
1. Introduction
This study analyzes the geodetic and seismic signals associated with the ongoing unrest in La Fossa Caldera, 
located in the northern part of Vulcano Island (Italy) within the Aeolian volcanic arc (Figures 1a and 1b). The 
unrest began in September 2021 and is still ongoing (September 2023; Aiuppa et al., 2022; Federico et al., 2023; 
Inguaggiato et  al.,  2022). Vulcano, along with Lipari, forms a volcanic ridge oriented NNW–SSE along the 
regional Aeolian-Tindari-Letojanni Fault (ATLF; Figure 1c) system (Barberi et al., 1994; Barreca et al., 2014; 
Mattia et al., 2008). The formation of La Fossa Caldera occurred between 55ky and 21ky, followed by volcanic 
activity in various vents within and on the caldera rim (La Fossa cone, Vulcanello, Faraglione; Selva et al., 2020). 
After the last Vulcanian eruption (1888–1890; Mercalli & Silvestri, 1891), intense and fluctuating hydrother-
mal activity have characterized Vulcano (Granieri et al., 2006; Montalto, 1996), often associated with ground 
deformation, as observed in 1985–1990 (inflation; Alparone et al., 2019) and 1990–1996 (deflation of a verti-
cal, elongated, ellipsoidal depressurized source situated beneath the La Fossa cone at sea level; Gambino & 
Guglielmino, 2008). Local seismicity primarily occurs within the first few kilometers below the caldera floor, and 
it includes Long Period (LP) and Tornillos events, related to hydrothermal activity (Alparone et al., 2010, 2019; 
Cannata et al., 2012; Del Pezzo & Martini, 1981; Montalto, 1994).

Since September 2021, Vulcano has undergone a new phase of unrest. Fumarolic activity increased in the latter 
half of September, accompanied by intensified seismic activity (Coppola et al., 2022; Corradino et al., 2023; 
Federico et al., 2023; Inguaggiato et al., 2023). Notably, Very Long Period (VLP; frequency peak ∼ 0.3 Hz) 
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seismic events were recorded for the first time, with the source area located at 950 ± 270 m below sea level, 
North of La Fossa cone (Federico et  al., 2023). VLP events were attributed to fluid release within La Fossa 
Caldera's fracture network, and the source's consistent location suggests a connection between pressurized fluids 
and geological structures (Di Giuseppe et al., 2023; Federico et al., 2023).

Volcano Tectonic (VT) seismicity was at low levels before and during the mid-September unrest phase, with 
foci mainly located offshore to the W and SW of the island at intermediate depths (5–12 km). After 30 October 
2021, there was a moderate increase in seismic activity in the NW and N sectors offshore of Vulcanello. Shallow 
seismicity persisted until December 2021. Subsequently, the seismic activity shifted to intermediate depths, with 
epicenters both on the island and offshore to the East (Federico et al., 2023).

In this work, ground deformation detected by using Multi-Temporal Interferometric Synthetic Aperture Radar 
(MT-InSAR) and Global Navigation Satellite System (GNSS) network (Figure 1c) data, were analyzed to identify 
the source of deformation, whereas the seismic network (Figure 1c) data were mainly exploited to characterize 
the seismicity induced by the hydrothermal system activity.

2. Materials and Methods
2.1. InSAR Data Processing

The Parallel Small BAseline Subset, P-SBAS (Casu et al., 2014; Manunta et al., 2019) technique was used to 
generate ground displacement time-series and velocity maps of Vulcano Island, with accuracies of about 5–10 mm 
and 1–2 mm/year, respectively. We used the P-SBAS algorithm to examine the entire C-band Sentinel-1 (S-1) 
data archive acquired from both ascending (Track 44) and descending (Track 124) orbits, covering the period 
March 2015 to September 2022. Here, we focus on the July–December 2021 period, when the S-1 constellation 
consisted of two identical satellites, enabling us to achieve a revisit time of as little as 6 days. Interferograms 
have been generated at the full spatial resolution of the sensor, by using a SRTM DEM to compensate for the 
topographic phase component and finally averaged (multilooked) to reach a pixel size of about 15 by 15 m. The 
accurate S-1 synchronization and the small orbital tube make the interferometric phase less sensitive to possible 
orbit and topography related errors, allowing us to only consider temporal constraints on the interferometric pairs 
selection. Moreover, the atmospheric phase screen (APS) has been filtered out from the displacement time series 
by first removing the signal which is highly correlated with topography but poorly in time, and then by filtering 
the residual APS component estimated from the non-deforming pixels (De Luca et al., 2022).

