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ABSTRACT 
Electroencephalography (EEG) signals are considered one of the oldest techniques for detecting disorders in 
medical signal processing. However, brain complexity and the non-stationary nature of EEG signals represent 
a challenge when applying this technique. The current paper proposes new geometrical features for 
classifi cation of seizure (S) and seizure-free (SF) EEG signals with respect to the Poincaré pattern of discrete 
wavelet transform (DWT) coeffi cients. DWT decomposes EEG signal to four levels, and thus Poincaré plot is 
shown for coeffi cients. Due to patterns of the Poincaré plot, novel geometrical features are computed from 
EEG signals. The computed features are involved in standard descriptors of 2-D projection (STD), summation 
of triangle area using consecutive points (STA), as well as summation of shortest distance from each point 
relative to the 45-degree line (SSHD), and summation of distance from each point relative to the coordinate 
center (SDTC). The proposed procedure leads to discriminate features between S and SF EEG signals. 
Thereafter, a binary particle swarm optimization (BPSO) is developed as an appropriate technique for feature 
selection. Finally, k-nearest neighbor (KNN) and support vector machine (SVM) classifi ers are used for 
classifying features in S and SF groups. By developing the proposed method, we have archived classifi cation 
accuracy of 99.3 % with respect to the proposed geometrical features. Accordingly, S and SF EEG signals 
have been classifi ed. Also, Poincaré plot of SF EEG signals has more regular geometrical shapes as 
compared to S group. As a fi nal remark, we notice that the Poincaré plot of coeffi cients in S EEG signals has 
occupied more space as compared to SF EEG signals (Tab. 3, Fig. 11, Ref. 57). Text in PDF www.elis.sk
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Introduction 

Abnormal confl icts of the brain may contribute to epilepsy 
when taken into account as a chronic neurological disorder (1). 
Nearly 50 million humans suffer from epilepsy, mainly those liv-
ing in the developing countries (2). Detection of seizures is crucial 

in the treatment of patients with epilepsy. In most patients with 
epilepsy, there are no defi nite clinical signs for seizures. Electro-
encephalography (EEG) signals are highly utilized in detecting 
brain activities and disorders such as depression (3, 4), brain-
computer interface (BCI) (5‒7), schizophrenia (8), alcoholism 
(9) and sleep apnea (10). Spikes are regularly evident in EEG 
signals of the human brain for epileptic seizures (11, 12). These 
phenomena can visually be evaluated via specialists in this fi eld. 
In long EEG records, the visual inspection can be a cumbrous and 
time-consuming action aimed at detecting the presence of epilep-
tic seizures (1, 13, 14). Therefore, an automatic method would be 
required to classify seizure (S) and seizure-free (SF) EEG signals. 
According to the literature, several methods have been developed 
for this purpose. Some of the methods are comprised of permuta-
tion entropy (15), horizontal visibility graph (HVG) (16), clustering 
technique (17), linear prediction error energy (18), fractional linear 
prediction (FLP) error (19), dual-tree complex wavelet transform 
(DT-CWT) (20), autoregressive modeling (21), tunable-Q wave-
let transform (TQWT) (13, 22), reconstructed phase space (RPS) 
(14), second-order difference plot (SODP) (23, 24) , and improved 
eigenvalue decomposition of Hankel matrix and Hilbert transform 
(IEVDHM–HT) (25). Most of the latter methods work on the basis 
of nonlinear features extraction. 
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To decompose the input signal into intrinsic mode functions 
(IMFs), empirical mode decomposition (EMD) has been suggested 
(26). For the fi rst time, SODP (24) and RPS (27) are utilized to 
prepare a 2-D representation for IMFs of EEG signals to classify 
EEG signals in S and SF groups (24, 27), in which the 95 % con-
fi dent area measure of 2-D representation of IMFs was applied 
to differentiate features between S and SF EEG signals (24, 27). 
The achieved results were promising but based on EMD which 
suffers from the mod-mixing problem. In addition, the results are 
sensitive to noise. 

