

1 − ν

2µ
(1)

is the fracture energy, 𝑙 is the crack lengthening (i.e. the length
of a dislocation element), µ is the shear modulus, and 𝐾𝑐 is
the fracture toughness of the medium. By testing different di-
rections of propagation for each step, the model computes the
path followed by the fluid-filled crack, always selecting the di-
rection that maximizes the potential energy release [Maccaferri
et al. 2011].
The propagation condition implies an excess of potential
energy release with respect to the energy spent to fracture the
embedding medium (Equation 1). To maintain energy con-
servation, the difference between Δ𝐸 and 𝐸 𝑓 · 𝑙 must be dis-
sipated through dynamic processes. Considering viscous flow
through the crack walls as the dominant dissipative process
[Furst et al. 2023], the sum of fracture energy and energy dis-
sipated by viscous flow (Δ𝐸𝑣) during a propagation step must
balance the energy release:

Δ𝐸 = 𝐸 𝑓 · 𝑙 + Δ𝐸𝑣 (2)

where Δ𝐸𝑣 can be described as the product of the velocity 𝑣
and a function 𝐷 that depends on the crack geometry, magma
inflow, and viscosity. This function can be numerically esti-
mated at each propagation step [Furst et al. 2023]: Δ𝐸𝑣 = 𝑣 ·𝐷.
Therefore, the crack propagation velocity 𝑣 is constrained by
the amount of energy produced by the system, such that

𝑣 =
Δ𝐸 − 𝐸 𝑓 · 𝑙

𝐷
. (3)

Note that there is a dependency between the crack propaga-
tion velocity and the fracture energy: increasing 𝐸 𝑓 results in
a smaller value of 𝑣.
The model has been designed to account for a heteroge-
neous background stress field interacting with the fluid-filled
crack. The background stress can be provided as an input
file, containing the stress tensor components on a grid over
the model domain [Maccaferri et al. 2019]. For the purpose of
this study, we have also implemented the possibility to change

the stress field during the crack propagation, allowing for the
simulation of experiments with a surface load placed at sur-
face during the propagation of the oil-filled crack. From a
numerical perspective, this means that the computation of the
crack opening only considers an isotropic (depth-dependent)
lithostatic stress when the crack tip is deeper than 𝑧𝑠 , while
for 0 < 𝑧 < 𝑧𝑠 , the crack shape is solved considering the
heterogeneous stress field due to the loading plate at surface.
The numerical model for fluid-filled crack propagation re-
quires several inputs: the mechanical properties of the fluid
and the embedding medium, the initial position of the crack
tip (𝑥𝑖 , 𝑧𝑖 ), an initial velocity guess (𝑣𝑖 ), the cross-sectional area
of the fluid-filled crack at a reference pressure (𝐴0), and the
fracture energy (𝐸 𝑓 ). Note that since the model is in plane
strain approximation, i.e. extending to infinity in the out of
plane direction, 𝐴0 may be used to provide an estimate of the
3D volume of the crack only assuming a finite crack width.
As outputs, the model provides the propagation path followed
by the fluid-filled crack, its propagation velocity, the crack
shape, and the displacements and stress fields induced in the
surroundings.

3.2 Numerical model set-up

To conduct numerical simulations of our oil-filled crack ex-
periments, we need to input all the necessary parameters into
the boundary element model for fluid-filled crack propagation.
While we have precise measurements for most of the gelatin
and silicon oil parameters (ρgel, µgel, ρ 𝑓 , η, Tables 2 and 3),
the fracture energy of the gelatin (𝐸 𝑓 ) and the cross-sectional
area of the crack (𝐴0) are not well constrained [Smittarello et
al. 2021]. Estimating the crack area accurately is challenging as
the cracks are thin and their orientation is not always perpen-
dicular to the camera view. Therefore, we varied 𝐴0 and 𝐸 𝑓
to identify values that can simultaneously provide the best fit
for the observed propagation velocity and for the crack length
or maximum thickness, which are the most reliable geometric
parameters. Additionally, considering that the measurements
of crack length and opening come with different uncertain-
ties, we further examined the impact of these uncertainties on
the estimation of fracture energy to determine which geomet-
ric measurement provides the most reliable constraint for our
simulations (Section 3.3).
The boundary element model also requires the initial guess
for the crack propagation velocity (𝑣𝑖 ) and the initial depth of
the fluid-filled crack tip (𝑧𝑖 ). These are necessary for the model
to start the numerical computation of the initial crack shape.
Although the propagation velocity guess does not affect the
results of the simulation, it does impact the numerical perfor-
mance of the model during the initial propagation steps [Furst
et al. 2023]. For our simulations, we used the average oil-filled
crack propagation velocity measured during the experiments
as the initial velocity guess, which yielded satisfactory results
for all the simulations. Since the simulations do not consider
the fluid injection phase and start with the fluid volume al-
ready in place within the crack, we set the initial depth of the
crack tip (𝑧𝑖 in Table 4) to the depth reached by the tip of the
oil-filled crack after the oil injection phase was completed and
the crack was fully developed.

Presses universitaires de �rasbourg Page 73

https://doi.org/10.30909/vol.07.01.6787


Dynamics of dykes: comparison of analog and numerical models Furst et al. 2024

Lastly, to simulate the experiments with a loading plate ap-
plied at the surface of the gelatin, we computed the stress field
induced by the loading using a finite element modeling tool
(COMSOL multiphysics). The model accounts for the effect of
a rigid loading plate applied to the surface of a gelatin block
confined within a tank with rigid boundaries [Maccaferri et al.
2019; Smittarello et al. 2021, Figure 1B]. The stress field com-
puted with COMSOL was then given as input to the boundary
element model to simulate the propagation of the fluid-filled
crack in the presence of the loading plate at the surface.