2.2. GNSS Network and Data Processing

The GNSS network is made up of 6 permanent stations (5 in Vulcano and 1 in Lipari. Figure 1c). GNSS data 
were processed using the GAMIT/GLOBK software (Herring et al., 2015, 2018) with IGS precise satellite orbits. 
Data from 12 IGS (International GNSS Service) stations (BOR1, GLSV, GRAS, GRAZ, LROC, MATE, NOT1, 
POTS, VILL, WSRT, WTZR, ZIMM) and a GNSS station (EIIV), installed in Catania (eastern Sicily) by the 
INGV, were also included in the processing. The GAMIT module was employed to derive loosely constrained 
daily solutions, providing coordinates and parameter estimates for each station along with their respective covar-
iance matrices. By using the GLORG module of GLOBK, the loosely constrained daily solutions were translated 
and rotated to align them with the Eurasian reference frame (Altamimi et al., 2016). The final product of the 
GAMIT/GLOBK analyses is a three-component time series of daily station positions with respect to the Eurasian 
fixed reference frame. We used an elevation-dependent weighting for the phase data. The outliers were removed, 
the white noise was estimated for each station through the Hector software (Bos et al., 2013) and included in the 
error model used for the time series.

2.3. Seismic Network and Data Processing

The INGV OE seismic network installed at Vulcano and Lipari consists of 15 stations (Figure 1c), 9 of which 
were installed soon after the beginning of the unrest phase. All are equipped with broadband three-component 
velocimetric sensors and 5 of them with accelerometers. Data acquired in the remote stations are continuously 
transmitted to the operation room in Catania by way of different transmission methods (satellite, Wi-Fi, UMTS). 
Here, we focused on relevant seismic signals relevant for the hydrothermal system activity and transport of fluids 
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through conduits, such as VLP events (Chouet & Matoza, 2013). VLPs are generally attributed to fluids passing 
through magma or hydrothermal conduits. In their study, Federico et al. (2023) employed a method based on 
radial semblance, similar to previous research on Etna and Stromboli (Cannata et al., 2012; Martini et al., 2007), 
to determine the affected zone of certain events. In our work, we expanded the analysis of seismic signals beyond 
just VLP occurrence rates, also considering VLP amplitude. This approach builds upon the method introduced 
by Giudicepietro et al. (2020) for defining the VLP size parameter in seismic signals associated with Stromboli 
explosions (Calvari et al., 2021; Di Traglia et al., 2014), a highly sensitive parameter to volcanoes' degassing 
processes (Giudicepietro et al., 2022). We analyzed the period from 1 July to 31 December 2021. We filtered the 
signal of the vertical component of the IVCR station in the 0.1–0.8 Hz band, around the peak frequency (0.3 Hz) 
of the Vulcano VLP events. We then split the signal for the entire period into two-minute windows. After applying 
the filter, we defined a 20-second sliding window, which moves over each two-minute window of signal with a 
1-second shift. For each two-minute window of signal containing a VLP event we take the maximum value of the 
RSAM among the 100 (120 − 20 = 100) 20-second duration windows. We expressed the seismic amplitude as 
Real-time Seismic-Amplitude Measurement (RSAM), which is based on the average of the absolute value of the 
amplitude of a signal window (in our case length = 20 s), as defined by Endo and Murray (1991). To highlight 
the contribution in the seismic amplitude of only the data segments containing a VLP event, we set the seismic 
amplitude obtained for all data segments not containing any VLP event equal to 0. Thus, we obtained a time series 
with a time step of 2 min that represents the variation of the occurrence and the amplitude of VLP events well and 
that provides indications on the level of activity of the hydrothermal system.

