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Abstract: The latest generation of high-spatial-resolution satellites produces measurements of high-
temperature volcanic features at global scale, which are valuable to monitor volcanic activity. Recent
advances in technology and increased computational resources have resulted in an extraordinary
amount of monitoring data, which can no longer be so readily examined. Here, we present an
automatic detection algorithm based on a deep convolutional neural network (CNN) that uses
infrared satellite data to automatically determine the presence of volcanic thermal activity. We exploit
the potentiality of the transfer learning technique to retrain a pre-trained SqueezeNet CNN to a
new domain. We fine-tune the weights of the network over a new dataset opportunely created with
images related to thermal anomalies of different active volcanoes around the world. Furthermore,
an ensemble approach is employed to enhance accuracy and robustness when compared to using
individual models. We chose a balanced training dataset with two classes, one containing volcanic
thermal anomalies (erupting volcanoes) and the other containing no thermal anomalies (non-erupting
volcanoes), to differentiate between volcanic scenes with eruptive and non-eruptive activity. We used
satellite images acquired in the infrared bands by ESA Sentinel-2 Multispectral Instrument (MSI)
and NASA & USGS Landsat 8 Operational Land Imager and Thermal InfraRed Sensor (OLI/TIRS).
This deep learning approach makes the model capable of identifying the appearance of a volcanic
thermal anomaly in the images belonging to the volcanic domain with an overall accuracy of 98.3%,
recognizing the scene with active flows and erupting vents (i.e., eruptive activity) and the volcanoes
at rest. This model is generalizable, and has the capability to analyze every image captured by these
satellites over volcanoes around the world.

Keywords: CNN; detection; infrared; lava flow; transfer learning; ensemble learning; volcanic
thermal anomaly

1. Introduction

Thermal satellite imagery has the potential to offer important insights into the thermal
behavior of the most active volcanoes around the world, which can help minimize the need
for extensive fieldwork. As a result of the continuous improvement of Earth observation
technology, a variety of thermal sensors (e.g., AVHRR, MODIS, SEVIRI, GOES and many
others) are currently in orbit, providing coverage even for remote and unreachable volca-
noes at different temporal resolutions, ranging from minutes to few days. These sensors
acquire data over potentially hazardous, high-temperature phenomena, such as volcanic
eruptions, with relatively low cost and no risk to the end user. However, the data volume
collected by satellite thermal sensors is too large to be readily processed and analyzed on a
daily basis and global scale with traditional techniques (i.e., those that employ a threshold).
Therefore, an automated and fast approach to accurately detect these thermal anomalies in
satellite data is a critical component to any operational volcano monitoring system. Over
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the last years, Artificial Intelligence (AI) techniques have become the fastest-growing trend
in remote sensing data analysis applications, which often involve large amounts of data.
The new technologies of Artificial Intelligence, i.e., Machine Learning (ML) and Deep Learn-
ing (DL) in particular [1,2], could help the operator to manage these data efficiently. ML
techniques are a type of AI in which computers learn from structured data, i.e., representa-
tive features are opportunely selected and extracted during the input feature engineering
phase. In the specific context of satellite image processing, these values can be the set of
pixel spectral intensities in three-bands images (e.g., RGB images) recording the spectral
response of the monitored area under investigation [3–6]. DL models are artificial neural
networks capable of analyzing unstructured data, exploiting the spatial and/or temporal
relationships between neighboring data to automatically extract significant features.

The effectiveness of ML and DL algorithms in recognizing some volcanic features in
optical and radar satellite images has already been tested. Machine learning models were
used to identify and map the thermal emissions from active and cooling lava flows [5,7],
and to estimate the areal coverage and the total volume of lava fields or deposits [8–12].
Machine learning and deep learning techniques were adopted to detect and characterize
the main components of the volcanic plumes during explosive eruptions [13–16]. Moreover,
deep learning algorithms were applied to automatically recognize subtle to intense thermal
anomalies exploiting the spatial relationships of the volcanic features [17]. The results from
these studies show that the deep learning techniques, compared to traditional machine
learning methods, achieve better accuracy in automatic analysis and recognition of the
specific features in contexts in which spatial and temporal information aid characterizing
satellite images.

Different deep learning models have already been designed to automatically iden-
tify objects in different contexts [18–21]. The most diffused DL models are the deep
Convolutional Neural Networks (CNNs) [22–24], which have shown great promise in
image classification. These data-driven methods are all based on hierarchical feature
learning, which can easily be adapted to other specific applications without the need
for manual feature extraction [25]. Examples of CNNs are LeNet, AlexNet, VGG16,
GoogleNet, ResNet and SqueezeNet [26–31]. Deep CNN models are usually trained over
datasets containing millions of images across thousands of classes, such as ImageNet
(http://www.image-net.org/; [32]). This dataset, in continuous development, is composed
of around 14 million annotated images belonging to 1000 different classes. The SqueezeNet
trained with the ImageNet dataset achieves a satisfactory balance between training time
and classification accuracy [31,33]. Moreover, the SqueezeNet network has the advan-
tage of being among the most compact and fastest networks for classification tasks. Its
principal repeating module, the “fire” module, is composed of a “squeeze” convolutional
module, followed by an “expand” module, and finally, a softmax function is used for the
classification [31].