3.3 Sensitivity of the numerical model to crack length and
opening

We conducted several numerical simulations for a fluid-filled
crack (η = 0.97 Pa·s, ρ 𝑓 =970 kg·m−3) with a head length of
10 ± 2 cm and a maximum opening of 1.0 ± 0.1 cm, propagat-
ing within a gelatin block (µgel=300 Pa, ρgel=1120 kg·m−3) at
a velocity of 0.0035 ± 0.003 cm·s−1, within a depth range of 12
to 2 cm (red dashed line and light red area in Figure 3). The
crack propagation velocity was constrained within a limited
depth range due to the initial deceleration during the crack
growth phase and its acceleration at shallow depths as it ap-
proaches the free surface. This effect is more pronounced at
deeper depths for longer crack heads [Rivalta and Dahm 2006;
Pinel et al. 2022].
We varied 𝐴0 from 1 to 9 cm2, resulting in crack head
lengths 𝐿head ranging from 5.92 cm and 12.32 cm, and crack
openings between 0.2 to 1.2 cm. For each simulation, we
searched for the fracture energy 𝐸 𝑓 that would yield the tar-
get propagation velocity within the selected depth range (red
dashed line in Figure 3A). Within the range of tested crack
lengths, the fracture energy varied from 0.097 to 1.30 Pa·m.
In Figure 3B and C, we plot the crack lengths and maximum
openings as function of the fracture energy. In this example,
the range of values for 𝐸 𝑓 corresponding to a crack length
of 10 ± 2 cm would be between 0.35 and 1.22 Pa·m (Fig-
ure 3B). Alternatively considering the maximum opening of
1.0 ± 0.1 cm, the numerical simulations provide values of 𝐸 𝑓
ranging between 0.86 and 1.13 Pa·m (Figure 3C). Hence, the
fracture energy would be better constrained by the measure-
ment of the maximum crack opening rather than its length,
considering the errors associated with those measurements.
We found that, given our measurement errors, the maximum
crack opening consistently provides the best constraint for the
fracture energy.
The procedure described in this section has been used to
determine the uncertainties on 𝐸 𝑓 (i.e on 𝐾𝑐 , see Equation 1)
that will be provided for each experiment in the following
sections.

4 RESULTS
In this section, we present the results of the vertical prop-
agation of air- and oil-filled cracks (Section 4.1). We then
focus on analyzing the relative contributions of viscous- and
fracture-energy (Section 4.2). Subsequently, we present the re-
sults from experiments and numerical simulations involving
surface loading (Section 4.3). Finally, we provide estimates
for the gelatin’s fracture toughness obtained from the different

Figure 3: Numerical simulations of a viscous fluid-filled crack
(η =0.97 Pa·s, ρf=970 kg·m−3) propagating in a gelatin block
(µgel = 300 Pa, ρgel = 1120 kg·m−3). [A] Evolution of crack ve-
locity along vertical propagation simulated with the numerical
model with varying fluid amount A0 and energy threshold Ef
(color scale). The red dashed line and the light red area in-
dicate the target velocity and the associated uncertainties re-
spectively. [B] and [C] relation between crack head length and
opening respectively, with energy threshold for the target ve-
locity of 0.0035 cm·s−1 (red dashed line in [A]).

sets of experiments (air- and oil-filled cracks) as well as their
corresponding simulations (Section 4.4). For each experiment,
we gather all the parameters measured in the laboratory and
extracted from the video records, which are summarized in
Table 3. Our measurements also confirm that these cracks
exhibit low Reynolds numbers (𝑅𝑒 = ρ 𝑓 𝑢𝐿head/η, with 𝑢
the fluid velocity, see Furst et al. [2023]), making inertial terms
negligible, as assumed in the numerical model. Additionally,
Table 4 displays the input and output parameters related to
the numerical simulations.

4.1 Vertical crack propagation

The injection of a finite volume of air is extremely rapid, re-
sulting in the fast formation of a crack that initially decelerates
until it reaches a stable propagation velocity. The air-filled
crack then ascends at a constant velocity (grey area in Fig-
ure 4A) and accelerates as it approaches the surface, similar
to that described by Rivalta and Dahm [2006]. We injected
finite volumes of air ranging from 2 to 30 mL, resulting in
cracks propagating with mean velocities ranging from 0.07 to
4.34 cm·s−1 (depending on the gelatin’s rigidity). Due to their
large buoyancy, air-filled cracks required smaller volumes for
propagation, compared to silicon oil injections. We used vol-
umes ranging from 15 to 40 mL for the M1000 oil, and from
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Table 4: Parameters used to set up the numerical simulations in order to fit with analog observations: experiment number, gelatin
rigidity (µgel), gelatin density (ρgel), fluid density (ρ 𝑓 ), viscosity (η), input velocity (𝑣𝑖) and depth (𝑧𝑖), cross-sectional area (𝐴0)
and maximum crack head opening (ℎmax). Output of the numerical simulations: crack head length (𝐿head), fracture energy (𝐸 𝑓 )
and fracture toughness (𝐾sim𝑐 ) which is deduced using Equation 1. Unshaded rows correspond to injections with a homogeneous
stress field, whereas shaded rows correspond to injections performed with a load applied at the surface.