2.4. Ground-Deformation Modeling

Analytical models are crucial for understanding how the crust responds to physical phenomena, helping us 
characterize driving mechanisms and determine source attributes such as location, size, orientation, and magni-
tude. To simulate ground deformation within the targeted volcanic region, we utilized models established by 
McTigue (1987) for a spherical source, Yang et al. (1988) for an inclined prolate spheroid, and Fialko et al. (2001) 

Figure 1. (a) and (b) Location of the study area. (c) Structural setting of Vulcano and Lipari, including regional tectonics 
(Aeolian Tindari Letojanni Fault - ATLF and Sisifo Alicudi Fault - SAF systems). The distribution of the GNSS and seismic 
networks installed on Vulcano is also reported.
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for the inflation of a penny-shaped crack, all within a flat, elastic, homogeneous, isotropic half-space (refer to the 
Supporting Information S1). Although real volcanic sources are complex and not simple cavities with uniform 
shapes, we suggest that these models can provide a reasonable approximation of the strain field produced by 
actual reservoirs and transport pathways. In these models the volume change of the source ∆V is proportional to 
the ratio of the pressure variation ∆P and the shear modulus (rigidity) of the rock μ. The proportionality factor k 
depends on the geometry, the depth of the source and the Poisson's ratio ν:

∆𝑃𝑃

𝜇𝜇
= 𝑘𝑘 (𝜈𝜈)∆𝑉𝑉 (1)

In our work, we express the deformation in terms of the volume change of the source ∆V using Equation 1. The 
advantage of this approach is that the deformation does not depend on the rigidity μ, and only the dimensionless 
Poisson's ratio ν is needed for the inversion. Once the volume change ∆V is found, an estimate of the pressure 
increase can be acquired by using the same equation. Considering that the La Fossa Caldera infillings consist 
of lavas, hyaloclastites, and volcaniclastics (Gioncada & Sbrana, 1991) that have undergone significant hydro-
thermal alteration, particularly in the advanced argillitic alteration facies rich in clays (Fulignati et al., 1998), 
we selected a Geological Strength Index (GSI; Marinos & Hoek, 2000; Vásárhelyi, 2009; Hoek & Brown, 2019; 
Heap et al., 2020) range of 20–55 (as per Kereszturi et al., 2021). Based on laboratory-derived estimates of ν for 
volcanic rocks (Heap et al., 2009, 2014) and an empirical correlation between GSI and Poisson's ratio proposed 
by Heap et al., 2020, the corresponding ν falls within the range of 0.30–0.37. Ultimately, we opted for a value 
of ν = 0.35, which we consider the most realistic choice for the rocks affected by the hydrothermal system at 
Vulcano. The results of a parametric study conducted on the various elastic models used for matching the ground 
deformation, also considering Poisson's ratio ν varying between 0.25 and 0.45, are detailed in Supporting Infor-
mation S1 (Tables S1–S3).

We primarily used InSAR data for inversion analysis due to the lack of other geodetic measurements at the 
La Fossa cone's summit, which underwent the most significant deformation in the region (see Figure  2). In 
this confined area, InSAR data were used for effective monitoring of pronounced deformation. To validate 
measurement consistency, GNSS data were employed in areas with less intense deformation. Figures S5–S9 in 
Supporting Information S1 depict the comparison between deformation components derived from InSAR data 
and measurements from five GNSS stations. The inversion analysis considered cumulative displacement over the 
July-December 2021 period (see Figure 3). We assessed the results using the chi-square test and also incorporated 
time-varying ground deformation by considering the variable ∆V over time (see Figure 4). We assumed that the 
mechanical equilibrium's time scale is much shorter than that of pressure variations. The position of the center 
of the source has been considered constant over the period of time considered, whereas the strength of the source 
(∆V) is allowed to vary with time. Concerning the potential impact of topography on model performance, it is 
worth noting that in the La Fossa Caldera, significant positive or negative relief features are not present. The 
maximum variation in topography is ≈300 m, with slopes <30° in areas of maximum deformation (Di Traglia 
et al., 2013). Consequently, it is anticipated that a flat model would provide sufficient accuracy for this region, as 
previously demonstrated for the Rabaul Caldera by Ronchin et al. (2015).