In the past, two methods, RPS (27) and SODP (24), have been 
used in representation of the EEG signal in 2-D space. The RPS 
technique requires two variables to be estimated, namely time 
delay and embedding dimension (28, 29). These two parameters 
are computed with respect to mutual information (MI) and false 
nearest neighbor (FNN) (8, 28), respectively. The drawback of 
the RPS technique lies in the time-consuming nature of the pro-
cedure, particularly because the MI and FNN calculations are 
highly burdensome. Although SODP, unlike RPS, can illustrate the 
EEG signals without any parameter calculation, SODP illustrates 
the variability of the signal, not the signal itself (23, 30). In other 
words, SODP cannot illustrate the complex nature of the signal 
(12). The Poincaré plot method can show complex behaviors of 
the signal without any estimation of parameters, which makes it 
fast as opposed to the time-consuming procedure employed in the 
technique of RPS (29, 31). On the other hand, the Poincaré plot il-
lustrates the signal itself, unlike SODP which illustrates the signal 

variability (1, 31). Nowadays, discrete wavelet transform (DWT) is 
becoming one of the popular tools in biomedical signal processing 
applications. The DWT is held to be a suitable method for analyz-
ing the dynamics of non-stationary signals like bio-signals (32) 
which, unlike EMD, is not sensitive to noise (33), as well as for 
its intrinsic numerical stability. 

Recently, a new group of features called geometrical features 
have been proposed to evaluate the complex behavior of biomedi-
cal signals plotted in 2-D space. In study (34), the phonocardiogram 
(PCG) has been plotted in 2-D space by RPS, and then the geo-
metrical features were extracted to detect valvular heart diseases. 
In another research (35), the geometrical features of modes of 
EEG signals in EMD and variational mode decomposition (VMD) 
domains have been used to detect alcoholism disorders. These 
geometrical features also could decode the chaotic behavior of 
muscle diseases by plotting electromyogram (EMG) signals in a 
2-D complex plane (36). In other works (28, 30), the geometrical 
features of RPS and SODP of EEG signals have been used to detect 
depressed subjects. Also, the geometrical properties have shown 
an acceptable performance also in classifying RPS of EEG signals 
in normal individuals and those suffering from schizophrenia (8). 
These successes of geometrical features motivate us to apply ideas 
related to detecting seizures by EEG signals. 

By checking the previous works which have been done to de-
tect seizure EEG signals, we can understand that in most of the 
proposed frameworks, extracted features were fed to classifi ers, 
which makes those methods quite complex; in fact, selecting the 

Fig. 1. Proposed method.
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best features before classifi cation allows the proposed framework 
to become faster and simpler. Hence, in this work, binary particle 
swarm optimization (BPSO) is used to select the best features to 
increase the performance of the proposed framework and decrease 
the complexity of classifi cation. 

In this paper, the fi rst step is associated with decomposing 
DWT to EEG signals. The motivation comes from the success of 
DWT in previous works (37, 38). In the next step, the Poincaré 
plot is utilized to create a 2-D representation for DWT coeffi cients. 
Due to Poincaré plot of coeffi cients, novel geometrical features are 
extracted for differentiating S and SF EEG signals. These features 
are comprised of standard descriptors of 2-D projection (STD), 
summation of triangle area using consecutive points (STA), as well 
as summation of the shortest distance from each point relative to 
the 45-degree line (SSHD), and summation of distance from each 
point relative to the coordinate center (SDTC). Afterward, BPSO 
is developed as a feature selection technique. Finally, k-nearest 
neighbor (KNN) and support vector machine (SVM) classifi ers 
are utilized to classify features in S and SF groups. 

The paper is organized as follows: 
In Section 2 we present and discuss the proposed techniques, 

including the used database, DWT, Poincaré plot, as well as BPSO 
and classifi ers. The empirical results are shown in Section 3. The 
paper discussion of this study is contained in Section 4 and fi nally, 
conclusions are drawn in Section 5. 

Proposed method 

In the current work, the fi rst step is to decompose the input 
EEG signals by DWT to four levels, which results in fi ve com-
ponents. Then, in order to decode the behaviors of EEG signals 
in S and SF groups, the 2-D illustration of coeffi cients is recon-
structed by the Poincaré plot. After that, the geometrical features 

are quantized by the complex behaviors of Poincaré plot in 2-D 
space. Finally, the selected features by BPSO are fed to SVM and 
KNN classifi ers to detect S and SF EEG signals. The steps of the 
proposed framework are shown in Figure 1. 