Although some volcanological applications rely on high volumes of data, a general
issue is the limited availability of labeled datasets as ground truth, i.e., the real labels that
show the real belonging class of the data [25,34,35]. The performance of deep learning
algorithms may be negatively influenced by the limited representative training samples, for
example, due to the overfitting problem, where the model is excessively complex relative
to the small dataset, and thus, is not being able to generalize to unseen data [2]. However,
it is possible to apply pre-trained ImageNet models to small datasets and reduce training
time using the technique of transfer learning in a deep learning framework (e.g., [36]).
This technique is based on the concept in which a Neural Network already trained with
a large dataset and with high performances is subsequently retrained with some images
from a different domain and a small number of epochs [2], with the aim of classifying the
images under analysis (or other tasks), using the fine-tuning approach [37]. In this way, it
is possible to readapt the parameters (weights) of the original model to the new domain,
exploiting the potentiality already developed with the previous training data, rapidly and
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in an efficient way, re-setting all the parameters and re-running all the network with the
new dataset and few epochs, instead of learning from scratch [38].

Here, we present a monitoring system to automatically detect volcanic thermal
anomalies associated with eruptive activity. In particular, we explore the potential of
the SqueezeNet model already trained with the ImageNet dataset (SqueezeNet 1.0 model
website) to identify the presence of high temperature volcanic features related to active
flows (such as lava flows, pyroclastic flows, warm lahars) and erupting vents (such as lava
lake, lava fountains, hot fumaroles) that would appear in the thermal infrared satellite mea-
surements. We use advanced learning techniques, which strongly reduce training times and
improve the accuracy level. Thus, we applied the transfer learning technique to readjust
the parameters of the pre-trained SqueezeNet model, using a new image dataset containing
high temperature volcanic features representative of two classes, those belonging to thermal
anomalies related to active flows and vents (i.e., eruptive activity) and those not belonging
to thermal anomalies (volcanoes at rest). SqueezeNet’s training time and verification sam-
ple accuracy are optimal, using a small number of epochs and a limited number of images
for the fine-tuning. In addition, an ensemble approach is used to achieve higher accuracy
and robustness compared to individual models. We investigated the thermal features of
several active volcanoes worldwide, using the thermal images (infrared) captured by the
high spatial resolution ESA Sentinel-2 (from 10 m to 60 m) and NASA & USGS Landsat
8 satellites (from 30 m to 100 m). All the satellite images were obtained via Google Earth
Engine (GEE) cloud-based platform. GEE is appealing not only because of its free access,
but also because it makes available a powerful application programming interface (API)
for processing the satellite data [39]. The SqueezeNet model was developed in Google
Colaboratory (Colab), a cloud platform that can easily integrate GEE and machine learning
and deep learning applications for data analysis [40].

2. Materials
2.1. Volcanoes

We investigated 9 different volcanoes (see Figure 1): Cumbre Vieja (La Palma, Spain),
Etna (Italy), Pico do Fogo (Cape Verde), Volcán de Fuego (Guatemala), Geldingadalir (Ice-
land), Kı̄lauea (Hawaii, USA), Klyuchevskaya (Kamchatka, Russia), Pacaya (Guatemala)
and Stromboli (Italy). All these volcanoes were characterized by frequent eruptive activity
in the 2000s (Table 1). We selected these sites for their different volcanic settings and erup-
tive styles, enabling a more comprehensive evaluation of the capabilities and limitations of
infrared remote sensing for detecting and tracking eruptive activity.

Cumbre Vieja, Etna, Volcán de Fuego, Klyuchevskaya and Stromboli are stratovolca-
noes with different types of eruptions. Cumbre Vieja is characterized by explosive activity
and lava flows. Etna has a continuous degassing activity, with frequent effusive and explo-
sive eruptions. Persistent activity at Volcán de Fuego is distinguished by prolonged periods
of lava effusion, frequent yet moderate explosions, and intermittent episodes of paroxysmal
activity. Klyuchevskaya is characterized by recurring moderate-volume explosive and
effusive eruptions without significant periods of inactivity. Stromboli is dominated by a
persistent (strombolian) activity, interspersed with major eruptions and paroxysms. In
addition, Pico do Fogo, Geldingadalir, Kı̄lauea and Pacaya are volcanoes with distinctive
landforms. Pico do Fogo is a caldera with continuous activity in the past centuries and
recent lava flow eruptions. Geldingadalir is a fissure vent with an effusive activity and
sporadic lava fountains. Kı̄lauea is a shield volcano with a summit caldera, characterized by
frequent lava flow eruptions at the summit and flanks alternating with periods of lava lake
activity and, finally, Pacaya is a large volcanic complex with strombolian eruptions, lava
flow extrusions in the caldera moat, and occasional larger explosive eruptions [from Smith-
sonian Institution, Global Volcanism Program. Available online: https://volcano.si.edu/,
accessed on 18 November 2022].

https://volcano.si.edu/
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Figure 1. Volcanoes under analysis, (a) Cumbre Vieja (La Palma, Spain), (b) Etna (Italy), (c) Pico do 
Fogo (Cape Verde), (d) Volcán de Fuego (Guatemala), (e) Geldingadalir (Iceland), (f) Kīlauea 
(Hawaii, USA), (g) Klyuchevskaya (Kamchatka, Russia), (h) Pacaya (Guatemala), (i) Stromboli 
(Italy). All the images were downloaded from Google Earth Pro [http://www.earth.google.com]. 