3. Results
Ground deformation data from July to December 2021 (Figure 2) showed rapid uplift compared to long-term 
displacements (see Figures S1 and S2 in Supporting Information S1 for MT-InSAR S-1 measurements from April 
2015 to September 2022). InSAR-detected localized ground deformation mainly occurs within La Fossa Caldera, 
peaking at about 7 cm between January and late October 2021 along the ascending orbit, primarily within La 
Fossa cone crater (see Figure 2). The GNSS station IVCR, located on the northern flank of La Fossa cone, 
underwent the most significant displacement, while no GNSS data is available for the crater region. A compar-
ison of InSAR and GNSS deformation data shows a good agreement (see Figure 2). The standard deviations of 
the discrepancies between InSAR data and GNSS time series, projected along the S-1 line of sight (LOS), have 
standard deviations less than 0.5 cm for both ascending and descending orbits.

The best-fitted source that we obtained by using InSAR data corresponds to the inflation of a dipping prolate 
spheroid (Yang et al., 1988), located at a depth of 598 m b.s.l. below La Fossa cone, with a geometric slope from 
the cone toward the center of the caldera (Figures 3 and 4). The prolate spheroid model provides the most realistic 
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Figure 2. Ground deformation data from MT-InSAR and GNSS. Ascending (a) and descending (d) S-1 displacement rate 
maps (15 July–18 December 2021). Ascending (b, c) and descending (f, g) InSAR displacement time series in LOS, in the 
vicinity of the IVCR and IVLT stations (1 January 2021–1 February 2022). Ascending (d) and descending (h) time series of 
maximum InSAR displacement detected in the La Fossa cone crater area. Long-term deformation maps and time-series are 
reported in Supporting Information S1.
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Figure 3. Cumulative ground displacement data, modeling results, residual maps (misfits), and deformation profiles, for both ascending and descending orbit, in 
the period 15 July–18 December 2021. The cumulative ground displacement was computed by differentiating the average of the last 3 and first 3 SAR epochs of the 
considered time interval. The error bar in the displacement data along the profiles is equal to 2𝜎 of the measurements (σ = 0.5 cm). Most of the misfit between data and 
model are associated with the La Fossa cone fumarolic field.
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Figure 4. (a) La Fossa Caldera (from Romagnoli et al., 2012) with location of the deformation source (this study). The location of the VLPs and of the degassing areas, 
both diffuse and from fumarolic fields (Federico et al., 2023), the alignment of the recent vents of Vulcano and Lipari (Ruch et al., 2016) and the location of the summit 
craters of La Fossa cone (Di Traglia et al., 2013) are also reported. NW-SE profiles and N-S are included. (b) NW-SE and (c) N-S profiles showing the geometric 
relationship between the deformation source, that of the VLPs and the main structures of the La Fossa Caldera. In (d) and in (e) the time series of the source volume 
(from modeling geodetic data) and of the cumulative VLP size, respectively, are reported. The main phases of the initiation of unrest are also indicated. In (f) the 
interpretation of the observed phenomena is schematically reported, which foresee: (i) initial expansion phase of the hydrothermal system due to thermal and volatile 
input from deeper magmatic storage (3–5 km, Aiuppa et al., 2022) (August 2021); (ii) release of volatiles from the expanding hydrothermal system (onset of VLPs) and 
increased fumarolic activity (September 2021); (iii) climax of this unrest phase (October 2021); (iv) calm phase observed in November 2021, marked by the cessation 
of inflation and a temporary reduction in VLPs; (v) intense fluid release phase, accompanied by a significant number and amplitude of VLP signals, without concurrent 
hydrothermal system expansion (December 2021).
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pressure values (3–8 MPa) for the source volume, while the other two models yield significantly higher pressures, 
exceeding the rock strength by one to three orders of magnitude (Tommasi et al., 2019), that is, a phreatic explo-
sion would have occurred (Rosi et al., 2018). For these reasons we considered the prolate spheroid the most suit-
able model to represent the source of the detected deformation. The total volume change is 7.31 ± 0.69 × 10 5 m 3 
(reduced χ 2 = 0.23; see Supporting Information S1), and the maximum ΔP = 8.48 MPa.

The results of the seismological data analysis show that the cumulative amplitude of the VLP events shows a 
rapid increase when the rate of deformation and source pressure are higher (Figures 4d and 4e). This suggests a 
link between hydrothermal seismicity and the deformation source.