Exp # µgel ρgel ρ 𝑓 η 𝑣𝑖 𝑧𝑖 𝐴0 ℎmax 𝐿head 𝐸 𝑓 𝐾sim𝑐
(Pa) (kg·m−3) (kg·m−3) (Pa·s) (cm·s−1) (cm) (cm2) (cm) (cm) (Pa·m) (Pa·m1/2)

2102-I3 317.7 1121.4 970 0.97 4.80 ×10−3 14.5 7.1–7.9 1.00–1.06 11.5–11.2 1.03–1.15 36.13–38.8
2103-I2 194.7 1106.4 970 0.97 1.00 ×10−2 8.8 6.9–9.4 1.12–1.38 10.0–11.1 0.91–1.25 26.55–31.18
2104-I1 188 1105 970 0.97 7.40 ×10−2 8.8 6.5–8.9 1.09–1.34 9.8–10.8 0.85–1.17 25.22–29.66
2104-I2 188 1105 970 9.7 6.20 ×10−3 15.0 6.5–7.0 0.95–1.01 9.8–10.0 0.65–0.72 22.11–23.24
2104-I3 188 1105 970 0.97 7.20 ×10−3 9.0 5.5–8.9 0.97–1.35 9.2–10.8 0.73–1.17 23.16–29.66
2105-I4 313 1105 970 9.7 5.70 ×10−3 15.5 8.3–9.2 0.95–1.03 12.6–13.0 0.84–0.97 32.47–34.81
2105-I5 313 1105 970 9.7 3.20 ×10−3 15.5 6.2–8.1 0.81–0.99 11.4–12.4 0.68–0.93 29.24–34.16
2105-I6 313 1105 970 0.97 2.20 ×10−3 15.6 4.5–5.3 0.71–0.79 10.2–10.8 0.58–0.69 26.90–29.31

30 to 50 mL for the M10000 oil to investigate the propagation
velocity. While the velocity behavior of oil-filled cracks is sim-
ilar to that of air-filled cracks (with an initial deceleration, a
constant velocity phase, and a final acceleration, see Figure 4B
and 4C), the velocity of oil-filled cracks is almost three orders
of magnitude slower, and ranges from 0.002 to 0.009 cm·s−1
(Table 3).
Next, we focus on comparing the results obtained from the
experiments with those obtained from the numerical simula-
tions. Figure 5 presents the temporal evolution of different
parameters for M1000 (Figure 5; panels A and B) and M10000
injections (Figure 5; panels C, D, and E). The approach de-
scribed in Section 3.3 allowed us to determine ranges of uncer-
tainties for the different parameters presented in this section.
The resulting range of acceptable values for each parameter
is summarized in Table 4 and displayed as dashed lines in
panels from columns 2 to 5 of Figure 5.
Crack shapes are represented at regular depth intervals (Fig-
ure 5; A1 to E1), starting from a stationary shape (dark shape)
and propagating with a dynamic shape characterized by a thin
open channel developing beneath the tear-drop region at the
crack head, which is due to the fluid’s viscosity. To be able
to qualitatively compare crack shape parameters, we need
to objectively characterize the boundary between the crack
head and tail: we define it as the depth 𝑑 at which the sec-
ond derivative of the crack opening—with respect to depth—is
maximum (red dashes in Figure 5; A1 to E1). Above this depth,
the crack head maintains a relatively constant length during
the propagation (Figure 5; A2 to E2). Although we did not use
the crack length as a constraint in our model, the obtained
lengths fall within the range of measured lengths (pink area
in Figure 5; A2 to E2), except for EXP2105-I6. In this case,
the crack initially propagated as one main fracture but then
a small portion of the oil volume split from the main crack
(Figure 2B). As a result, the aspect ratio of the 3D crack is bi-
ased by the splitting of the crack compared with a crack that
remains in one part throughout its entire propagation.
The opening of the crack head was used as a fitting parame-
ter in the numerical simulations to constrain the crack surface
𝐴0 (cf. Section 3.2, thin pink line on Figure 5; A3 to E3). As
stated in Section 2.2, the measurement of the crack opening

was only feasible near the surface (or at depth 𝑧𝑠 , for the load-
ing experiments). Therefore, we represented it as a constant
value in the third column of panels of Figure 5. For M10000
silicon oil simulations, we can observe a slight decrease in the
maximum opening at the beginning of the propagation that
coincides with the formation of a thicker tail (region below
𝑑), as shown by Figure 5; A4 to E4 [Davis et al. 2023]. Note
the difference in the horizontal axis scale between M1000 and
M10000 silicon oil.
The last column of Figure 5 compares the simulated ve-
locity (colored circles) with the observed velocity (pink dots).
From the analog experiments, the velocity of silicon oil cracks
propagating in homogeneous stress field can be described by
three stages (pink dots in Figure 5; A5 to E5): initiation, propa-
gation, and acceleration, as previously described in case of air
crack injections [e.g. Takada 1990; Heimpel and Olson 1994;
Rivalta and Dahm 2006]. The acceleration observed in the fi-
nal stage, when approaching the surface, is due to the elastic
free-surface effect, which has been well documented for air in-
jections [e.g. Rivalta et al. 2005; Rivalta and Dahm 2006; Pinel
et al. 2022]. The evolution of the simulated velocity captures
the early stages of crack propagation, with a deceleration due
to tail formation, followed by a more constant propagation
velocity. Eventually a rapid acceleration is simulated, which
occurs deeper and with greater amplitudes than during ana-
log experiments. For a given fluid viscosity, the discrepancy
between the observation and the simulation during this final
stage diminishes when considering smaller cracks (see differ-
ences in Figure 5; A5 and B5 or C5 and D5), similar to what
is observed for air cracks [Pinel et al. 2022].
We can also compare our simulated velocity to the esti-
mate provided by the lubrication theory, using the analytical
formula for the velocity of a 2D batch of fluid propagating
with a constant area (no compressibility effect) in an infinite
medium as given by Spence and Turcotte [1990]:

𝑣𝑡ℎ =

(
𝐴20Δρ𝑔

48η𝑡2

)1/3
(4)

where 𝑡 is the time and 𝑔 the gravity acceleration. Using the
time of propagation associated with the simulated velocity, we
estimate the analytical velocity for each analog experiment
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Figure 4: Measured fluid-filled crack velocity (colored dots) for [A] air (EXP2102-I4), [B] M1000 (EXP2102-I3), and [C] M10000
(EXP2105-I5) silicon oil injections. The mean velocity (thick black line) and standard deviation (dashed lines) are estimated for
the grey area, i.e. excluding the initial phase of crack growth and the final acceleration due to the free surface. Note the different
velocity scales for each experiment.