Table 1. List of volcanoes and years with eruptive activity between 2013 and 2022 sampled for the 
study. Details of volcanoes and associated links are available from the US National Museum of 
Natural History’s Global Volcanism Program (https://volcano.si.edu/). 
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volcanic thermal anomalies. These two collections of data were chosen because they have 
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Figure 1. Volcanoes under analysis, (a) Cumbre Vieja (La Palma, Spain), (b) Etna (Italy), (c) Pico do
Fogo (Cape Verde), (d) Volcán de Fuego (Guatemala), (e) Geldingadalir (Iceland), (f) Kı̄lauea (Hawaii,
USA), (g) Klyuchevskaya (Kamchatka, Russia), (h) Pacaya (Guatemala), (i) Stromboli (Italy). All the
images were downloaded from Google Earth Pro [http://www.earth.google.com].

Table 1. List of volcanoes and years with eruptive activity between 2013 and 2022 sampled for the
study. Details of volcanoes and associated links are available from the US National Museum of
Natural History’s Global Volcanism Program (https://volcano.si.edu/).

Volcano Eruptive Activity between 2013 and 2022

Cumbre Vieja 2021
Etna 2013–2014–2017–2018–2019–2020–2021–2022

Pico do Fogo 2014–2015
Volcán de Fuego 2017–2019–2020–2021

Geldingadalir 2020–2021
Kı̄lauea 2020–2021

Klyuchevskaya 2020–2021
Pacaya 2020–2021

Stromboli 2014–2019–2020–2021

2.2. Data Source

In this study, the Sentinel-2 and Landsat 8 satellite images were used to identify
volcanic thermal anomalies. These two collections of data were chosen because they have
a similar range of spectral bands in the portion of the spectrum from the visible to the
infrared. Therefore, in this range they could be interchangeable, using the Sentinel-2 or
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Landsat 8 scenes based on the availability of the data for the specific situation, due to the
passage of the satellite in a specific location and at a specific moment.

The Sentinel-2 (S2) mission is part of the Copernicus programme of the European Space
Agency (ESA). The mission comprises a constellation of two identical sun-synchronous
satellites known as Sentinel-2A (S2A) and Sentinel-2B (S2B), which were launched in 2015
and 2017 respectively (https://sentinel.esa.int/web/sentinel/missions/sentinel-2/). Each
satellite in the constellation has a revisit time of 10 days, which collectively leads to a global
revisit frequency of 5 days. Both satellites are equipped with a MultiSpectral Instrument
(MSI) capable of capturing imagery in 13 bands. The spatial resolution of these bands
vary, with a resolution of 10 m for the visible and near-infrared, 20 m for the red edge and
shortwave infrared part of the spectrum, and 60 m for the atmospheric bands (“Aerosol,”
“Water vapor,” and “Cirrus”).

Landsat 8 (L8) is an Earth observation satellite launched in the frame of a joint mission
between the United States Geological Survey (USGS) and National Aeronautics and Space
Administration (NASA) in 2013 (https://landsat.gsfc.nasa.gov/satellites/landsat-8/). It
carries two sensors in a circular sun-synchronous orbit, namely Operational Land Imager
(OLI) and Thermal InfraRed Sensor (TIRS). The first one (OLI) acquires 9 spectral bands, in
the visible, near infrared and shortwave infrared (spatial resolution of 30 m). Moreover, it
possesses a Panchromatic band at a spatial resolution of 15 m. The second sensor (TIRS)
acquires data with 100 m spatial resolution for 2 thermal bands. Landsat 8 data have a high
radiometric resolution (16 bits) and are characterized by a repeat cycle of 16 days.

We have acquired all the images via the Google Earth Engine (GEE) platform
(https://earthengine.google.com/). Sentinel-2 and Landsat 8 scenes are available with
different processing levels, containing raw at-sensor radiance values (L1A) as well as geo-
metrically and radiometrically corrected sensor radiance values (L1B). These processing
levels can be used to derive additional Level 2 data products, such as atmospherically
corrected surface radiance or surface temperature and emissivity. We have processed the
Sentinel-2 images in the bands of Near InfraRed (NIR: B8 with 0.84 µm (S2A)/0.83 µm (S2B)
wavelength) and Short-Wave InfraRed (SWIR: B11, with 1.61 µm (S2A, S2B) wavelength,
and B12, with 2.20 µm (S2A)/2.19 µm (S2B) wavelength) Since NIR and SWIR Sentinel-2
bands have different spatial resolutions ranging between 10 m and 20 m, all S2 images were
automatically resampled to the same spatial resolution of 20 m using the nearest neighbor
method. Moreover, we have used the Landsat 8 images in the NIR (B5: 0.85–0.88 µm wave-
length) and SWIR (B6: 1.57–1.65 µm wavelength, and B7: 2.11–2.29 µm wavelength) bands.
Additionally, the Landsat 8 images were resampled to the higher spatial resolution of 20 m.
We have analyzed the Top-Of-Atmosphere (TOA) reflectance data from both sensors, a
dimensionless measurement that describes the ratio between reflected and incident solar
radiation on a given surface.

