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ABSTRACT Earthquake Early Warning Systems (EEWSs) characterize seismic events in real time and
estimate the expected ground motion amplitude in specific areas to send alerts before the destructive waves
arrive. Together with the reliability of the results, the rapidity with which an EEWS can detect an earthquake
becomes a focal point for developing efficient seismic node networks. Internet of Things (IoT) architectures
can be used in EEWSs to expand a seismic network and acquire data even from low-cost seismic nodes.
However, the latency and the total alert time introduced by the adopted communication protocols should be
carefully evaluated. This study proposes an IoT solution based on the message queue-telemetry transport
protocol for the waveform transmission acquired by seismic nodes and presents a performance comparison
between it and the most widely used standard in current EEWSs. The comparison was performed in
evaluation tests where different seismic networks were simulated using a dataset of real earthquakes. This
study analyzes the phases preceding the earthquake detection, showing how the proposed solution detects
the same events of traditional EEWSs with a total alert time of approximately 1.6 seconds lower.

INDEX TERMS Earthquake early warning systems, Internet of Things, message queue telemetry transport
protocol, SeedLink protocol, miniSEED packet.

I. INTRODUCTION
Victims, injuries, and economic losses are only some catas-
trophic consequences of earthquakes. Natural disasters are
impossible to predict [1], but real-time seismic monitoring is
possible [2] using modern technologies, such as telecommu-
nications and sensor networks, and edge and cloud comput-
ing. These technologies allow the development of integrated
architectures of hazard monitoring, disaster risk assessment,
communication and preparedness activities, and processes
enabling individuals, communities, governments, businesses,
and others to take timely action to reduce disaster risks
before hazardous events [3]. These architectures are known as
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Earthquake Early Warning Systems (EEWSs) [4], [5]. Their
primary goal is to provide information as quickly as possible
about the location, size, and detection time of the earth-
quake to support emergency response effectively. Cooper [6]
proposed an EEWS based on the greater speed with which
information can travel through an electromagnetic signal
compared to the propagation of seismic waves. Therefore,
when a system close to a seismic zone detects an event,
an alarm can be sent to one or more distant targets. When
an earthquake occurs, the originated seismic waves are body
waves and surface waves. Each wave type has its character-
istic speed and destructive potential. Body waves comprise
primary waves (P-waves) and secondary waves (S-waves).
S-waves are slower than P-waves and carry most of the
energy. The different characteristics of these waves allow
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detecting P-waves to promptly alert people in specific places
before the more destructive S-waves reach them. The delay
between the arrival times of P-waves and S-waves allows
EEWSs to generate and disseminate timely warnings. Based
on the approach used to generate an alarm, EEWSs can be
grouped into on-site and regional systems [7]. The on-site
system should detect an earthquake and predict the peak
shaking at the same locationwhere the seismographic data are
recorded. In this case, suitable algorithms are implemented
to detect the P-waves using, for example, the scaling relation
between the peak initial displacement amplitude and the peak
ground motion displacement and velocity [8]. In a regional
system (also known as a network-based system), a network
of seismic stations is placed near an epicentral area. A pro-
cessing hub processes the collected data using algorithms
that detect, locate, and characterize an earthquake and sends
alarms to distant targets. However, a common approach is
combining the on-site and regional systems [9]. Such EEWSs
analyze an early portion of the P-wave to forecast the S-wave
and warn whether the shaking could be higher than a thresh-
old. The critical parameter for any EEWS is the lead time.
In an on-site system, the lead time is equal to the difference
between the arrival time of the P-wave and S-wave where
the device is situated, whereas, in a regional system, it is the
difference between the P-wave arrival time at the source and
the S-wave arrival time at the target.

The elapsed time between the origin of an earthquake and
the moment of the first issued alarm and the accuracy of the
estimated parameters are the critical performance metrics of
an EEWS. Each EEWS should deliver consistent alarms in the
fastest way, with an obvious trade-off between these metrics.
Allen et al. [10] reviewed the history and the status of EEWSs
globally, and Clinton et al. [11] presented the fundamental
recent developments in this research field in Europe. The
literature highlighted that many studies evaluated the per-
formance of different algorithms or complete systems for
early earthquake warnings. The performance evaluation of
the Japanese EEWS is presented in [12]. Bose et al. [13] pre-
sented an algorithm for on-site early earthquake warnings in
California, and Kuyuk et al. [14] assessed the performance of
three network-based systems in theMarmara region (Turkey).
Chung et al. [15] proposed the performance improvement of
the ElarmS algorithm from the 1.0 version [16] to the current
3.0 version. The ElarmS 1.0v delay times were also detailed
in [17], where the system was assessed in real-time [18],
[19] in California and offline with a dataset for Japanese
earthquakes. Behr et al. [20] proposed a complete method-
ology to study the contributions of delay of each EEWS
component [21]. However, its applicability to actual Internet
of Things (IoT) solutions [22] has yet to be evaluated. IoT
seismic nodes can be used in an EEWS to provide additional
tools to sense, process, and analyze environmental data [23].
In the last decade, devices, sensors, and actuators connected
to the virtual world of the Internet have become widespread
to generate added value in a growing number of application