 
Used database 

A benchmark dataset, which can be downloaded for free from 
the Bonn University website, has been analyzed by employing the 
method proposed in study (39). Five subsets assigned as A, B, C, 
D, and E make up this database. Each subset contains 100 EEG 
signals sampled at 173.61 Hz. Each EEG signal has a duration 
of 23.6 seconds wherefore 4,097 samples are obtained. Subset A 
and subset B were recorded from fi ve healthy individuals in two 
conditions of eyes opened and closed, respectively. Those records 
from fi ve patients with seizure control who recovered from surgery 
of epileptic locations are allocated to subsets C and D. Subset E 
consists of EEG signals with regard to the epileptic seizure activity 
perceived in the epileptic region. In this work, the signals within 
subsets C and D are regarded as SF EEG signals, while the sig-
nals within subset E are regarded as S EEG signals (C, D vs E). 
For removing the noise and artifacts, a fourth-order Butterworth 
band-pass fi lter with respect to 0.53 to 40 Hz bandwidth has been 
used to fi lter EEG signals. 

Discrete wavelet transform (DWT) 
Discrete wavelet transform (DWT) is considered a prevalent 

tool in bio-signals applications (40). By applying fi lter bank, 
DWT decomposes the input signal into its sub-bands. At the fi rst 
level of decomposition, DWT is fi ltered to the input signal by low 
pass fi lter (LPF) and high pass fi lter (HPF) with respect to [0,π/2] 
and [π/2, π/4] bandwidths, respectively. The output of HPF and 
LPF are associated with detail 1 (D1) and approximation 1 (A1), 
respectively. At the second level decomposition, A1 is fi ltered to 

Fig. 2. Block diagram for DWT fi lter bank in 4-level decomposition.
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HPF and LPF with respect to [0,π/4] and [π/4, π/2] bandwidths, 
leading to obtain A2 and D2, respectively. Generally, at the n-th 
level decomposition (n>1), An and Dn are obtained by the fi lter of 
An−1 using LPF and HPF with respect to [0,π/2n] and [π/2n, π/2n–1]

bandwidths, respectively. In other words, at the n-th level of 
DWT decomposition, n+1 sub-bands result in one approximation 
and n details (i.e., An, Dn, Dn−1, … , D1). By using DWT, many 
wavelet functions are proposed to decompose the input signal 
(41). In this work, Daubechies order 4 (db4) wavelet function 
is used for decomposing EEG signals. Figure 2 shows the block 
diagram for DWT fi lters in 4 levels of decomposition. Figure 3 
indicates the fi ltered S and SF EEG signals and its fi ve extracted 
DWT coeffi cients. 

 
Poincaré plot 

The Poincaré plot is used to show the behavior of signals in 
a 2-D projection (31, 42). In this paper, the Poincaré plot of coef-
fi cients is utilized as a visual image for evaluating the dynamical 
behavior in S and SF EEG signals. 

Let us assume that the EEG input signal is a sequence such 
as x(n) = [x1, x2, x3, ..., xn). Then, we defi ne X(m) and Y(m) as fol-
lows (43): 

X(m) = [x1, x2, x3, ..., xn–1],     (1) 
Y(m) = [x2, x3, x4, ..., xn].     (2) 

Finally, the Poincaré plot represents the complexity of the sig-
nal x(n), by plotting X(m) versus Y(m) as follows: 

[X(m) Y(m) = [(x1, x2)1, (x2, x3)2, ..., (xn–1, xn)n–1].   (3) 

Figure 4 shows a sample for Poincaré plot of coeffi cients in S 
and SF EEG signals. Due to the 2D projection of the pattern of the 
coeffi cients, we can compute the signifi cant geometrical features 
to discriminate between S and SF EEG signals. 

Figure 4 reveals that the Poincaré plot of coeffi cients contains 
geometrical patterns. In addition, Poincaré plot for DWT coeffi -
cient of S EEG signals occupies a larger area than the same Poin-

Fig. 3. The plots (from up to down) show a sample of EEG signal and its D1 , D2 , D3 , D4 and A4 for S (left) and SF (right) groups.
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caré plot for DWT coeffi cient of SF EEG signals. It motivates us 
to compute the geometric features for classifi cation of S and SF 
EEG signals. 

Geometrical features extraction 
In this work, new geometrical features are proposed for ex-

tracting the geometric pattern from Poincaré plot of coeffi cients, 
as described in the following text. 