4. Discussion and Conclusions
The overall results presented here indicate that the investigated unrest phase (September-December 2021), that is, 
inflation and seismicity, together with anomalies in gasses emissions (Aiuppa et al., 2022; Federico et al., 2023; 
Inguaggiato et al., 2022, 2023), is compatible with the expansion of the hydrothermal system located within the 
La Fossa Caldera. Thermal anomalies also show a similar trend, with a peak again in October 2021 (Coppola 
et al., 2022; Corradino et al., 2023; Pailot-Bonnétat et al., 2023). While the thermal anomalies have been inter-
preted as an increase in temperatures of the fumarolic field present in the crater area of the La Fossa cone, the 
geochemical anomalies are interpreted as an increase in the parameters of the hydrothermal system which in turn 
is enriched in a strong and deep input of fluids released from an underlying magma batch (Aiuppa et al., 2022; 
Inguaggiato et al., 2022).

The prolate spheroid resulting from our inversion, with a major-to-minor axis ratio of approximately 10, is 
oriented in the NW-SE direction, aligning with the fractures that control the localization of fumaroles within 
the crater area of La Fossa cone (Barde-Cabusson et al., 2009; Mueller et al., 2021; Schopa et al., 2011). The 
source's position and configuration closely align with the La Fossa Caldera hydrothermal system, as described 
by Gioncada and Sbrana (1991), Fulignati et al. (1998), and Chiarabba et al. (2004). Di Giuseppe et al. (2023) 
have identified a conduit-like structure saturated with magma-derived fluids in good agreement with our modeled 
source. This finding is consistent with the interpretation of an elongated rock volume that facilitates the upward 
movement of fluids to the surface (Montanaro et al., 2020). Upon examining the comparison between detected 
and modeled data in Figure 3, it is evident that there is a better fit of the data in the ascending orbit compared to 
the descending orbit. This discrepancy may stem from local factors, including variations in the physical proper-
ties of the hydrothermalized material, which exhibits a highly irregular spatial distribution (Mueller et al., 2021; 
Schopa et al., 2011), or the presence of extremely localized deformation sources attributable to the surface fuma-
rolic system (Bonaccorso et al., 2010; Revil et al., 2008).

The good agreement between the temporal evolution of the deformation source pressure and the appearance of 
the VLP events, in the period in which the deformation rate is maximum, suggests the link of the unrest with the 
increase in the activity of the hydrothermal system, the VLP seismicity being incontrovertibly associated with the 
passage of fluids in geological structures.

We further note that our results allow us to identify the temporal evolution of the occurred phenomena, which can 
be summarized as follows (Figure 4f):

 –  the La Fossa Caldera hydrothermal system went under pressure between late July and early September 2021;

 –  from 5 September 2021 (when the first VLP was recorded) to early November 2021, the pressurization of 
the hydrothermal system increases (peak reached in mid-October 2021);

 –  the occurrence of VLP, suggesting the gas transfer from the hydrothermal system, is coherent with the 
arrival of hydrothermal fluids at the surface (Federico et al., 2023);

 –  the alignment between the location of the VLP source and the fumarole areas inside the caldera (La Fossa 
cone, Faraglione) suggests the role of an N-S structure in the transfer of hydrothermal fluids (Bonaccorso 
et al., 2010; Di Giuseppe et al., 2023; Fulignati et al., 1998; Ruch et al., 2016);

 –  from the beginning of November onwards, the deformation does not increase, while a series of phenomena 
coherent with the northward shift begin to occur (increase of gas flux in the fumarolic field between the 
Faraglione and Vulcanello; Federico et al., 2023).
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Localized deformation at volcanoes, such as those measured at La Fossa Caldera between early August and late 
October 2021, may be very relevant because they are often indicators of the hydrothermal systems pressurization 
and can be precursors of phreatic explosions (Bemelmans et al., 2023; Kobayashi et al., 2018). Accordingly, the 
combined use of MT-InSAR and GNSS data is valuable because it allows examining surface deformation and 
the time evolution of localized hydrothermal systems, along with the analysis of seismic signals. Additionally, 
the  study highlights that in active volcanic regions, the elastic properties of rocks surrounding shallow hydro ther-
mal systems can differ from unaltered rocks. This underscores the need for future in-depth investigations into 
altered volcanic materials to better understand their elastic behavior.

Data Availability Statement
The data reported in this paper are available in Di Traglia et al.  (2023) and Istituto Nazionale di Geofisica e 
Vulcanologia (2005).
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