fields such as smart cities [24], [25], structural health mon-
itoring [26], [27], and environmental monitoring [28], [29].
Mei et al. [30] presented a survey of IoT research and tech-
nological developments applied in geohazard monitoring and
prevention, including EEWSs. In [31] and [32], the authors
presented IoT solutions for detecting shaking caused by an
earthquake and sending warning messages. The National
Taiwan University developed a network of 581 low-cost
accelerometers to provide on-site warnings using P-wave
displacement thresholds [33], [34]. Other studies presented
networks of low-cost accelerometers to provide rapid infor-
mation after ground shaking [35], [36]. The Earthquake Net-
work [37] and MyShake projects [38] used private smart-
phone sensors to collect measurements, identify earthquakes,
and send data to a central site. Research on IoT technologies
for EEWSs has focused on developing new low-cost sensing
units, such as low-cost acceleration sensors. However, the
EEWSs can benefit from the IoT solutions, as efforts are
still required to optimize the seismic station networks by
providing minimal data latency at processing hubs alongside
highly reliable communications [11]. All components of an
EEWS add a delay to the alert time. However, in some seismic
networks, the method used to process, trigger, locate, and size
an event could have minor effects on the final alert time [20].
Therefore, a crucial contribution to the total alert time is from
the latency, primarily due to the transmission time and the
propagation delay.

Many international seismic networks comprised stations
and are heterogeneous regarding their geographical extent,
number of sensors, and density. Each station can have various
seismic sensors connected to a datalogger to store data locally
and send it to a remote processing hub. The seismic stations
of most traditional EEWSs are typically connected to the pro-
cessing hub via various wired or wireless network topologies
and transmit sensor data using the SeedLink protocol [39].
The SeedLink protocol is a de-facto standard for real-time
seismic data transmission and uses miniSEED packets. The
miniSEED is a subset of the Standard for the Exchange
of Earthquake Data (SEED) [40], an international standard
format for exchanging digital seismological data. The main
problem is that the SeedLink protocol requires fixed-length
packets, typically dependent on the sampling rate and propri-
etary datalogger characteristics. For example, a compression
(e.g., Steim 1 or 2 [41]) can represent data in a packet, with a
consequent difference in the number of samples contained in
each packet. Another option can be to insert a specific time
range of acquisitions into the packet (e.g., 1 s). Whatever the
mode, a specific amount of time before sending a miniSEED
packet must be waited, and this packetization time can signif-
icantly delay the final alarm time. Therefore, a more efficient
type of packaging and a different communication protocol
should be considered to evaluate the benefits regarding alert
time compared to traditional EEWS solutions.

This study evaluates the latency and the alert time intro-
duced by an IoT solution for EEWS to transmit data
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acquired by low-cost seismic stations in real-time. Specifi-
cally, this study presents a performance comparison between
the de-facto standard for real-time data transmission in tra-
ditional EEWSs and a solution based on the Message Queue
Telemetry Transport (MQTT) protocol [42], one of the most
used protocols in the IoT. In addition to evaluating the latency
times achieved by these communication protocols, this study
presents a performance analysis of a solution based on the
MQTT protocol and structured adjustable-length data packets
compared to a traditional one based on SeedLink protocol and
miniSEED packets.

The rest of this article is organized as follows. Section II
discusses the technical background of the different technolo-
gies relevant to the context of this work. Next, the dataset
used to simulate a seismic station network is described,
and the metrics for performance comparison are identified.
Subsequently, the proposed solution is presented, describ-
ing the evaluations performed for the analysis (section V)).
Section VI discusses the results obtained in the performed
tests, and their analysis is presented in Section VII. Finally,
conclusions and future developments of our work are dis-
cussed in Section VIII.

II. TECHNICAL BACKGROUND
Most traditional EEWSs use the SeedLink protocol for
real-time data acquisition from seismic stations. The seismic
stations are typically organized in subnets connected with
real-time communications to a Local Control Center (LCC)
and then to a Network Control Center (NCC). The NCC
embeds the processing hub to detect, locate, and characterize
an earthquake and send alarms to distant targets. SeedLink is
themost widely used communication protocol for exchanging
seismic data between seismic station networks and is based
on the SEED format. The SEED format is divided into two
parts: the time-series data (miniSEED) and the information,
such as the network and station identifiers and the instrument
responses (dataless SEED). The miniSEED contains a fixed
section of the data header that provides information about
data encoding and basic information about network and sta-
tion identifiers, locations, channel identifiers, time-series data
length, and time-series data. TheminiSEED records are trans-
mitted via SeedLink in 512-byte packets; therefore, waiting
for each packet to fill before its transmission is necessary.
These miniSEED packets of 512 bytes can be filled with
a variable number of samples, depending on the sampling
rate and the data compression used by the data logger. If the
acquired samples cannot reach the fixed packet length, the
datalogger can choose two alternatives: wait for the packeti-
zation time necessary to fill a packet or send it by inserting
null content up to 512 bytes. If the first approach allows
fully exploiting the available bandwidth, the second one is
more appropriate in an early warning context, maintaining a
constant packetization time. A SeedLink client initiates the
connection with a SeedLink server, and during the handshak-
ing phase, it subscribes to specific stations and streams. After
the handshaking phase, data are sent to the client as 512-byte