Standard descriptors of 2-D projection (STD) 
The scattering of points can be a useful parameter for measur-

ing the value of variation for a 2D shape (43). In order to quan-
tize the scattering of the point in 2-D space, two parameters are 
defi ned as follows: 

SD1 = (Var (d1))1/2,     (4) 

SD2 = Var (d2))1/2,      (5) 

where SD1 and SD2 measure the scattering of data for the 
projection of 2-D shape on the line of y = –x and y = x. 

As a result, we may defi ne them via equations 4 and 5 in the 
following manner: 

SD1 = (Var ((X(m) – Y(m)) / (2)1/2))1/2,    (6) 

SD2 = (Var ((X(m) + Y(m)) / (2)1/2))1/2,   (7) 

where Var (●) is the variance of d1 = (X(m) – Y(m)) / (2)1/2 and 
d2 = (X(m) + Y(m)) / (2)1/2  (22). 

In this work, STD = π (SD1 x SD2) is used as a geometrical 
feature. The terms SD1 and SD2 are shown in Figure 5. 

 
Summation of triangle area using consecutive points (STA) 
For every three consecutive points of the shape of the Poin-

caré plot in 2-D space, there is only one triangle. To measure the 
covered area by shape in 2-D space, STA is defi ned, which can be 
formulated as follows (28, 30): 

Fig. 4. The plots (from up to down) show the Poincaré plot of D1 , D2 , D3, D4 and A4 for a sample of S (left) and SF (right) EEG signals.



Hesam AKBARI et al. Recognizing seizure using Poincaré plot of EEG signals… 

xx

17

where m is the number of Poincaré plot arrays (see Equation 
3); [X (i) Y (i)], [X (i+1) Y (i+1)] and [X (i+2) Y (i+2)] indicate 
how to coordinate three consecutive points of Poincaré plot shape 
in a 2-D space. Figure 5 shows the STA as a geometrical feature. 

Summation of the shortest distance from each point relative 
to the 45-degree line (SSHD) 

In order to measure the width of shape in 2-D space, SSHD is 
defi ned which can be calculated as follows (1, 8): 

 
Here, [X (i) Y (i)] indicates the coordinates of each point of 

shape in the 2-D space. Figure 5 shows the SSHD as a geometri-
cal feature. 

 
Summation of distance from each point relative to a coordi-

nate center (SDTC) 
By checking the scattering of points from center of the Carte-

sian coordinate for 2-D shape of EEG signals in S and SF groups 
(See Figure 4), it is clear that Poincaré plot of coeffi cients of EEG 
signal in the S group occupies a larger area than in the SF group 
which can be a signifi cant parameter for distinguishing these two 

groups; for this reason, here, the SDTC is used as a feature which 
can be formulated as follows (12, 33): 

where [X (i) Y (i)] indicates the coordinates of each point of 
shape in the 2-D space. Figure 5 shows the SDTC as a geometri-
cal feature. 

Binary particle swarm optimization (BPSO) 
Particle swarm optimization (PSO) is one of the herd-based 

heuristic methods which has been introduced by Eberhart and 
Kennedy in 1995 (44). The process of PSO consists in fi nding the 
optimal solutions based on the behavior of leaderless groups of 
animals commonly occurring in animal societies that reach food 
by random movement (45). All of them follow the member at the 
closest distance to the food source (global best) and others, while 
remembering their past position (local best), simultaneously reach 
their best position through communication with members with 
a better position (46). The group member occurring in the site 
with better conditions informs others who move simultaneously 
toward that place (i.e., towards the global solution) (47). This 
process is repeated until the best condition (global optimum solu-
tion) is obtained. The considered process is controlled by means 
of a parameter known as velocity. There are many applications 
and requirements of accuracy in results using several versions of 
PSO. Since the starting point of the original PSO is that of detect-
ing continuous variables, and the electrode selection is a binary 
variable, in this paper, a binary PSO (BPSO) version is selected. 

Fig. 5. Schematic illustration of STD (up-left), STA (up-right), SSHD (down-left) and SDTC (down-right) as extracted geometrical features.

      (8)

      (9)

      (10)
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BPSO is a discrete version of PSO in a way that the process of 
updating a particle’s velocity in BPSO is similar to PSO, yet, un-
like in PSO, the particles in BPSO are comprised of either a 0 or 
1 (46). The main computational steps of PSO and hence, those 
of BPSO, are generating the initial position and velocity of each 
particle in the population, and position and velocity continues to 
be updated until the convergence condition which characterizes 
the optimal solution appears. 