3. Method
3.1. Anomalous Volcanic Temperatures

Volcanic activity is typically marked by the transfer of heat to the Earth’s surface and
thermal emissions from the erupted products. Thus, an evident indicator of volcanic activity
is the high surface temperature compared to the ambient temperature of the ground. Hence,
identifying volcanic thermal activity in satellite images is relatively simple; it is sufficient
to distinguish the pixels that exhibit thermal emissions directly associated with volcano
activity from neighboring pixels that do not [41]. This approach allows not only for the
detection of volcanic unrest based on the occurrence of thermal anomalies at a specific time
(e.g., [17]), but also for the use of thermal data to retrieve such parameters as the effusion
rate of lava flows (e.g., [42–44]) and the areal coverage of hot volcanic deposits (e.g., [45]).
As a result, thermal satellite observations are an essential component of volcano monitoring
and a valuable tool for identifying numerous volcanic features based on their thermal
characteristics (e.g., [46]). However, the task of distinguishing volcanic thermal features
with respect to the background is made difficult not only by the characteristics of the target

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/
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and atmospheric conditions (optical sensors are unable to make measurements through the
cloud cover) but also by the spatial, temporal, spectral and radiometric resolution at which
the remote sensing data are captured and whether the measurements are made during the
day or at night (an additional contribution from reflected solar energy is present during
the day). Such complications can hamper the detection of subtle temperature anomalies
by using low-spatial-resolution sensors or introduce spurious data into time series not
attributable to active volcanism (e.g., [47]).

3.2. Theoretical Background

To detect and quantify the thermal emissions from volcanic targets, it is necessary
to consider the relation between radiance (i.e., rate of energy flow per unit area) and
wavelength. The radiance emitted from a surface, or the reflectance (i.e., a dimensionless
measurement that describes the ratio between solar reflected and incident radiation on
a given surface), depends on its temperature and radiating efficiency (emissivity) [48].
According to the Stefan–Boltzmann law, the higher the temperature of a surface, the greater
the radiance it emits [48]. This applies to all wavelengths of emission but, according to
Wien’s displacement law, the peak wavelength of thermal emission also shifts to shorter
wavelengths with increasing temperature. Hence, a hotter volcanic surface will radiate
more energy compared to a cooler surface, and variations in the radiant flux, which is
quantified in terms of radiance per unit of wavelength, are directly related to changes in
volcanic activity. This can include phenomena such as a fresh lava flow, an active lava lake
or a subtly warm fumarole field [48].

In terms of the temperature of hot volcanic features, fresh basaltic lava may be between
1073 and 1273 K near the vent of the flow [49]. Lava lakes can reach extremely high
temperatures up to 1473 K [50]. Gasses emitted from volcanic fumaroles are found to be
between ambient temperature and 673 K [51], although temperatures up to 1173 K have
been measured [52,53]. In terms of spectral radiance, therefore, the emissions from very
hot surfaces (e.g., >900 K) are enhanced in near infrared (NIR, ~0.9–1.1 µm) and shortwave
infrared (SWIR, ~1.2–2.5 µm) regions of the spectrum compared with those in the middle
infrared (MIR, ~3–5 µm) and longwave (thermal) infrared (TIR, ~7–14 µm) bands.

Various satellites are equipped with sensors that are able to record these infrared radi-
ations and, as such, can be used for detecting and monitoring active volcanism. However,
MIR and TIR detections from space will be mainly due to the combination of emissions from
both ambient and hot surface components, for which to accurately quantify the emissions
related to active volcanism, it is necessary to remove the contributions from the ambient
background. Instead, NIR and SWIR signals recorded from space will be primarily due to
the temperature of a very hot emitting surface (e.g., fresh lava).

3.3. Three-Step Approach

We propose a satellite thermal monitoring system to automatically detect high-temperature
anomalies related to active flows or erupting vents. The monitoring system, based on a deep
CNN, can be divided into three steps (Figure 2). The first one builds a balanced volcanic dataset
composed of 200 images with high spatial resolution acquired by Landsat 8 and Sentinel-2 in the
NIR and SWIR bands, covering the investigated volcanoes. The second step uses the volcanic
dataset to re-train the SqueezeNet model applying the transfer learning approach, while the
third one combines the different SqueezeNet trained with the Transfer Learning approach,
obtaining an Ensemble Classifier, that ingests new NIR and SWIR images as they are available
to detect if volcanic thermal anomalies are present. These three steps are described in more
detail below.
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Figure 2. Flow chart of the three-step approach for the study.

Firstly, we built the volcanic dataset, sampling 135 images from the Sentinel-2 satellite
and 65 images from the Landsat 8 satellite, balancing about the same number of images
from each sensor between class 1 and class 0. Thus, a total of 100 images are related to
the class with volcanic thermal anomalies and a total of 100 images to the class without
anomalies. CNNs require balanced training datasets of images to effectively differentiate
into two classes by the presence or absence of volcanic thermal anomalies. We named
the first class “Yes Anomaly”, with class ID 1, and the second one “No Anomaly”, with
class ID 0. Images with lava flows and active vents belong to the first class, images with
volcanoes at rest to the second one. Every image was assigned to the correct class by
carefully analyzing the eruptive activity of each volcano both using the volcanological
bulletins (e.g., from Smithsonian Institution, Global Volcanism Program, available online:
https://volcano.si.edu/, or from INGV National Institute of Geophysics and Volcanology,
available online: https://www.ct.ingv.it/) and manually inspecting the scenes. In the same
way, we define the “ground truth” labels (i.e., the real labels of the scenes) either examining
the volcanological bulletins or manually inspecting the scenes. For representativity of the
dataset, we choose images for class 0 with different characteristics, e.g., presence of clouds,
snows, sea in the scene, or building areas. We have obtained a final balanced dataset
composed of 200 images belonging to the 9 different volcanoes investigated (Cumbre Vieja,
Etna, Pico do Fogo, Fuego, Geldingadalir, Kı̄lauea, Klyuchevskaya, Pacaya and Stromboli),
with images acquired during the years 2013–2022 (see Table 1). In the pre-processing phase,
we convert the TOA images to the .png format (in the 0–255 scale) to feed the SqueezeNet
model. Figure 3 shows an example of images sampled from different volcanoes, belonging
to class ID 1 and to class ID 0. The complete dataset used for the Transfer Learning approach
is available at the link: https://zenodo.org/record/7944343#.ZGSp8HZBy5c, with the doi:
10.5281/zenodo.7944343.