miniSEED packets with an 8-byte SeedLink header contain-
ing the sequence number. After the TCP/IP connection has
been established, SeedLink expects a first handshaking phase,
during which the client sends commands to the server, includ-
ing selecting the stream according to the Seed Station Nam-
ing Convention (SSNC). This convention assigns appropriate
codes to identify a stream through network, station, location,
and channel codes. The International Federation of Digital
Seismic Networks assigns the network code and comprises
an abbreviation of one or two letters identifying the network
(e.g., IV is the Italian National Seismic Network, IX the
Irpinia Seismic Network [43]). The station code refers to a
physical location where the instruments are sited, represented
by five or fewer letters typically registered in the International
Registry of Seismograph Stations [44]. The location code is
two letters or digits to distinguish similarly named channels
or instruments at the same station. Finally, the channel code
represents the single data stream and comprises three letters
indicating the band code (e.g., H for high broadband), the
instrument (e.g., N for accelerometers), and the orientation
(e.g., N for north-south).

Data streamed from the seismic stations are typically pro-
cessed in the processing hub using algorithms for real-time
earthquake location, magnitude estimation, and damage
assessment. A commonly adopted software platform inte-
grating these algorithms is the PRobabilistic and Evolution-
ary early warning SysTem (PRESTo) [45], which is under
active experimentation in southern Italy on the Irpinia Seis-
mic Network [46]. PRESTo is also in real-time evaluation at
the KIGAM network in South Korea, the RoNet network in
Romania, and the KOERI network in Turkey. The seismic
stations used in PRESTo store the data locally and create
miniSEED packets that SeedLink clients receive. Whatever
the sampling rate and the data compression used by dat-
aloggers, the seismic stations insert a specific number of
samples in miniSEED packets to obtain waveforms of time
windows up to one second long. Therefore, each station used
in PRESTo maintains the packetization time at 1 s and sends
the miniSEED packets to the processing hub via SeedLink
protocol. PRESTo processes the data collected from the
SeedLink clients using the integrated software for real-time
localization and magnitude estimation. The software infras-
tructure of PRESTo is based on four modules [45] (Fig. 1).
After the waveform acquisition from the seismic stations
and the preprocessing for quality controls, the system detects
the P-wave through an automatic picking algorithm known
as FilterPicker [47]. Subsequently, PRESTo processes the
P-wave arrivals at the stations to trigger a new event and
estimate the ground motion at the targets using RTLoc [48]
and RTMag [49] algorithms.

The possibility of implementing efficient EEWS is
strongly linked to creating dense heterogeneous seismic sta-
tion networks comprising IoT nodes with limited power and
processing resources [37], [38]. Therefore, the performance
of the IoT solutions adopted in EEWSs should be care-
fully considered. This study evaluates the MQTT protocol
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FIGURE 1. Block diagram of the PRESTo components.

for real-time data acquisition from a seismic station. Due
to its simple structure, MQTT can be easily implemented
in devices with low-power, low-performance processors and
is widely used in IoT data exchange [50] and the main
cloud platforms [51]. The MQTT protocol is based on the
TCP/IP stack and a publisher/subscriber mechanism [52],
enabling distributed, asynchronous, and loosely coupled
communication between message producers and consumers.
The publish/subscribe messaging relies on a broker with an
intermediary role between publishing client messages and
receiving subscriber messages. Therefore, the message bro-
ker is an intermediary that receives messages from publishers
and forwards them to subscribers who have declared that they
want to receive them. The publisher does not need to know
the destination client, as the broker who keeps track of all
the client’s subscription requests forwards the message to
any subscribers. The broker uses a topic-based hierarchical
system to send and receive messages. While publisher clients
can arbitrarily choose topics onwhich to send data, subscriber
clients can request subscription to specific topics using a
filter created with wildcard characters (i.e. # char, + char).
As shown in Fig. 2, an IoT solution based on the MQTT
protocol can be fully integrated into an EEWS where the
IoT nodes and edge devices function as seismic stations
and LCCs, respectively. While each IoT node embeds a
low-cost accelerometer and an MQTT publisher to transmit
the acquired seismic data, an edge device integrates anMQTT
broker and subscriber to receive them. Furthermore, an edge
device implements a middleware server to convert the seis-
mic data into miniSEED packets and make them available
to a SeedLink server. The server provides seismic data to
SeedLink clients, such as the one integrated into an NCC
capable of detecting, locating, and characterizing an earth-
quake and generating an eventual alarm. By using the pro-
posed architecture, it is possible to use topics according to the
SSNC (e.g., network/station/location/channel) and any data
format for the message payload, such as miniSEED packets
or custom structured data packets. With the latter data format,
it is possible to use adjustable-length packets and choose the

FIGURE 2. Architecture of an EEWS integrating an IoT solution to acquire
seismic data from low-cost IoT nodes.

number of samples to be inserted into the packet payload,
starting from the theoretical sample-by-sample transmission.