(blue curves on Figure 5; A5 to E5). The analytical veloc-
ity shows a continuous decrease throughout the propagation
process, reflecting the progressive transfer of fluid from the
(buoyancy-dominated) crack head, to the elongating (viscous-
dominated) tail. However, it does not account for the free-
surface effect, such that it is more appropriate to compare it
with the velocity obtained from the simulations without the
free-surface condition (red curves on panels from columns 2
to 5), which indeed show a similar trend. Note that the fitting
of both experimental and analytical velocities is more accurate
for the most viscous oil (M10000).

4.2 Fracture and viscous dissipation energy contributions

For each numerical simulation of the analog experiments,
we investigated the relative contributions of fracture energy
(𝐸 𝑓 · 𝑙) and viscous dissipation (Δ𝐸𝑣) to the total energy
release (Δ𝐸) along each crack propagation path (cf. Equa-
tion 2 and Figure 6). For M1000 silicon oil injections (dashed
curves on Figure 6), the relative contribution of Δ𝐸𝑣 to Δ𝐸
remains low, around 2 %, for most of the propagation. The
increase in contribution is influenced by the acceleration due
to the free-surface condition, which is significantly larger in
the numerical simulations, with respect to the experiments.
For the most viscous fluid (plain curves on Figure 6), the rela-
tive contribution of Δ𝐸𝑣 to Δ𝐸 increases up to 20 %. In both
cases, the propagation of cracks filled with silicon oil is pri-
marily dominated by the fracturing process. In our previous
work [Furst et al. 2023], we validated our numerical model
for Δ𝐸𝑣 contributions ranging from 35 to 75 % (gray area in
Figure 6). The lower limit of the gray area corresponds to
validation against the analytical model proposed by Rubin et
al. [1998], while the upper limit is based on comparison with

the study by Spence and Turcotte [1990]. When the contri-
bution of Δ𝐸𝑣 exceeds this range (white region to the right of
the gray area in Figure 6), we enter a regime where viscos-
ity plays a dominant role. In this regime, the contribution of
𝐸 𝑓 · 𝑙 becomes negligible. For this regime Furst et al. [2023]
have shown that numerical simulations become unstable due
to an underestimation of the viscous pressure drop at the crack
tip. The analog experiments performed in this study allow us
to further validate the numerical velocity profiles in a regime
with a smaller contribution of Δ𝐸𝑣 (blue area in Figure 6). As
shown in the previous section, we achieved a reasonably good
agreement between our numerical simulations and the analog
experiments performed with the M10000 oil (Figure 5; C1 to
E5), which corresponds to a range of viscous energy dissipa-
tion of ∼10–20 %. When the contribution of Δ𝐸𝑣 decreases
to as low as 2 % in the M1000 experiments, we observed a
decline in the ability of our model to accurately reproduce the
observed velocity profiles. Despite this limitation, our model
still successfully replicates the shapes of the oil-filled fractures
and their velocities far away from the free surface (Figure 5;
A1 to B5).

Figure 6 also includes the relative contributions of energy
for simulations of magmatic dykes. The dotted area represents
the range of energy contributions for the three simulations
with propagation velocity fitting the migration of volcano-
tectonic events accompanying the 1998 dyke-intrusion at Piton
de la Fournaise [Furst et al. 2023]. Depending on the volume
of the intrusion, the model produces dykes with relative con-
tribution of Δ𝐸𝑣 to Δ𝐸 ranging from 2 % up to 20 %. This
indicates that our oil-filled fracture experiments cover a com-
parable range of energy contributions to that of magmatic in-
trusions.
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Figure 5: (Caption next page.)
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Figure 5: (Previous page.) Results of the simulations for the vertical propagation of silicon oil injections: for M1000 silicon oil
(panels from rows A and B) and for M10000 silicon oil (panels from rows C to E). Panel A1 shows the temporal evolution of
the crack shape simulated for EXP2102-I3. Initial stationary crack shape (dark blue shape, t = 0 s) compared with the static
crack shape (dashed orange shape). Representations of dynamic crack shapes sampled at constant space intervals. The color
code indicates the time. The crack head length (Lhead), the maximum crack opening (hmax) and the mean tail opening (htail) are
defined on A1 and their evolution along the depth of propagation are displayed on A2, A3, and A4 respectively with associated
uncertainties (dashed lines). The pink lines within the pink areas indicate the average values of the crack length and opening
measured from the experiments and their uncertainties. The evolution of the propagation velocity v is represented on A5, along
with the observed velocity from the analog experiment in pink. The theoretical value of velocity vth defined by Equation 4, is
indicated by the blue curve on A5. The red curves on A2, A3, A4, and A5 represent results of simulations removing the effect
of free surface. Panels B1 to B5, C1 to C5, D1 to D5, and E1 to E5 display results for EXP2105-I6, EXP2104-I2, EXP2105-I4, and
EXP2105-I5 respectively.

Figure 6: Evolution of viscous dissipation contribution with re-
spect to the total energy produced by the system. Results for
simulations fitting analog experiments of vertical propagation,
compared with Piton de la Fournaise simulations from Furst et
al. [2023]. z* is the depth normalized by the initial depth for
numerical simulations.