Subsequently, we used the SqueezeNet model (from the SqueezeNet 1.0 model web-
site), pretrained with the ImageNet dataset, in Google Colab with the PyTorch library [54],
and we readjusted this model for the detection of thermally anomalous pixels, setting two
final classes for the classification. The volcanic dataset was randomly divided into three
independent subsets: a train set, a validation set and a test set. The train set is used, in
general, to train the model, the second one to validate the results in the train phase and to
fit the hyperparameters. The last set is used to test the model with images not seen in the
training phase and to calculate the predictive performances of the model. For each run of
the SqueezeNet model, we used 120 images for the train set (60% of the volcanic dataset),

https://volcano.si.edu/
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20 images for the validation set (10% of the volcanic dataset) and 60 images for the test set
(30% of the volcanic dataset). We used such a small amount of training data to verify the
reliability and robustness of the model in transferring knowledge to a new domain (with
transfer learning). We fed the train and validation sets to the SqueezeNet 1.0 model in
Google Colab, applying the transfer learning approach, running the model with a learning
rate alpha of 0.001, a batch size of 25 and 5 epochs for the fine-tuning [2]. The number of
5 epochs was chosen as a good trade-off between complexity of the algorithm and goodness
of the model, because a higher number of epochs did not improve the performance much
compared to the complexity.
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Figure 3. Example of images for the two classes (left: “Yes Anomaly” ID 1, right: “No Anomaly” ID 0)
fed to the SqueezeNet model. All the images were downloaded from Google Earth Engine.

Finally, we ran the trained SqueezeNet model a total of 10 times over the test subset
(30% of the volcanic dataset). An ensemble strategy, combining the 10 trained SqueezeNet
models, was adopted to enhance the generalization capabilities; that is, the final model
outcome is provided by the outcome most voted upon by the 10 runs of the trained model.
Ensemble methods use multiple models to achieve better predictive performances than
could be obtained from any of the individual models alone [55]. The ensemble result
obtained combining the results of the ten SqueezeNet test runs is used as the output for
each image classified. The goodness of the classification for the test set is estimated using
different model performance indices, i.e., the accuracy index defined as in Equation (1), the
precision index as in Equation (2), the recall index as in Equation (3) and the F1 score as in
Equation (4), then calculated as percentages [56]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1score =
2•TP

2•TP + FP + FN
= 2• Precision•Recall

Precision + Recall
(4)

where TP (True Positives) are the images predicted to belong to class 1 that actually do
belong to that class, TN (True Negatives) are the images predicted to belong to class 0 that
actually do belong to that class, FP (False Positives) are the images incorrectly predicted to
belong to class 1 that actually do belong to class 0, and FN (False Negatives) are the images
incorrectly predicted to belong to class 0 that actually belong to class 1. The total number
of images in the test set is given by the sum of TP, TN, FP and FN.

4. Results

The SqueezeNet model achieved a good balance between training time and classifica-
tion accuracy for automatically identifying volcanic thermal anomalies. The SqueezeNet
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network, already trained with the ImageNet dataset, and retrained for five epochs in the
transfer learning process, is tested over the test dataset. Ten runs of the SqueezeNet model
are used to design the ensemble classifier. For each image, the outcome of the ensemble
SqueezeNet is assigned as the most frequent outcome among the trained model runs. Gen-
erally speaking, each run provides good performances, as Figure 4 shows, with accuracy
values ranging from 91.7% (for one run over the total ten runs) to 100.0% (for two runs
over the total ten runs) and an average accuracy of about 96.2% (two images misclassified),
with a minimum of zero and a maximum of five misclassified images over the sixty total
images for all the ten runs of the trained SqueezeNet. The final accuracy of the ensemble
SqueezeNet is then computed taking the mode of each run outcome, resulting in an overall
accuracy of 98.3%, with a unique image misclassified over the total. In addition, this final
ensemble model reaches a Precision of 100.0%, a Recall of 95.7%, and a F1 score of 97.8%,
indicating a high-fidelity model.
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Figure 4. Accuracies of the 10 runs of the trained SqueezeNet model.

It is worth noting that we have inserted in the class 1 dataset not only images with
clear active flows, but also images that show a presence of erupting vents. Even though
this type of image does not show an active flow in progress, the scenes do show volcanic
activity, and these kinds of anomalies could evolve towards different eruptive phenomena,
including lava overflows.