This study evaluates the latency of the MQTT protocol in
the EEWS application and demonstrates that such a protocol
with adjustable-length packets can significantly reduce the
delay introduced by a seismic station using the SeedLink
protocol and miniSEED format with fixed-length packets.
Several studies in the literature show that the MQTT protocol
achieved the best performance for the end-to-end delay and
bandwidth consumption compared to other protocols used in
IoT applications, such as hypertext transfer protocol [53],
advanced message queuing protocol [54], or constrained
application protocol [55]. However, the MQTT protocol per-
formance for EEWSs has yet to be evaluated, and this study
aims to cover this gap.

III. DATASET
The performance comparison between the solutions based on
the MQTT protocol and SeedLink was performed through
simulations on a dataset of real earthquakes managed by
the Italian National Institute of Geophysics and Volcanol-
ogy (INGV). The seismic events to be analyzed with such
solutions have been selected from the INGV Strong Motion
Database (ISMD) [56], containing data recorded by the
National Seismic Network (RSN). The RSN is the national
permanent seismological network managed by INGV, with
contributions from institutions and observers collaborating
with them. Over time, it has grown in the number and the
quality of the tools installed, also becoming an essential
research infrastructure. To date, the RSN comprises approx-
imately 500 monitoring stations distributed throughout the
national territory and is enriched by the stations of various
Italian and foreign networks and temporary stations that are
installed when necessary (e.g., in case of seismic swarm
monitoring in geographic subregions of interest). To allow
the seismic monitoring of the national territory, each seismic
station sends data to the INGV seismic room, where a 24-h
service is available for locating and assessing the magnitude
of the seismic events in Italy. Data recorded by the RSN and
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FIGURE 3. Location of the seismic stations and the events considered in
the dataset. The blue triangles identify the seismic stations, and the
circles indicate the events with different color and magnitude size.

stored in ISMD [56] provide the waveforms and the related
metadata of the earthquakes with magnitude ≥ 3.0 in the
Italian territory and localized by INGV in quasi-real-time.

All the events with magnitude ≥ 3.5 from 2016-01-01 to
2020-05-27 between 42.02 and 43.82 latitude and 12.04 and
13.4 longitude were selected from the ISMD to provide a
performance analysis of the MQTT protocol compared with
the SeedLink protocol. The chosen area primarily refers to the
epicentral area defined by the earthquakes in Central Italy in
2016-2017, representing a real use case for assessing EEWSs
in Italy and an excellent example of complex emergency
management [57], [58]. Based on the selected earthquakes,
the waveforms of all the stations of the IV seismic network
that recorded the data on at least one event were collected, cre-
ating the seismic network shown in Fig.3. The map of Fig.3
also reports the geographical distribution of the 200 selected
earthquakes with their magnitudes, which are proportional
to the circle radius. Data stored by the INGV web service
providers were collected by selecting six minutes for each
trace on each channel (three minutes before and after the
event declaration), obtaining 13,818 traces in the Seismic
Analysis Code file format [59]. Subsequently, these traces
were processed using the following operations:

1) Obtain the minimum start-time of all traces.
2) Calculate of the time difference between the minimum

start time of the dataset and the start time of each trace.
3) Compute of the mean value and standard deviation of

the first 800 samples of each trace (quiet moment).
4) Add white noise at the beginning of each trace up to the

minimum start time value.

After these operations, a dataset of traces with the same
start time was obtained for evaluation. For each test, a suit-
able script that reads the contents of the dataset contain-
ing the accelerometric traces of real seismic events was
developed.

FIGURE 4. Summary of events during earthquake detection. The
datalogger of a seismic station fills each packet with a portion of the
waveform and sends it to the client. An earthquake starts during the
packetization of the blue packet, delaying its detection on the client.

IV. PERFORMANCE METRICS
This study proposes the MQTT protocol in EEWSs and com-
pares its performance with those obtained from a traditional
system based on SeedLink. The performance evaluation met-
rics are defined to study the time differences introduced by
the systems based on the MQTT and SeedLink protocols.
Referring to Fig.4, on the datalogger of a seismic station, it is
possible to define

Tpack,i = tep,i − tsp,i (1)

where Tpack,i is the packetization time of the i-th packet
obtained from tsp,i and tep,i, defined as the time of the first
and last samples in the i-th packet. Tpack,i depends on the
sampling rate and the number of samples in each packet.