4.3 Influence of a topographic load

In the experiments involving surface loading, the oil-filled
cracks deflect due to the interaction with the heterogeneous
stress field induced by the surface load. It is important to note
that the load is applied to the surface of the gelatin after the
crack has attained a stable shape and velocity (grey horizon-
tal lines in Figure 7). For the three experiments, the propaga-
tion velocity decelerates rapidly after the injection and reaches
a constant velocity (pink dots below 𝑧𝑠 in Figure 7; A1, B1,
and C1). Once the load is applied at the gelatin surface, the
crack trajectory starts to bend towards the load, and no major
change in the velocity is observed within the range of mea-
surement uncertainties. We initially expected a deceleration
due to the bending of the trajectory, as previously observed
in air injections [Pinel et al. 2022] or when oil cracks ascend
vertically beneath a load [Watanabe et al. 2002]. However,
such behavior was not observed here. Instead, we observed
an acceleration due to the free surface effect when the crack
approaches the surface.
In Figure 7, we also present the results from numerical sim-
ulations of these experiments. We conducted both “uncon-
strained” simulations, where the numerical model solves for
both the trajectory and velocity of the oil-filled cracks (shown
as blue shapes in Figure 7; A2, B2, and C2), and “constrained”
simulations, where the trajectory is imposed as an input and
the numerical model solves for the crack velocity only (shown
as green shapes in Figure 7; A3, B3, and C3). The parameters
characterizing each experiment are listed in Table 4.
For all simulations, we present results obtained with and
without accounting for the free surface, as we have shown
in the previous section that M1000 simulations provide much
larger accelerations due to the free surface, with respect to
the experiments. Overall, our model results show a good fit
with the trajectories observed in the M1000 experiments, with
minimal differences between simulations with or without free
surface. However, the model fails to reproduce the observed
velocity variations, except for the experiment with a small
deflection, and without considering the effect of free surface
(Figure 7A4). For this simulation, there is little difference be-
tween the velocity and energy release obtained from the “un-
constrained” simulation and those obtained by imposing the
observed trajectory. Furthermore, the velocity correlates well
with the energy release, as previously observed for air injec-
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Figure 7: Observations and results from numerical simulations from the less deflected to the most deflected case: EXP2104-I3
(row A), EXP2104-I1 (row B), and EXP2103-I2 (row C). Column 1) observed velocity of propagation: the grey area indicates the
propagation within the heterogeneous stress field induced by the surface load. Column 2) initial and final crack shapes (dashed
shape and blue filled shape respectively) obtained from the numerical simulation of each experiment in full space (no traction-
free surface). The grey-scale indicates the stress field induced by the load. The pink dashed line shows the observed trajectory
and the grey rectangle at the surface corresponds to the load. The black transparent shape is the result of the simulation in
half-space (with a free surface condition). Column 3) is the same as in column 2 for simulations imposing the trajectory from
the experiment. Column 4) simulated velocities over-imposed on the observations (pink dots), in blue for the unconstrained
simulation and in green for the ones imposing the trajectory. Plain (dashed) curves are for simulations without (with) the free
surface condition. Column 5) energy release for the different simulations.
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tion experiments by Pinel et al. [2022]. For the other two ex-
periments, the simulations exhibit velocity variations that are
not observed in the experiments, and considering a free sur-
face in the simulations appears to worsen the results.

4.4 Fracture toughness comparison

We can consider magmatic dykes in terms of fracture-
dominated and viscous-dominated regimes. In the fracture-
dominated regime, dyke propagation velocity is limited by the
velocity at which the fracture front extends, given the stress in-
tensity factor at the crack tip and the rock fracture toughness.
In the viscous-dominated regime, dyke propagation velocity
is limited by viscous flow, preventing magma from flowing
through the fracture as fast as the fracture front would extend,
if it were filled with an inviscid fluid. Air injections are typ-
ical examples of cracks propagating in a fracture-dominated
regime, where the propagation is limited by the fracture tough-
ness of the material. This latter property provides a quanti-
tative measure of the resistance of brittle material to crack
propagation.
Assuming that viscous forces are fully negligible in air-filled
crack experiments, we can use Weertman’s crack theory to
compute the stress intensity factor (𝐾I) as a function of the air-
filled crack length, in 2D [Secor and Pollard 1975] and in 3D
[Heimpel and Olson 1994]. The gelatin’s fracture toughness
(𝐾𝑐) is the critical value of 𝐾I that allows for crack propaga-
tion. Therefore, we computed 𝐾I for each air injection per-
formed within the same gelatin block, and assuming a linear
dependency between 𝐾I and the crack propagation velocity
[Heimpel and Olson 1994; Smittarello et al. 2021], we extrap-
olated the critical value of 𝐾I when the velocity approaches
zero, which is 𝐾𝑐 for that gelatin block.
Experimental values of 2D fracture toughness (𝐾exp𝑐 ) are
displayed for each gelatin tank in Figure 8 using dashed col-
ored lines, with the 3D values being approximately 1.103 times
larger [Smittarello et al. 2021]. In addition, we obtained esti-
mates of fracture toughness values from the numerical simu-
lations (𝐾sim𝑐 ) of the oil-filled crack propagation experiments
(vertical and deflected) using Equation 1 (Table 4 and sym-
bols on Figure 8). While 𝐾exp𝑐 values for each tank are based
on air injections, silicon oil injections yield a single value of
𝐾sim𝑐 . The values obtained from the numerical simulations
are always lower than those inferred from air injections, al-
though they are of the same order of magnitude. Note that the
values derived from the air injections would not allow for the
propagation of the oil-filled fractures, and that 𝐾𝑐 estimates
for each gelatin block (in Figure 8 the symbols and lines with
the same colors) seem to correlate with the fracture propaga-
tion velocity of the experiments used for their estimate. This
suggests that effective, possibly velocity-dependent values of
fracture toughness should be considered for the gelatin.