In order to investigate the reasons behind single run misclassifications, image samples
misclassified by three different fine-tuning representative runs are shown in Figure 5. The
first run (R1) is shown in Figure 5a,b, with images labeled as class 1 and classified as
belonging to class 0, i.e., FN samples. The second run (R2) is shown in Figure 5c,d, with
images labeled as class 0, classified as belonging to class 1, i.e., FP images. Finally, the third
run (R3) is shown in Figure 5e,f, with an image labeled as class 1, classified as belonging
to class 0 (Figure 5e) and an image belonging to class 0, classified as belonging to class 1
(Figure 5f). These misclassifications are probably due to the heterogeneity of the intraclass
scenes, i.e., different kinds of volcanic thermal anomalies and volcanic at rest scenes. Indeed,
these are randomly selected as training images and this may produce unbalanced training
datasets, i.e., for example more scenes of active vents than lava flows for class 1, or more
clear images than cloudy in class 0, thus polarizing the SqueezeNet model performances.
That is why an ensemble approach allows for the highest output to be achieved from a
small dataset while keeping high generalization capabilities. By considering the outcomes
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of the ensemble SqueezeNet, only the scene in Figure 5b,e remains misclassified, even
though this is a borderline case because the mode results in a 50% probability to belong to
one of the classes and a 50% probability to belong to the other one.
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belonging to class 1; R3 case (e), image labeled as class 1, classified as belonging to class 0 and (f),
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5. Discussion

The detection of volcanic thermal anomalies is obviously possible with several methods,
ranging from most traditional threshold-based algorithms to most innovative machine learn-
ing based techniques. Traditional algorithms are based on the setting of thresholds to cluster
the data. These thresholds can be either fixed a priori, obtained with a preliminary study
over a group of training data, or selected adopting a statistical approach, calculating mean
and standard deviation for each image [57]. In the first case, the analysis can be conducted
comparing each pixel of an image with the fixed thresholds, in the second case, with the mean
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and standard deviation of each entire image, using an interval of confidence centered in the
mean and with a radius of n · standard deviations, typically setting n = 2 or n = 3.

ML methods are based on either supervised or unsupervised learning. Labeled
datasets, containing sample data that have been tagged with a target parameter, are em-
ployed in supervised learning techniques to train machine learning algorithms. The ac-
curacy of the algorithm in interpreting the training data is evaluated using the target. In
unsupervised approaches, unlabeled data are fed to the algorithm, which tries to extract
common features, schemes or patterns, taking into account only the data similarity.

To make a comparison of the performances of the threshold-based algorithms and ML
techniques with the SqueezeNet model, we run them over the test set used in this study
(Table 2). In particular, we used two algorithms reliant on fixed and statistical threshold
approaches (with n = 3) [58,59], an unsupervised X-Means ML model [1], and a supervised
Random Forest (RF) ML model [60]. This last model was already trained using Sentinel-2
data to get the areal coverage of fresh anomalies, so the comparison with the RF model
was made using only the Sentinel-2 images contained in the test set under analysis. Table 2
shows the correspondence between the date of the events in the test set used and the
relative volcanoes and satellites for each event, with the ground truth values.

Table 2. List of satellite images selected for the test set. For each image, date, satellite used, volcano
investigated, and presence or not of eruptive activity (the ground truth, i.e., the real labels of the
scenes) are shown (date format: day/month/year written as dd/mm/yyyy).

Date
(dd/mm/yyyy) Satellite Volcano Activity

(Yes: 1, No: 0)
Date

(dd/mm/yyyy) Satellite Volcano Activity
(Yes: 1, No: 0)

03/05/2013 Landsat 8 Etna 0 03/02/2021 Sentinel-2 Geldingadalir 0
19/05/2013 Landsat 8 Etna 0 07/02/2021 Sentinel-2 Cumbre Vieja 0
02/09/2014 Landsat 8 Etna 0 18/02/2021 Sentinel-2 Etna 1
19/09/2014 Landsat 8 Stromboli 1 21/02/2021 Sentinel-2 Etna 1
28/02/2015 Landsat 8 Fogo 0 25/02/2021 Landsat 8 Fuego 0
07/10/2015 Landsat 8 Etna 0 25/02/2021 Landsat 8 Pacaya 1
03/12/2015 Landsat 8 Etna 1 06/03/2021 Landsat 8 Geldingadalir 0
16/03/2017 Sentinel-2 Etna 1 13/03/2021 Landsat 8 Geldingadalir 0
18/05/2017 Sentinel-2 Etna 0 22/03/2021 Landsat 8 Geldingadalir 1
24/03/2018 Sentinel-2 Etna 0 25/03/2021 Sentinel-2 Pacaya 1
08/05/2018 Sentinel-2 Etna 0 04/05/2021 Sentinel-2 Geldingadalir 1
10/05/2018 Sentinel-2 Etna 0 17/05/2021 Sentinel-2 Etna 0
30/05/2018 Sentinel-2 Etna 0 19/05/2021 Sentinel-2 Pacaya 0
29/06/2018 Sentinel-2 Etna 0 19/05/2021 Sentinel-2 Etna 1
24/12/2018 Sentinel-2 Etna 1 25/05/2021 Landsat 8 Etna 1
14/06/2019 Sentinel-2 Etna 0 27/05/2021 Sentinel-2 Kı̄lauea 0
19/07/2019 Sentinel-2 Etna 1 13/06/2021 Sentinel-2 Etna 1
27/07/2019 Sentinel-2 Etna 1 16/06/2021 Sentinel-2 Kı̄lauea 0
18/08/2019 Sentinel-2 Etna 0 12/08/2021 Sentinel-2 Geldingadalir 1
02/04/2020 Sentinel-2 Klyuchevskaya 0 12/08/2021 Sentinel-2 Geldingadalir 1
04/04/2020 Sentinel-2 Klyuchevskaya 0 20/08/2021 Sentinel-2 Stromboli 0
11/06/2020 Sentinel-2 Kı̄lauea 0 26/08/2021 Sentinel-2 Cumbre Vieja 0
23/07/2020 Sentinel-2 Pacaya 0 30/08/2021 Sentinel-2 Etna 1
16/09/2020 Sentinel-2 Klyuchevskaya 0 09/09/2021 Sentinel-2 Stromboli 0
20/10/2020 Landsat 8 Fuego 0 21/09/2021 Landsat 8 Etna 1
10/11/2020 Sentinel-2 Klyuchevskaya 1 21/09/2021 Sentinel-2 Stromboli 0
21/11/2020 Landsat 8 Geldingadalir 0 03/11/2021 Sentinel-2 Etna 0
28/12/2020 Sentinel-2 Kı̄lauea 1 05/11/2021 Sentinel-2 Etna 0
18/01/2021 Sentinel-2 Etna 1 28/11/2021 Sentinel-2 Kı̄lauea 1
24/01/2021 Landsat 8 Geldingadalir 0 08/02/2022 Sentinel-2 Etna 0