From this perspective, tr,i is defined as the arrival time of
packet i at the client. Therefore, the latency Tlat,i of the i-th
packet is the difference between the last sample in the packet
and tr,i,

Tlat,i = tr,i − tep,i (2)

The picker time Tpick is the time required to detect the
P-wave once the packet arrives at the processing hub. It is
obtained from the difference between the timestamp of the
triggering algorithm ttrig and tr,i,

Tpick = ttrig − tr,i (3)

Finally, it is possible to define the total alert time Ttot as the
sum of packetization, latency, and picker times,

Ttot = Tpack,i + Tlat,i + Tpick (4a)

that is equal to the difference between the trigger time and the
timestamp of the first sample in the packet:

Ttot = ttrig − tsp,i (4b)

Another relevant performance metric is the delay in detecting
the P-phase, which is the difference between the instant of
P-phase detection by the triggering algorithm (i.e., the time
stamps of P-wave picking, ttrig) and the actual instant when
the P-wave is generated (tPw),

Tdel = ttrig − tPw (5)
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V. EVALUATION TESTS
The MQTT and SeedLink protocols were compared by eval-
uating the performance in three different tests. The first test
compared the latency of the SeedLink and MQTT protocols,
which is the time difference between receiving and sending
the same miniSEED packet. The second test analyzed the
results obtained from the P-wave picking with PRESTo and
our proposed solution for P-phase detection. The third test
evaluated the delay in detecting the P-phase and the total
alert time by comparing the solution based on SeedLink and
miniSEED packets with one based on MQTT and structured
adjustable-length data packets.

The experimental setup for each test comprised a machine
simulating the dataloggers of the seismic stations and another
simulating the clients of a processing hub. An appropriate
script processing the dataset containing the accelerometer
traces of real seismic events was developed for the simulated
datalogger side of each test. The script created two processes
for each dataset trace addressing packetization and transmis-
sion. For the simulated client side of each test, an appropriate
script for the real-time reception of the traces transmitted by
the simulated dataloggers was developed. A configuration file
containing the data on the simulated stations and the related
parameters according to the SSNC was passed to the script
managing two clients. Each client created as many processes
as the stations contained in the file, and each process analyzes
the traces received by the simulated dataloggers. Therefore,
in each test, it was possible to compare two EEWSs compris-
ing the dataloggers of a generic seismic network and a client
in the processing hub role. During the tests, the events on the
datalogger side and the client side were recorded through net-
work analyzers and specific log files. The machines used to
simulate the dataloggers and clients were synchronized using
the network time protocol [60] to obtain the performance
metrics. The dataloggers and the clients were simulated on
two machines with the following features: Intel Xeon X5650
(x2) central processing unit, 12 MB cache, 2.66 GHz, 16 GB
RAM with Ubuntu 18.04.1 LTS.

A. LATENCY TEST
The script developed for the latency test sent the same
miniSEED packets via SeedLink and as a payload of an
MQTT message to compare the two protocols. Two pro-
cesses dealing with the same packetization and two transmis-
sion modes were activated simultaneously for each dataset
trace. The former used the traditional packetization and trans-
mission methods (SeedLink protocol and miniSEED pack-
ets), and the second implemented the MQTT protocol to
send miniSEED packets. Regarding packetization, both pro-
cesses created one-second moving-time windows to produce
miniSEED packets. While the traditional method sent the
miniSEED packets to an internal SeedLink server, the other
process sent them to an MQTT broker. Therefore, in the
datalogger side of the latency test, the miniSEED packets
were transferred every second to a SeedLink server and an

MQTT broker installed on the same machine, simulating
the real-time behavior of a datalogger network. Concerning
the SeedLink server, the Ringserver [61] distributed by the
Incorporated Research Institutions for Seismology [62] was
installed and configured. As the MQTT broker, Mosquitto
was chosen [63]. On the client side of the latency test, a script
for the real-time reception of the traces transmitted via the
two protocols was developed and installed in a machine
under a different network. A SeedLink client and an MQTT
client were implemented using the Obspy library [64] and the
Paho-MQTT [65] library, respectively. The MQTT protocol
supports three levels of quality of service [66], and in our
simulations, it was 1 (i.e., at least once) to reproduce the
behavior of the SeedLink protocol. Therefore, the simulations
performed during this test were complied with a system
comprising seismic station dataloggers and a generic seismic
network processing hub.

The latencies of the two protocols were evaluated using
the data recorded by the network analyzers and the log files,
as the analysis conditions were the same (bandwidth, network
traffic, and time for packetization, etc.). The latency is the
time elapsed between the packet sending and the instant of
arrival (Tlat,i of Equation 2). To avoid errors due to different
processing techniques for each received packet, the receiving
time is the instant when the message payload is extracted
and processed as a miniSEED packet. All measurements
were performed at the end of the connection and subscrip-
tion phases of the MQTT protocol and after the connection
opening and handshaking phases of the SeedLink protocol.