The EEG signal has a complex structure, and its performance 
is considered a non-linear function (48). The PSO is one of the best 
choices in selecting extracted features from EEG signals because 
the PSO algorithm has a non-linear and stochastic nature (49). 
Also, it is easy to implement, and there are few parameters to ad-
just. In the current work, the BPSO is used as feature selection to 
choose the signifi cant features. Therefore, as a result, the proposed 
framework becomes faster and simpler than in previous methods. 

In order to implement BPSO as a features selection method 
in MATLAB, the written function by Jingwei Too (50) is used, in 
which the fi tness function is set to classifi cation performance, ac-
celeration factors set to 2, maximum and minimum velocity set to 
6, and -6, and maximum and minimum bounds on inertia weights 
are confi ned to 0.9 and 0.4. An initial population of N particles 
has been varied from 1 to 10. 

Classifi ers 
In order to classify the selected features by BPSO, two well-

known classifi ers namely k-nearest neighbor (KNN) and support 
vector machine (SVM) are used. 

The KNN is a simple classifi er that classifi es each of input data 
based on the nearest train data points (51, 52), for example when 
assuming that two features have been extracted and used as train 
data in a KNN classifi er (Fig. 6). For classifying the test data, the 
KNN algorithm considers the nearest data points that are closed to 
the test data. In fact, the test data belong to class A (i.e., squares) 
when the KNN classifi er checks just the fi rst closed train data, and 
belongs to class B when it checks seven closed train data points 
and in a similar way, while the test data belong to class A and B 
when KNN classifi er checks 14 and 21 nearest points to test the 
data. Thus, it is clear that the output of the KNN classifi er is de-
pendent on the number of closed train data points that the KNN 
classifi er is considered to classify (53). In the present work, in 
order to choose the best value for the number of closed nearest 
data points, the k value varies from 1 to 9 by step 2 and the best k 
value is used. Another important parameter of the KNN classifi er 
is how to calculate the distance which in the current work, it is 
chosen to be the Euclidean and City-block metrics. 

On other hand, the SVM classifi er draws a margin with the 
highest width between the classes in train data and then classifi es 
the test data by considering this margin (Fig. 7) (54). In order to 
defi ne the best margin, the test data points are plotted in a higher 
dimensional space by kernel functions (55). In the current work, the 
performance of SVM classifi er for three different kernel functions 
such as linear, polynomial, and radial basis function (RBF) is tested. 

Results 

In the current work, DWT decomposes EEG signals into four 
levels. Figure 3 shows an EEG signal and its coeffi cients for the 
S ad SF groups. After that, the Poincaré plot is applied to plot the 
2-D projection for DWT coeffi cients. It is evident that the Poin-
caré plot of coeffi cients of S EEG signals occupies a larger area 
than the Poincaré plot of coeffi cients of SF EEG signals (Fig. 
4). For this reason, the Poincaré plot of coeffi cients was used to 

Fig. 6. KNN algorithm is illustrated as a used classifi er.

Fig. 7. The SVM algorithm is illustrated as a used classifi er.



Hesam AKBARI et al. Recognizing seizure using Poincaré plot of EEG signals… 

xx

19

compute four geometrical features, and thus the chaotic behavior 
is quantifi ed for EEG signals that consist of STD, STA, SSHD, 
and SDTC. 

These features are directly applied to the samples. In other 
words, there is a direct relationship between the window sizes 
and the number of extracted features. Hence, the Poincaré plot of 
coeffi cients utilized to compute the proposed geometrical features 
for S and SF classes with various window sizes were considered 
for EEG signals including 500, 1,000, 2,000, and 4,000 samples. 

P-value was considered to evaluate the ability of the features 
for discrimination between two classes (29). In this regard, the 
lower p-value provides a better ability for discriminating between 
various classes. In this work, the Kruskal-Wallis function is used 
for p-value computation in MATLAB software package (56). 

In Table 1, p-values are written for the extracted features cor-
responding to DWT coeffi cients. 

It can be seen that all geometrical features have a great ability 
to discriminate between S and SF EEG signals (p-value ≈ 0) within 
all window sizes. In other words, all of the extracted geometrical 
features can be fed as effective features to classifi ers, but in order 
to decrease the value of calculation in classifi ers, the size of the 
feature set is determined by BPSO to use just the best combination 
of features vector with the fewer features arrays. 