5 DISCUSSION
The characterization of oil-filled fractures is more challenging
than that of air-filled fractures, which have been extensively
studied in the past. This is especially true when determin-
ing the fracture head length, as the presence of an open tail
complicates the measurement process (Section 2.2). In fact,

measurements of crack shape may be influenced by various
biases. The relatively strong mismatch between the refrac-
tive indexes of gelatin and air, and gelatin and silicone oil,
may have a significant effect on the measurements of the frac-
ture geometry. To address this issue, following each series
of injections, a sequence of photographs was captured with a
graduated ruler positioned within the gelatin tank, at the loca-
tion of each fluid injection. Subsequently, TRACKER software
was employed to gauge the apparent distance between fixed
markers, and compute a calibration coefficient for the videos.
However, the contrast between the crack and gelatin at the
transition between the crack-head and tail, may not be suf-
ficiently sharp for accurate and consistent estimations of the
crack head lengths using the automated process. Moreover,
the sharpness of photographs or videos may impact the auto-
mated detection of crack velocity and head length. The com-
bined influence of these possible biases results in the relatively
large uncertainties associated with our length measurements.
Due to the oil viscosity, tiny bubbles trapped within the
oil inside the syringe were difficult to eliminate, and some-
times they were injected into an oil-filled crack, where they
slowly gathered at its tip. We estimated that the air volume
(when present) was always less than 2 % of the total crack
volume. Based on five M1000 oil filled crack experiments
with the same volume (EXP2102-I3, EXP2103-I1, EXP2103-I2,
EXP2104-I1, EXP2104-I3), we could make a direct comparison
between the propagation velocity of an oil-filled crack with an
air bubble trapped at its tip (EXP2102-I3), and the velocities of
the other four experiments without air bubbles (before apply-
ing the surface load). All velocities were very similar, except
for EXP2102-I3, which was slightly slower because of a stiffer
gelatin (µgel = 317.7 Pa). This indicates that the effect of the
air bubbles on the crack propagation velocity is negligible in
comparison to other factors, such as gelatin rigidity. In ad-
dition, we observed that the presence of the bubble slightly
sharpens the tip of the crack, but this effect is highly localized
and has an insignificant impact on the overall length of the
crack head and opening.
Other possible sources of uncertainties related to our mea-
surements might have occurred in the case of a crack propa-
gating at the edges of the tank: in such a case the top camera
may have captured not only the opening of the crack, but also
a portion of its body, leading to an overestimation of the open-
ing. Also, the presence of oil residue from previous injections
on the gelatin surface, as well as the dip angle of the crack,
may have affected our measurements. Despite these exper-
imental challenges, we could assess the repeatability of our
experiments through the comparisons of two pairs of exper-
iments: EXP2103-I1 and EXP2104-I1, as well as EXP2103-I2
and EXP2104-I3. These experiments shared key parameters,
including injected volumes, injection hole placements, fluid
types, and gelatin parameters. Even though these experiments
were conducted under the influence of different surface loads,
we could compare crack characteristics prior to the introduc-
tion of the loads. Crack characteristics across these experi-
ments revealed a high level of consistency in terms of veloci-
ties, ℎmax values, and widths (Table 3). However, it is worth
noting that the head lengths displayed a slightly wider range
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Figure 8: Different fracture toughness estimates as function of the velocity. For each tank, the value of fracture toughness in
2D is deduced from air injections following Smittarello et al. [2021] (dashed colored lines). The symbols with the vertical line
represent the results from the numerical simulations with associated uncertainties, by fitting the opening and velocity of each
injection. Triangles are for M1000 silicon oil injections and diamonds for M10000.

of values, possibly due to the measurement bias that we have
previously discussed.

The vertical propagation of oil-filled cracks exhibits similar
velocity behavior to air-filled cracks, characterized by decel-
eration, stable propagation, and acceleration due to the free
surface. However, this acceleration is less pronounced in ex-
periments than in numerical simulations. The larger acceler-
ation obtained with the simulations may be attributed to the
2D plane-strain approximation used, which assumes an infi-
nite crack width and neglects the finite rounded shape of the
crack tip. This approximation may result in an underestima-
tion of the oil flux at the crack tip, leading to a decrease in
viscous energy dissipation [Furst et al. 2023]. Since the prop-
agation velocity is directly related to the energy dissipation
according to Equation 2, any underestimation of viscous dis-
sipation would consequently lead to an overestimation of the
propagation velocity.

In our study, we acknowledge the influence of different
boundary conditions between the experiments and the nu-
merical model. As our model does not account for the po-
tential effect of the zero-displacement boundary condition at
the tank wall on crack opening, we conducted validations us-
ing a finite element numerical model. We verified that even
in cases where cracks were located at the smallest distance
from the tank wall (EXP2105-I4), the stress field induced by
the intrusion remained largely unperturbed by the presence
of the tank wall. To do this, the stress field induced by the
opening of the crack head was calculated by considering a
zero-displacement condition at the tank wall using the com-
mercial COMSOL software and by artificially increasing the size
of the tank by a factor of two. The maximum compressive
stress field induced by the crack opening in both cases is pre-
sented in Supplementary Material 1, together with their dif-
ferences. The closest boundary induces an asymmetry of the

amplitude of σ1 induced by the crack opening with larger
values on the side towards it, consistently with the plot of the
differences between the two simulations showing some sig-
nificant positive differences at the right of the crack tip, and
negative differences at its left. Most importantly, along the
crack the differences are very small, except for a small region
near its upper tip, which should not significantly influence the
energy release calculated over the whole crack and, conse-
quently, the calculated velocity. In addition, preexisting cuts
within the gelatin block, due to the propagation of previous
fluid-filled cracks, were not considered in our stress models.
Preexisting cuts may interact with both the loading stress and
the crack-induced stress [Le Corvec et al. 2013]. Therefore, in
order to minimize their possible influence on our fluid-filled
crack experiments, we always kept a distance of at least 4 cm
between oil injections in the same tank [cf. Le Corvec et al.
2013]. Following Maccaferri et al. [2019], we also made sure
that no cuts were present between the loading mass at surface
and the propagating fluid-filled crack, which could potentially
produce a disturbance in the loading stress field at the location
of the fluid-filled crack.