B. P-WAVE PICKING TEST
In the P-wave picking test, the Python implementation of the
FilterPicker [67] was evaluated as thetriggering algorithm to
be implemented in the proposed EEWS solution. Specifically,
two analyses were performed to compare the PRESTo and
FilterPicker solutions and verify implementing the latter in a
solution based on structured adjustable-length data packets.
This analysis was conducted to avoid evaluation errors due
to different implementation choices. Specifically, the purpose
was to determine whether the time required to detect the
P-phase (Tpick of Equation 3) in a seismic wave injected into
PRESTo was the same as those detected by the solution based
on the FilterPicker. PRESTo can be configured and adapted
to different networks, providing the configuration files with
the details of the seismic stations, the velocity model, the
regression law coefficients, and tuning the parameters con-
trolling the data analysis algorithms. In collaboration with
the INGV office of Ancona (INGV-AN), the configurations
required by PRESTo for the seismic stations considered in the
dataset were developed. The speed models for each station,
the regression laws coefficients, and the configuration param-
eters for picking the P-phase were calculated using INGV-AN
(Table 1). The acceleration traces of the dataset were injected
into PRESTo using a specific script, generating a log file
containing the timestamps for seismic event detection. The
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TABLE 1. Configuration parameters for the picking of the P-phase.

output log file of PRESTo was used as the gold standard
to compare the P-wave detection times obtained from the
solution based on the FilterPicker.

In the datalogger side of the P-wave picking test, an appro-
priate script was installed in the machine to process the
dataset content to simulate the dataloggers. Two processes
addressing packaging and transmission in two methods were
activated simultaneously for each dataset trace.While the first
process used the traditional packetization and transmission
methods, the second implemented a solution based on the
MQTT protocol and structured adjustable-length data pack-
ets. The traditional method split the trace into one-second
windows and filled a miniSEED packet for each window,
sending it to an internal SeedLink server. However, the pro-
posed method sent structured adjustable-length data packets
via the MQTT. At the client side of the P-wave picking
test, specific clients were developed for receiving the traces
transmitted through the two methods in real-time and for
the P-phase detection. The clients created a process for each
simulated datalogger using the Python implementation of the
FilterPicker [67] and the same input parameters calculated
by INGV-AN for the PRESTo. Each process performed the
P-phase picking each time a packet was received over a time
window of 10 s.

The client for the real-time reception of the traces transmit-
ted via the traditional method provided the detection times-
tamp of the P-phase. By comparing this output with the
reference log file of PRESTo, almost identical results were
obtained for the detection time and real-time calculation on
the trace. This simulationwas repeated 10 times on each trace,
obtaining coincident results for each trial and confirming the
correctness of the solution using the FilterPicker for P-wave
picking.

The client for the real-time reception of the traces transmit-
ted with the proposed method performed the same operations
as the SeedLink client but processed a structured data packet
instead of the miniSEED packet. Regarding the format of the
structured data packet, the following fields were chosen for
the payload structure:

• Timestamp: the instant when the first sample of the value
field was acquired.

• Values: the variable-length array containing the samples
collected and encoded according to the encoding field.

• Encoding: the string indicating the number of samples in
the packet, the sampling rate, and the data format [68].

During the ten simulations, the miniSEED packet of the
SeedLink protocol was always filled with 1-s of samples
sampled at a 200 Hz. The number of samples in the structured
data packets of the MQTT protocol was varied to evaluate the
computation load of the machine implementing the MQTT
client. Starting from a structured data packet containing one
sample at the sampling rate, the number of samples in the
payload of the MQTT message was 2 n - 1 in each trial, where
n indicates the progressive number of performed trials. The
FilterPicker algorithm was invoked on the client side each
time a packet was received over a time window of 10 s. The
simulation results showed that this operation is too expensive
for the trials with less than 16 samples due to the very high
central processing unit usage of the machine simulating the
client.

C. ALERT TIME TEST
This study evaluates methodologies and protocols used
before the event detection performed by an algorithm for
P-wave picking. Therefore, in the alert time test, the solution
based onMQTT and the one based on SeedLink implemented
the same triggering algorithm to provide a performance com-
parison of the P-wave detection time. In the datalogger side
of the alert time test, the proposed method was modified
to send structured data packets containing 250 ms of sam-
ples via MQTT. According to the previous P-wave picking
test, this number of samples per packet is a good trade-off
between the correctness of the results obtained by the trig-
gering algorithm and its execution time. Compared to the
previous test, the client of the proposed method was modified
to process the structured data packet of the chosen length and
invoke the triggering algorithm for each packet received.

The delay in detecting the P-phase (Tdel of Equation 5)
and the total alert time (Ttot of Equation 4b) were evaluated
using the same methodology as in the latency test. The delay
in detecting the P-phase is the time difference between the
P-phase detection performed by the triggering algorithm of
the processing hub and the actual instant where the P-wave
was generated. This time difference considers the uneven
packetization times because the P-wave could be in a random
position in the packet that fills the datalogger before sending
it. The total alert time is the time difference between the
instant where the P-wave is detected by the triggering algo-
rithm of the client and the beginning of the packet containing
the wave itself.