Figure 6 shows the ability to detect the volcanic anomalies for all methods analyzed. The
algorithms with fixed and statistical thresholds, the unsupervised and supervised machine
learning techniques, and the deep learning model are compared for all the different events
in the test set under analysis (Table 2). For each day in the date axis, the presence of a bar
of a specific color refers to the detection of the anomaly for that specific date by the relative
model, the absence of the bar refers to the absence of thermal anomaly detected on that day.
In particular, the dark red bars are the ground truth results (i.e., the real labels), highlighting
the real presence of volcanic thermal anomalies on a specific day, between 2013 and 2022. The
green bars are related to the threshold-based algorithms, with the light green bars for the fixed
threshold method and the dark green bars for the statistical threshold method. The orange
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bars refer to the unsupervised X-Means model and the yellow bars to the supervised Random
Forest one. Finally, the blue bars are related to the SqueezeNet model.
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(RF, yellow bars) machine learning techniques and the SqueezeNet deep learning model (blue bars),
with respect to the Ground Truth (dark red bars). Underlined data are related to Landsat 8 images
used for those cases; otherwise, Sentinel-2 images are used.

In case of the presence of anomalies (presence of the ground truth dark red bar for
a specific day), a good performance of each model analyzed is reached when the ground
truth bar is surmounted by all of the five bars related to the outputs of the five models
under comparison (fixed threshold, statistical threshold, X-Means, RF, SqueezeNet), e.g.,
19 July 2019 and 10 November 2020 cases. Similarly, in case of the absence of anomalies
(absence of the ground truth dark red bar for a specific day), a good performance of
each model analyzed is obtained when there are no bars related to that specific date, e.g.,
19 May 2013 and 29 June 2018 cases. All other cases present some misclassifications. For
instance, the 16 September 2020 case study shows absence of volcanic thermal anomalies
at Klyuchevskaya volcano. Figure 6 for this case presents bars for the statistical threshold
algorithm and the X-Means model, showing that these two models had detected anomalies.
In the same way, the 25 May 2021 case study presents a thermal anomaly at Mt. Etna, and
this was detected only by fixed and statistical threshold algorithms and SqueezeNet, and
not by X-Means (RF is not considered because a Landsat 8 image is used in this case and RF
is trained only over Sentinel-2 data). Cases such as these, misclassified by the threshold and
ML models and well classified by the DL model, highlight one of the strengths of the DL
approaches, i.e., the capability to exploit not only the spectral features but also the spatial
ones of the scenes under analysis. In detail, the presence of specific geometric shapes for the
thermal anomalies or the background emphasizes the SqueezeNet classification capability;
in contrast, the other methods do not consider the spatial features but only the spectral
ones, linked to the spectral response of each pixel captured by the satellites [6]. Overall,
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the SqueezeNet model gives the correct output for each of the test cases, except for the
25 February 2021 case at Pacaya volcano, in which thermal anomalies were present, but
were not identified by the model.

Figure 7 shows the accuracy (see Equation (1)) of the different methods for the detection
of volcano thermal anomalies with respect to the ensemble SqueezeNet, by using Sentinel-2
and Landsat 8 data (accuracy percentages here rounded to the unit for ease of analysis). It
is worth noting that a comparison of the accuracy with the RF model was possible only
with the Sentinel-2 data because RF was not trained over the Landsat 8 data. Figure 7a is
related to the comparison only for the Sentinel-2 data. The SqueezeNet (blue bar) has an
accuracy of 100%. The fixed threshold method (light green bar) has a high accuracy of 98%.
Instead, the statistical threshold method (dark green bar) has a lower accuracy of 74% and
the X-Means (orange bar) has an accuracy of 60%. The RF model (yellow bar), in this case,
has the same accuracy of the SqueezeNet one. However, the proposed model is readily
available for S2 and L8 data, allowing for the detection of thermal anomalies reducing
the processing dead times, taking advantage of the first available acquisition between the
S2-MSI and L8-OLI.
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Figure 7. Accuracy comparison between threshold-based algorithms (light green bar for fixed
threshold and dark green bar for statistical threshold), machine learning techniques (orange bar for
X-Means and yellow bar for RF) and the SqueezeNet deep learning model (blue bar), in volcanic
thermal anomaly detection, using (a) only Sentinel-2 data, (b) only Landsat 8 data, and (c) both
Sentinel-2 and Landsat 8 data.