When subjected to a surface load, cracks filled with vis-
cous fluid deflect similarly to air-filled cracks, but their velocity
does not appear to be affected, although further experiments
are needed to confirm this. On the contrary, we obtained
significant velocity variations in the numerical simulations of
M1000 oil-filled cracks. This may be due to the fact that
M1000 silicon oil experiments (and simulations) fall within
the fracture-dominated domain (Figure 6). In our numerical
model, the computation of the velocity is based on the assump-
tion that the viscous dissipation is the main process controlling
the fracture propagation velocity. Therefore, we expect that
loading experiments performed with higher-viscosity oil in-
jections may be better reproduced by our numerical model.
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However, as the fracture approaches the fracture-dominated
regime, the velocity becomes increasingly influenced by the
fracturing process. In order to capture the velocity variations
observed in this regime, it may be necessary to consider ef-
fective, velocity-dependent values of fracture toughness in the
simulations. This hypothesis is also supported by the results
obtained for the gelatin’s fracture toughness, which seems to
correlate with the fracture propagation velocity. An effective
fracture toughness could account for possible inelastic pro-
cesses occurring at the crack tip, such as plastic deformation
or damage, which are expected to become more significant
as the crack propagation approaches the fracture-dominated
regime [Rivalta et al. 2015].
In Section 4.2, we evaluated the relative contributions of
viscous dissipation and fracture energy to determine the prop-
agation regime of our experiments and compare it to that of
magmatic intrusions. Previously, Roper and Lister [2007] and
Rivalta et al. [2015] introduced the ratio 𝑅 = 𝐿𝑐/𝐿∗ between
the critical head lengths of a crack in the fracture- and viscous-
dominated regime, respectively:

𝐿𝑐 =

(
𝐾𝑐

Δρ𝑔

)2/3
(5)

𝐿∗ =

(
µgelℎtail

2(1 − ν)Δρ𝑔

)1/2
. (6)

When 𝑅 ≪ 1 the zero-toughness assumption from the lubri-
cation theory is valid, while for 𝑅 ≫ 1, the Weertman’s theory
applies [Equation 22 in Rivalta et al. 2015]. Values of 𝑅 falling
within the range 0.1 ≲ 𝑅 ≲ 10 indicate a crack propagation
regime where both viscous forces and fracture resistance are
not fully negligible. Here, we compute 𝑅 values for our ex-
periments and compare them with the results we obtained
for the relative contributions of viscous- and fracture-energy
dissipation.
For the air-filled crack experiments, the condition 𝑅 ≫ 1
is satisfied because ℎtail → 0 (Equation 6). However, this is
not the case for the silicon oil experiments. We computed the
values of 𝑅 following Equations 5 and 6, using the values di-
rectly measured in the laboratory for Δρ (Table 3), and µgel
(Table 4), and the output from the numerical simulations, for
𝐾𝑐 and ℎtail (Table 5), assuming ν = 0.5 for the solidified
gelatin. For the most viscous oil (M10000), we obtained 𝑅 val-
ues ranging between 4.1 and 7.1, while for the less viscous oil
(M1000), the values ranged between 9.2 and 14.6. Roper and
Lister [2007] have demonstrated that for 𝑅 ≳ 4 the head length
scales with 𝐿𝑐 and the maximum opening of the crack head
differs significantly from that of the tail, which aligns with the
results from our silicon oil injection, where 𝑅 is always larger
than 4. These values of 𝑅 are consistent with the relative val-
ues of fracture- and viscous-energy contributions computed
with the numerical simulations (Table 5 and Figure 6), and
they confirm that for the oil injections, the viscous dissipation
is significant, even though it is not the dominant force. Inject-
ing higher-viscosity oils would be technically challenging but
could be interesting in order to reach fully viscous-dominated
regimes.

Estimating crustal fracture toughness remains challenging,
yet it is a crucial parameter for modeling magma propagation
within the crust. Currently, there are significant discrepancies
between laboratory measurements and field estimates of frac-
ture toughness. In laboratory studies, 𝐾𝑐 measured for centi-
metric rock samples is generally of the order of 1 MPa·m1/2
[Atkinson 1984] to be compared with estimates derived from
field observations, which vary from 40 to 4000 MPa·m1/2 [Ri-
valta et al. 2015, and references therein]. This discrepancy has
been attributed to the dependence of effective fracture tough-
ness on fracture length, resulting from the increasing size of
the process zone at the tip with increasing lengths [Delaney
et al. 1986]. However, the interpretation of field data can be
biased by the model considered [Gill et al. 2022]. From the es-
timate of 𝐾𝑐 obtained by our numerical model applied to Piton
de la Fournaise data [Furst et al. 2023], which ranges from 344
to 912 MPa·m1/2, we found that the propagation regime of
basaltic dykes was similar to that experienced by our oil-filled
cracks (see Figure 6 and Section 4.2).

The choice of different fluids in these experiments corre-
sponds to magmas with varying viscosities, making them rel-
evant for studying a range of magma types. Although air injec-
tions have commonly been used in analog experiments, they
are better suited for modeling dykes containing low-viscosity
magmas. Given the substantial diversity in magma viscosi-
ties found in nature [McLeod and Tait 1999], the experimen-
tation expanded to include alternative fluids when working
with gelatin [Kavanagh et al. 2018b]. For instance, silicon oils
used by Takada [1990] and Watanabe et al. [2002], provide
a more suitable representation for studying higher-viscosity
magmas propagating in the form of dykes. In our study, we
have demonstrated that viscous silicon oils effectively repre-
sent basaltic magmas, while even higher viscosity silicon oils
are required to simulate phenocryst-rich andesite or rhyolite
magmas [Takeuchi 2011].