VI. RESULTS
Table 2 summarizes the results obtained in the latency test.
The MQTT protocol reported the best results for latency,
reaching an average delivery time of 33.13 ms, with a stan-
dard deviation of 17.03 ms. The SeedLink protocol achieved
an average delay of 696.13 ms, with a standard deviation of
439.90 ms. Table 2 also reports the median and 90th per-
centile measurements for completeness of the information.

Fig.5 shows the probability distribution graph obtained
from the simulations, dividing the abscissa axis into bins
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FIGURE 5. The probability distribution of latency, Tlat , for the MQTT and SeedLink protocols.

TABLE 2. Statistics of the latency.

of 50 ms. The histograms are normalized, and the relative
frequencies of the total analyzed samples equal 13,818 traces
multiplied by the 200 samples in each second of trace. The
graph shows different distributions among the MQTT and
SeedLink protocols. The MQTT protocol distribution has a
positive asymmetry, with an interquartile range of 1.074 ms.
Compared with the 90th percentile and the median value
in Table 2, this value shows that the protocol performance
was stable during all simulations, with sporadic outliers. The
SeedLink protocol distribution shows the approximation to a
multimodal function, with a first mode value of 250-300 ms,
a second of 600-650 ms, and a third value of 1150-1220 ms.
Three mean and standard deviation values were obtained for
a distribution suitable for these characteristics. The average
value and the standard deviation for the approximation to the
first, second, and third distributions are 280 ± 78, 597 ± 89,
and 1187 ± 235, respectively. Therefore, the simulation
analysis conducted in the latency test showed a nonuniform
behavior of the SeedLink protocol, with great variability
of the results given the range of the values obtained. The
latency test was repeated by installing the SeedLink client in
the same machine that simulates the dataloggers to confirm
that network instability factors did not influence the results,
thus eliminating latency due to the network. Repeating the
latency test achieved almost identical distributions compared
to previous simulations. These results confirm the higher
instability of the SeedLink than the MQTT protocol and
significantly higher average latency times. Therefore, in the
latency test, the MQTT protocol achieved better performance
for latency and stability than the SeedLink protocol, making
it an excellent choice for EEWS applications where time and
reliability are critical.

TABLE 3. Statistics of the delay in detecting the P-Phase.

TABLE 4. Statistics of the total alert time.

Table 3 shows the simulation for the delay in detect-
ing the P-phase evaluated in the alert time test. By comparing
the obtained average values, it is possible to observe that
the proposed solution allowed the detection of the P-phase
with an advance of approximately 1300 ms compared to
the traditional miniSEED packetization and the SeedLink
protocol. This value is also similar comparing the median
and the 90th percentile values. Furthermore, the standard
deviation analysis shows that the values obtained using the
SeedLink protocol were much wider than those obtained by
the MQTT protocol, confirming that the proposed solution
also contributes to uncertainty regarding detection times.

Fig. 6 shows the distributions of the values from the simu-
lations of the alert time test to provide additional information
regarding the probability distributions. These graphs are nor-
malized for probabilities and the bins are set at 100 ms. The
traditional methods show uneven behavior, confirming that
the contribution of latency was significant in this test. Greater
uniformity can be seen from the distribution of the values
from the simulations performed using the MQTT protocol.
This behavior was expected after analyzing the protocol
latencies, as the distribution had a positive asymmetry but an
interquartile range in the order of a millisecond.

Table 4 shows the statistics regarding the total alert
time. By comparing the average and median values, the
proposed solution showed a performance improvement of
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FIGURE 6. The probability distribution of the delay in detecting the P-phase, Tdel , for the solutions based on
the MQTT and SeedLink protocols.

FIGURE 7. The probability distribution of the total alert time, Ttot , for the solutions based on the MQTT and
SeedLink protocols.

approximately 1600 ms. Furthermore, the standard deviation
values suggest uniform behavior. The average displacement
of approximately 260 ms of the obtained results in the pro-
posed solution correlates with what was found in the P-wave
picking test. The SeedLink protocol results confirm what
occurred previously in the latency and P-wave picking tests.

Fig.7 shows the probability distributions of the total alert
time evaluated in the alert time test. Comparing it with that
obtained from the previous analysis (Fig. 6), the proposed
solution was more stable and constantly influenced by pack-
aging. The differences in the distribution shapes obtained
by SeedLink suggest that packaging and latency contributed
heavily to the total detection times.

VII. DISCUSSION
EEWSs represent one of the most promising practical
approaches to reducing damages caused by earthquakes. The
rapidity with which these systems can generate an alert
becomes essential to evacuate the population andmobilize the
emergency response promptly. An alert generated only a few

seconds before the actual arrival of the destructive waves of
an earthquake can prove a considerable advantage for human
lives saved [23].