Figure 7b is related to the comparison only with the Landsat 8 data. The threshold-
based algorithms have a lower accuracy than the precedent Sentinel-2 data case (Figure 7a),
reaching 94% of accuracy for the fixed threshold model and 71% for the statistical threshold
model, compared to the precedent 98% and 74%. In contrast, the X-Means accuracy is in
growth (65% with respect to 60%). The SqueezeNet model reaches an accuracy of 94%
(only one Landsat 8 misclassified image over the total). A similar accuracy is reached by a
different model, using only one type of sensor. In contrast, SqueezeNet can be applied to
any of the available satellite radiometric scenes captured by the different satellite sensors.

Figure 7c is related to the comparison of both Sentinel-2 and Landsat 8 data considered
together. The threshold-based algorithms have a slightly lower accuracy than the Sentinel-2
data case (Figure 7a), reaching 97% accuracy for the fixed threshold method and 73% for the
statistical threshold method. Nevertheless, these values are higher than the second case with
only Landsat 8 data (Figure 7b). In contrast, the X-Means model has 62% accuracy, showing
an opposite trend, with higher accuracy than the first case and lower than the second one. In
this last case, the SqueezeNet model reaches 98% accuracy, which is the highest compared to
other techniques, corresponding to only one misclassfied Landsat 8 image.

In summary, the SqueezeNet model has 100% accuracy with the Sentinel-2 images,
whereas with Landsat 8 images, it achieves almost the maximum accuracy of 94%, similar
to the fixed threshold method. However, the SqueezeNet model has the great advantage
of being able to use Sentinel-2 and Landsat 8 data indifferently (both with high spatial
resolution and with the similar spectral range of data for the infrared bands), achieving
the highest accuracy compared to the other methods (98%). In this way, it is possible to
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detect thermal anomalies in less time, as there is no need to wait for the temporal step
between two acquisitions for a single satellite (Sentinel-2 or Landsat 8) because the first
image available between the Sentinel-2 and Landsat 8 data can be referenced.

6. Conclusions

In recent years, CNNs have become one of the most popular deep learning methods
for image classification across various domains. Thus, we explored the potential of a deep
CNN model, which has efficient and robust image processing capabilities, to automatically
detect thermal anomalies associated with the eruptive activity of a volcano. The most
frequent applications of current remote sensing processing methods based on deep CNNs
concern land use classification and feature target recognition [61–63], and very limited
studies have been conducted for volcano monitoring and forecasting. However, the use
of deep learning in volcanology is rapidly growing (i.e., [17]), even if the unavailability of
large and labeled training datasets presents a key issue in improving the performance of
CNNs for volcanic applications. CNNs have shown the ability to overcome limits related to
purely intensity-based approaches in detecting the presence of volcanic activity. Different
convolutional neural networks have already been developed and trained with enormous
datasets to create a model robust and capable enough to detect objects and classify images
with high performances. All of this knowledge can be transferred to a new domain, using
the transfer learning approach, fine-tuning the parameters over the new images. In this
way, it is possible to readapt a model for the same task of classification or detection in a
new domain of images, without wasting time or computational resources.

We used high spatial resolution infrared satellite data, which are fundamental to
monitor hot temperature volcanic events, and adopted this transfer learning approach with
the pre-trained SqueezeNet CNN. This allowed us to readjust the model more quickly and
accurately to the volcanic domain, using a balanced dataset containing infrared images
acquired by Sentinel-2 and Landsat 8 satellites. We collected 200 images representative of
two different classes, one containing volcanic thermal anomalies (active flows and erupting
vents) and the other one not containing thermal anomalies (volcanoes at rest), to fine-tune
the weights that the SqueezeNet model had learned with the ImageNet dataset and to test
the SqueezeNet model. In this way, we obtained a robust model capable of detecting the
presence of active flows or erupting vents in the images under analysis. The comparison
of this model with threshold algorithms and other machine learning approaches showed
that the SqueezeNet achieves the highest performance score, making it possible to detect
the presence of volcanic thermal anomalies with an accuracy of 98.3% using Sentinel-2
and Landsat 8 satellite data. Thus, the application of transfer and ensemble learning
approaches greatly reduces computational costs and training times and improves the level
of accuracy. However, scenes that contain subtle or thermal anomalies predominantly
covered by clouds may be incorrectly classified as “No Anomalies”. This situation further
complicates the classification process, posing challenges to accurately distinguish and
identify volcanic thermal activity. Future works are needed to improve this aspect by
combining our approach with image segmentation techniques.

The computational advances in deep learning frameworks, coupled with the ever-
growing satellite constellation and continuing improvements in sensor technology, present
unique opportunities for improving our ability to identify renewed volcanic activity using
space-based observations. Moreover, virtual constellations of sensors such as Landsat 8 and
Sentinel-2, that are in sun-synchronous orbits with different overpass times, provide the
opportunity for more frequent and cloud-free surface observations when used together rather
than alone. Combined together, the Landsat 8, Sentinel-2A and Sentinel-2B sensors permit a
revisit interval of about 2–3 days [64]. Such frequent revisit times at a spatial resolution of 10
m to 30 m are better suited to capturing thermal changes that could indicate the beginning
of renewed volcanic activity. Ultimately, the SqueezeNet model could be trained and used
to analyze every image captured by these satellites over any volcano around the world, to
automatically retrieve an effective and accurate extraction of thermal features and to alert an
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operator in cases of the presence of active flows and erupting vents. The results demonstrate
the potential applicability of the proposed approach to the development of automated thermal
analysis systems at the global scale using future data coming from planned future missions,
or by also directly processing the data on board the satellites.
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