Adopting a multimethod approach for investigating magma
transfer offers several key benefits, allowing us to advance our
understanding and gain a more holistic perspective on magma
dynamics. In the context of this work, integrating analog ex-
periments and numerical modeling offered us the opportunity
to gain from the complementarity of these approaches: exper-
iments are intrinsically 3D, while our numerical model is 2D;
analogue models are very time-consuming and can be per-
formed in a limited number for practical reasons, numerical
simulations offer the possibility to increase the number of pa-
rameter configurations that we can test; analogue experiments
can be used to validate the numerical approach, and evaluate
the impact of model assumptions and simplifications; numer-
ical models allow for investigating experimental parameters
(or quantities) that would otherwise be difficult to assess (for
instance an estimate of the crack-tail thickness, or the viscous
energy dissipation for our experimental set-up). By contin-
uously bridging the gap between theory and empirical data
through multimethod studies, we can refine and enhance nu-
merical models, making them more accurate and predictive
tools for assessing volcanic hazards and informing hazard mit-
igation strategies.
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Table 5: Parameters to calculate the ratio R for vertically propagating oil-filled cracks. Experiment number; fluid type; parameters
from the numerical simulations: minimum and maximum average tail opening (htail) extracted from Figure 5; optimal fracture
toughness (Kc) providing parameter in plain line in Figure 5; optimal crack head length (Lc = Lhead); critical head length in the
viscous-dominated domain (L*) estimated from Equation 6; ratio R.

EXP Fluid ℎtail 𝐾𝑐 𝐿𝑐 𝐿∗ 𝑅 = 𝐿𝑐/𝐿∗
(mm) (Pa·m1/2) (cm) (cm)

EXP2102-I3 M1000 0.39–0.19 37.1 9.12 0.96–0.67 9.5–13.6
EXP2104-I2 M10000 1.8–0.88 22.6 6.63 1.60–1.12 4.1–5.9
EXP2105-I4 M10000 1.06–0.88 33.6 8.63 1.58–1.44 5.5–6.0
EXP2105-I5 M10000 1.29–0.58 31.7 8.31 1.75–1.17 4.8–7.1
EXP2105-I6 M1000 0.30–0.12 28.6 7.75 0.84–0.53 9.2–14.6

6 CONCLUSIONS

We performed a series of experiments involving the injection
of air and two types of silicon oils with different viscosities
into solidified gelatin blocks. These experiments and com-
parison with numerical simulations aimed at studying the ef-
fect of viscosity on the propagation of fluid-filled cracks under
different conditions. We conducted experiments in homoge-
neous stress conditions, where the crack propagated vertically
under lithostatic stress. Additionally, we applied surface loads
to induce heterogeneous stress fields, causing the fluid-filled
cracks to follow curved trajectories towards the load. We also
used a numerical model [Furst et al. 2023] to simulate the oil-
filled cracks and infer some parameters that are otherwise dif-
ficult to access, such as the thickness of the crack tail, and the
gelatin’s fracture toughness. We showed that the propagation
of a viscous fluid results in the formation of a tail under the
crack head, the thickness of which increases with the viscos-
ity. This tail leads to a loss of volume of fluid transported
within the crack head during ascent, leading to a deceleration
in ascent, that is greater with higher viscosities. We also es-
timated the gelatin’s fracture toughness using an independent
method based on the air-filled crack experiments. By compar-
ing the two independent measurements of fracture toughness
𝐾𝑐 , we identified significant differences, suggesting the pres-
ence of effective fracture toughness values that may depend
on scale and/or velocity. Furthermore, the numerical simula-
tions provided insights into the relative contributions of vis-
cous and fracture energy dissipation during the crack propaga-
tion, which are crucial mechanisms in determining the propa-
gation regime of a fluid-filled fracture, whether it is dominated
by viscosity or fracture processes. We showed that the less vis-
cous oil (M1000) exhibits the characteristic shape of fluid-filled
fracture described by the lubrication theory, with a thicker
tear-drop shaped head followed by a thin tail. However, we
also showed that the M1000 oil-filled cracks propagate close
to a fracture-dominated regime (𝑅 ∼ 10, and Δ𝐸𝑣 ∼ 2 %), and
their velocity (and velocity variations) cannot be accurately
described by the lubrication theory. The numerical model
of Furst et al. [2023], takes into account both: the contribu-
tion of viscous forces (similarly to the lubrication theory), and
the brittle fracturing, improving the fit with observed veloc-
ities, but only at a significant distance from the free surface,
and it is not able to reproduce the velocity variations caused

by loading stress. This suggests that when the propagation
is fracture-dominated, more complex rheology—considering
velocity-dependent, elasto-plastic effects—might be needed in
order to describe these velocity variations in solidified gelatin.
Additionally, we demonstrated that even our most viscous in-
trusions (M10000 silicon oil) do not propagate in a fully vis-
cous dominated regime (1 < 𝑅 < 10, and Δ𝐸𝑣 ∼ 20 %), but
rather in an intermediate regime where both viscous forces
and fracture resistance are non-negligible. Consequently, the
velocity profiles observed in these experiments cannot be fully
described by lubrication theory equations, but they can be
fairly well described by the simulations performed with the
numerical model from Furst et al. [2023].

We also established that the range of viscous energy dissi-
pation of our oil experiments aligns well with that of typical
basaltic intrusions, such as those observed at Piton de la Four-
naise. Therefore, to investigate higher-viscosity magmatic in-
trusions, it will be necessary to further increase the relative
contribution of viscous energy dissipation in future analog ex-
periments, testing even higher viscosity fluids.
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