In order to evaluate the performance of classifi ers, the 10-fold 
cross-validation (CV) technique is used in which, the fi rst step is 
to break the input database (i.e., Bonn university database) into 
ten equal subsets. Then the classifi er is tested ten times with one 
of these sub-sets and by the nine other remaining sub-sets. As a 
consequence, in 10-fold CV strategy, each subset is used once as 
test data and nine times as train data. 

The output of the classifi er based on test data and its label can 
be categorized in four situations as described below: 

True-positive (TP): when the label of test data is S and clas-
sifi ers correctly classify it as S group. 

True-negative (TN): when the label of test data is SF and clas-
sifi ers correctly classify it as SF group. 

False-positive (FP): when the label of test data is SF and clas-
sifi ers incorrectly classify as S group. 

False-negative (FN): when the label of 
test data is S and classifi ers incorrectly clas-
sify it as SF group. 

In each fold of the classifi er, the output 
of a classifi er is one of the latter four con-
ditions. After training and testing the clas-
sifi er ten times (i.e., the same 10-fold CV), 
the summation of these parameters is used 
to evaluate the performance of the classifi er. 

In this work, six different objective pa-
rameters are defi ned to evaluate the clas-
sifi cation performance as follows below: 

Accuracy (ACC): ability of the classi-
fi er to fi nd a correct separation of S and SF 
classes. Sensitivity (SEN): ability of the 
classifi er to fi nd a correct classifi cation of 
signals with S labels in S class. 

Specifi city (SPE): ability of the classifi er to fi nd a correct clas-
sifi cation of signals with SF labels in SF class. 

Positive predictive value (PPV): ability of the classifi er to fi nd a 
correct detection of signals with S labels between S and SF signals. 

Negative predictive value (NPV): ability of the classifi er to 
fi nd a correct detection of signals with SF labels between S and SF 
signals. These parameters have been formulated as follows below: 

                      TP + TN
   

ACC = ____________________________  x100,   (11)                                                                         
             TP + TN + FP + FN

        TP    
SEN = _____________________ x100,    (12)
                 TP + FN

 
                      TN    
SPE =                      ______________________ x100,    (13)
                  TN + FP

 
                     TP    
PPV = ______________________ x100,    (14)
                 TP + FP

 
                      TN    
NPV  = _____________________ x100.    (15)
                  TN + FN

 
Figures 11, 12, 13 and 14 illustrate the performance of SVM 

and KNN classifi ers in various situations. In Figures 11, 12, 13 
and 14, BPSO was considered to obtain the signifi cant features in 
window sizes of 500, 1,000, 2,000 and 4,000, respectively. 

Figures 8 to 11 demonstrate that our proposed method pro-
vides ACC classifi cation of 99 %, 99.33 %, 98.66 %, and 99 % in 
window sizes of 500, 1,000, 2,000, and 4,000, respectively. Table 
2 shows the selected geometrical features (i.e., STD, STA, SSHD, 
and SDTC) from EEG coeffi cients (i.e., D1, D2, D3, D4 and A4) in 
window sizes of 500, 1,000, 2,000, and 4,000 samples in the best 

Window size Feature A4 D4 D3 D2 D1 
500 STD 8.04E-40 1.45E-42 8.37E-44 7.15E-44 5.64E-44 

STA 5.29E-41 1.24E-42 7.59E-44 8.05E-44 7.15E-44 
SSHD 8.27E-42 1.20E-42 3.73E-44 2.83E-44 3.44E-44 
SDTC 2.99E-37 1.77E-42 4.11E-44 2.88E-44 3.65E-44 

1,000 STD 7.89E-40 4.70E-43 3.58E-44 4.28E-44 3.65E-44 
STA 8.12E-42 3.87E-43 3.06E-44 4.03E-44 3.80E-44 
SSHD 3.68E-42 1.60E-43 1.79E-44 1.69E-44 1.76E-44 
SDTC 2.83E-37 2.19E-43 1.94E-44 1.62E-44 1.86E-44 

2,000 STD 1.32E-40 1.84E-43 3.31E-44 3.12E-44 3.31E-44 
STA 1.03E-42 1.60E-43 3.00E-44 2.72E-44 4.03E-44 
SSHD 6.30E-43 8.88E-44 1.53E-44 1.33E-44 1.62E-44 
SDTC 4.74E-38 1.17E-43 1.76E-44 1.30E-44 1.69E-44 

4,000 STD 5.11E-42 1.24E-43 2.83E-44 2.88E-44 3.95E-44 
STA 2.33E-43 1.02E-43 2.61E-44 2.72E-44 3.18E-44 
SSHD 1.54E-43 6.74E-44 1.59E-44 1.11E-44 1.56E-44 
SDTC 9.88E-40 1.12E-43 1.69E-44 1.16E-44 1.59E-44 

Tab. 1. P-values of geometrical features for DWT sub-bands.
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Fig. 8. Comparing the performance of SVM and KNN classifi ers in window size of 500.