This study evaluates the possibility of use a solution based
on the MQTT protocol to reduce the latency of the com-
munication protocol and the total alert time of an EEWS.
Therefore, evaluation tests were conducted to compare the
obtained performances with those achievable by a traditional
EEWS. In the first test, the latency of theMQTT protocol was
compared to that of the SeedLink protocol. The latency test
results showed that the MQTT protocol reports an average
latency per packet of 33.13 ms, with stable performance dur-
ing all simulations. However, the SeedLink protocol showed
nonuniform results and an average latency of 696.13 ms. The
difference between the performances is due to the inherent
latencies of the specific application layer protocol used in
each solution. Each protocol has various latencies due to
the protocol itself and varies considerably in the SeedLink
protocol. Given the reduced latency per packet achieved with
the MQTT protocol, this protocol can send structured data
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packets with fewer samples, and its benefits for detection and
total alert times were evaluated in subsequent tests. In the
alert time test, a solution based on the MQTT protocol and
structured data packets with 250ms of samples was compared
with a traditional one based on the SeedLink protocol and
one-second miniSEED packets. The results showed that the
solution based on the MQTT protocol and structured data
packets detected the P-phase of the seismic events of the
dataset, with an average advance of approximately 1300 ms.
Additionally, the MQTT protocol obtained a performance
improvement of 1600 ms for total alert time. The probability
distributions obtained in the Alert Time Test are comparable
with those obtained in other studies [20], [45] but depend on
the seismic events with which the dataset was created and
the chosen algorithm for P-phase detection. Comparing the
probability distributions of the solution based on the MQTT
with that related to SeedLink makes it possible to analyze the
results obtained from the different packetization and trans-
mission modes in this specific case study. The lower latency
of the communication protocol and its reduced packetization
time improved the performance of the MQTT solution.

The analysis presented in this study was based on the
simulation results of different packetization and transmission
modes of seismic data. These simulations were performed
starting from the dataset of earthquakes data relating to the
seismic sequence in Central Italy in 2016-2017. Therefore,
the results were validated through simulations of this case
study but were not analyzed in a real scenario where the alert
times are influenced by the latency due to propagation time,
congestion, etc. Thus, the simulations based on datasets of
different case studies and evaluation tests of the performance
in a real scenario should be performed to further validate the
results.

Based on the results of this study and the effectiveness of
data collection from low-cost sensors, the proposed solution
can be easily integrated into existing early warning systems
for other crises, such as floods, earthquakes, tsunamis, and
landslides. By developing a dedicated middleware (Fig. 2)
for each application context, the proposed IoT architecture
can be used to allow a denser presence of alert networks on
the territory and provide timely warnings and essential data
and instruments to the authorities for assuring economic and
societal benefits by reducing risks associated with disastrous
events [23].

VIII. CONCLUSION
In an EEWS, the greater the time available before a seismic
event hits a target, the more effective actions can be taken.
Therefore, studying the delays that each system component
adds is critical. This study compared a traditional seismic
monitoring system with a typical IoT architecture to eval-
uate the delay introduced by the protocol used for seismic
wave transmission. With specific reference to Italy, where
the most active seismic zones are very close to urban centers,
even small improvements regaring time can be fundamental.
Therefore, the performance of a traditional EEWS, which

uses the SeedLink protocol, and our solution based on the
transmission of waveforms via the MQTT protocol were
compared. Starting from a dataset of over 13,000 accelero-
metric traces of real seismic events, the latencies of the two
protocols were analyzed, sending the same miniSEED packet
via SeedLink and as a payload of an MQTT message. After
demonstrating that the MQTT protocol achieved advantages
in latency and stability, the performance of a solution based
on the MQTT and structured adjustable-length data was eval-
uated. The P-phase sampling results and those obtained using
traditional EEWS showed that the proposed solution could
anticipate the detection by approximately 1.3 s, obtaining a
total alert time of approximately 1.6 seconds lower.

As future prospects, it will be interesting to create IoT
seismic nodes implementing the proposed solution and install
them near active seismic stations to verify directly in the field
the improvements this work has suggested regarding detec-
tion times. Another future application could be studying the
integration of devices with edge/fog computing technologies.
For example, verifying the possibility of triggering directly
on the datalogger and then sending the waves to a processing
hub, which will apply data fusion algorithms and generate the
alert, might be intriguing.

APPENDIX A ABBREVIATIONS
EEWS: Earthquake Early Warning System
EEWSs: Earthquake Early Warning Systems
INGV: Italian National Institute of Geophysics and Volcanol-
ogy
INGV-AN: INGV, office of Ancona
IoT: Internet of Things
ISMD: INGV Strong Motion Database
LLC: Local Control Center
MQTT: Message Queue Telemetry Transport
NCC: Network Control Center
P-waves: Primary waves
PRESTo: PRobabilistic and Evolutionary early warning Sys-
Tem
RSN: National Seismic Network
S-waves: Secondary waves
SEED: Exchange of Earthquake Data
SSNC: Seed Station Naming Convention
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