Fig. 9. Comparing the performance of SVM and KNN classifi ers in window size of 1.000.
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Fig. 10. Comparing the performance of SVM and KNN classifi ers in window size of 2.000

Fig. 11. Comparing the performance of SVM and KNN classifi ers in window size of 4,000.
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classifi cations, respectively. In Table 2, BPSO was used to select 
the geometrical features. 

The algorithm run time for the proposed framework to do the 
preprocessing, DWT decomposition, plotting coeffi cients by Poin-
caré plot, and feeding the selected features to classifi ers was 0.2 ± 
0.05 seconds for the EEG signals with 4,000, 2,000, 1,000, and 500 
samples. All steps of the proposed framework are implemented in 
MATLAB 2014a software by a system with i5-M480 CPU (2.67 
GHz) and 6GB RAM. The proposed framework is fast owing to 
the use of few features to classify the EEG signals. Besides, the 
run time for the proposed framework can be faster by implement-
ing and developing codes by C++ programming. 

Discussion 

We showed that the Poincaré plot of DWT coeffi cients of EEG 
signals can be employed as a usable way to decode the complexity 
of S and SF signals. As shown in Figure 4, the Poincaré plot for 
coeffi cients of the S EEG signals occupies more space as com-
pared to SF EEG signals. This result has been stated in earlier 
studies. It has been implemented by drawing the IMFs for S and 
SF EEG signals in 2-D plane of SODP (24) and RPS (27). As it 
can be observed in the Figure 4, Poincaré plot for SF EEG signals 
contains more regular geometrical shapes. It may occur due to the 
simultaneous response of brain neurons, leading to an increase 
in the S-segment of EEG signals. Table 3 provides a comparison 
between our suggested method and the methods available in the 
identical database. In some studies (15‒17), two classifi cation tasks 
consisting of subset C vs E and subset D vs E have been assessed. 
On the other hand, according to some studies (18‒22, 24, 25, 27), 
the proposed methods have been evaluated by subsets C, D vs E 
classifi cation task. In study (15), permutation entropy and SVM 
classifi er have been applied to classify S and SF EEG signals. In 
study (16), in order to detect S EEG signals in KNN classifi er, 
mean degree and mean strength of HVG have been examined. 
According to study (17), signals, clustering technique and SVM 
classifi er have been utilized to classify S from SF EEG. In study 
(18), for S and SF EEG signals classifi cation, linear prediction er-
ror energy feature is applied to SVM classifi er. In study (19), FLP 
error and signal energy are employed with the aim of distinguish-
ing features between S and SF EEG signals. In study (21), several 

entropies and statistical features are calcu-
lated as an input to general regression neu-
ral network (GRNN) classifi er. As a result, 
S and SF EEG signals are distinguished. In 
study (21), autoregressive modeling based 
on EMD has been represented in order to 
detect S. In study (22), TQWT and Kras-
kov entropy were used to classify S from 
SF EEG signals. In consonance with study 
(25), IEVDHM–HT was suggested to have 
a time-frequency representation in S and SF 
EEG signals. Thus, as a feature, the Rényi 
entropy is extracted and then applied to the 
least-square SVM (LS-SVM). Studies (24) 

and (27) report that according to the elliptical patterns of SODP 
and RPS IMFs in EEG signals, two-dimensional predictions have 
been calculated as distinguishing features between S and SF EEG 
signals with a 95 % confi dence area. Then, they are applied to LS-
SVM and artifi cial neural network (ANN) classifi ers, respectively. 

It is clearly obvious that the mentioned geometrical method 
resulted in the highest classifi cation ACC as compared to the latest 
existing methods including references (16‒22, 24, 27). Although 
the reported ACC classifi cation in reference (25) is slightly higher 
than that in our method, their method requires heavy calculations 
for the associated eigenvalue decomposition and Hilbert transform 
computation as EEG signal processing tools. In study (25), authors 
clearly mentioned that: “The proposed method contributes to a 
good resolution in time frequency domain but calculating many 
components and merging them is required. Due to this reason, 
higher computational complexity is required in comparison with 
Hilbert–Huang transform method”. In addition, despite the Hil-
bert‒Huang transform, commonly known as the EMD method, it 
endures mode-mixing problem and noise sensitivity. Furthermore, 
the method mentioned by us is not sensitive to noise. Therefore, 
from the noise point of view, we can argue that the method pro-
posed by us has a better performance than the method used in 
reference in terms of simplicity and fl exibility (25). 

Window size Classifi er STD STA SSHD SDTC 

500 KNN 
(Euclidean) D4, D3 D3, D2, D1 A4, D3, D1 A4, D4, D2 

1000 

KNN 
(Euclidean) A4, D3 D1 D4, D1 D3, D1 

SVM 
(Polynomial) D3, D2 A4, D2, D1 D2 A4, D4, D3, D2 

2000 SVM 
(Polynomial) D2, D1 A4, D2, D1 D4, D1 A4, D4, D2 

4000 KNN 
(City-block) A4, D4, D1 A4, D1 D3 A4, D4, D3, D2 

Tab. 2. Selected geometrical features from EEG coeffi cients in window sizes of 500, 1,000, 
2,000 and 4,000.

Reference number (year) Used CV Classifi cation task ACC (%) 
15 (2012) No C vs E D vs E 88.00 

79.94 
16 (2014) 10-fold C vs E D vs E 98 

93 
17 (2011) 10-fold C vs E D vs E 97.69 93.91 
18 (2010) No C, D vs E 94 
19 (2014) No C, D vs E 95.33 
20 (2016) 10-fold C, D vs E 95.15 
21 (2019) No C, D vs E 95.10 
22 (2017) 10-fold C, D vs E 97.5 
25 (2018) 10-fold C, D vs E 100 
24 (2014) 10-fold C, D vs E 97.75 
27 (2015) 10-fold C, D vs E 98.67 
Proposed method 10-fold C, D vs E 99.33 

Tab. 3. Comparison of the suggested method with the available studies
in this area.
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Conclusion 

In the human brain, epileptic seizures frequently manifest 
spikes in EEG signals. It can visually be analyzed by experts. In 
long EEG records, visual inspection can be a cumbersome and 
time-consuming activity of detecting the presence of epileptic 
seizures. This paper proposes a method based on Poincaré plot 
of DWT coeffi cients for classifi cation of S and SF EEG signals. 
New geometrical features are extracted from the Poincaré plot of 
DWT coeffi cients of EEG signal. The BPSO was developed to 
select the signifi cant features, and then they are fed to SVM and 
KNN classifi ers. Our proposed method has classifi ed the S and SF 
EEG signals with the ACC classifi cation of 99.33 %. Our proposed 
method measured the degree of complexity for Poincaré plot of 
DWT coeffi cients as a feature. It does not compute the variability 
of Poincaré plot, and hence it can be a good parameter for classi-
fying EEG signals in two groups (S and SF). We also believe that 
geometrical features proposed by us have the ability to properly 
detect other disorders from EEG signals such as autism, attention-
defi cit hyperactivity disorder (ADHD) and Parkinson`s disease. 

 The empirical wavelet transform (EWT) (57) has been pro-
posed as an adaptive tool to decompose non-stationary signals 
instead of the DWT method, in which the fi lter bank can be de-
signed based on frequency components. Also, the sub bands of 
EWT have better frequency resolution than DWT. On the other 
hand, recently, a new time-frequency-analyzing method, namely 
fast iterative fi ltering (FIF), has been proposed to extract the modes 
of nonlinear and non-stationary signals (58). In fact, FIF is a fast 
iterative algorithm alternative to EMD, which inherits all useful 
properties of EMD, but has been recently proven to be convergent 
and not prone to mode mixing. This can lead to a method that is 
in some way „equivalent“ to the one proposed in study (25), but 
faster, reliable and stable with respect to noise. Another promising 
method is the adaptive local iterative fi ltering (ALIF) algorithm 
which allows to identify strong non-stationarities hidden in a signal 
(59). In future research, the performance of these methods will be 
evaluated in relation to classifi cation of EEG signals. 
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