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Abstract
Owing to the current lack of plausible and exhaustive physical pre-eruptive models, often volcanologists rely on the obser-
vation of monitoring anomalies to track the evolution of volcanic unrest episodes. Taking advantage from the work made in 
the development of Bayesian Event Trees (BET), here we formalize an entropy-based model to translate the observation of 
anomalies into probability of a specific volcanic event of interest. The model is quite general and it could be used as a stand-
alone eruption forecasting tool or to set up conditional probabilities for methodologies like the BET and of the Bayesian 
Belief Network (BBN). The proposed model has some important features worth noting: (i) it is rooted in a coherent logic, 
which gives a physical sense to the heuristic information of volcanologists in terms of entropy; (ii) it is fully transparent and 
can be established in advance of a crisis, making the results reproducible and revisable, providing a transparent audit trail 
that reduces the overall degree of subjectivity in communication with civil authorities; (iii) it can be embedded in a unified 
probabilistic framework, which provides an univocal taxonomy of different kinds of uncertainty affecting the forecast and 
handles these uncertainties in a formal way. Finally, for the sake of example, we apply the procedure to track the evolution 
of the 1982–1984 phase of unrest at Campi Flegrei.
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Introduction

Unlike some hazardous events that lack clear precursors, 
magmatic eruptions are usually preceded by multiple precur-
sors at the volcano over time scales of minutes to decades 
that may facilitate the forecast of the evolution of a volcanic 
system over a wide range of forecasting time windows. Such 
forecasting is an essential scientific tool to assist managers to 

set up rationale and defensible risk reduction actions such as 
the evacuation of endangered areas before an eruption (e.g., 
Marzocchi and Woo 2007; Woo 2008; Wild et al. 2022). 
Eruption forecasts on time windows of decades or more are 
mostly based on the history of the volcano, for instance, the 
past frequency of eruptions (e.g., Mendoza-Rosas and de la 
Cruz-Reyna 2008; Bebbington 2014; Bevilacqua et al. 2016; 
Selva et al. 2022); these probabilities can be successfully 
rescaled to even much shorter time windows if the volcano 
is in a quiet state. Conversely, during a phase of unrest, the 
monitoring of physical quantities related to the unrest pro-
cesses may become more informative than past frequency 
of eruptions (Sparks 2003; Marzocchi et al. 2008; Poland 
and Anderson 2020). In essence, the short-term forecasting 
of the evolution of a period of volcanic unrest is dominantly 
driven by the information provided by monitoring anom-
alies, i.e., by the occurrence of one or more concomitant 
monitoring signals outside the background range. If these 
anomalies indicate the imminent occurrence of an eruption, 
they are usually called “precursors.” The most common 
anomalies that lend information on the unrest are related 
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to seismic activity and ground deformation, but important 
information can also be obtained from geochemical or other 
kinds of geophysical and geochemical signals. To summa-
rize, lacking plausible and exhaustive physical models that 
unequivocally and deterministically track the evolution of 
the system, volcanologists must rely on the detection of 
anomalies to track volcanic unrest.

The most obvious approach to translate anomalies into 
probabilities of a specific event of interest (E hereafter) is 
the frequentist approach, i.e., calculating from the past data 
of the volcano or from analog volcanoes the rate of occur-
rence � of the target event E, the false alarm rate � , and the 
fraction of time occupied by predictions, ω (Marzocchi and 
Bebbington 2012). For example, in the most common event 
tree formulations, the event E can be (i) the presence of a 
magmatic intrusion driving the unrest (i.e., the presence of 
magma given an unrest); (ii) the occurrence of a magmatic 
eruption in a given time window � ; (iii) the occurrence of 
a magmatic eruption in � conditional upon the presence of 
a magmatic unrest; (iv) the occurrence of a phreatic explo-
sion in � ; (v) the termination of the unrest in � ; of course, 
other possible definitions of E are possible. Unfortunately, 
rich and complete unrest databases do not yet exist for most 
volcanoes, even though major efforts have been under devel-
opment for decades (Costa et al. 2019). The lack of such spe-
cific databases and the constant improvement in high quality 
monitoring procedures makes the use of expert judgment, to 
a certain extent, unavoidable.

The most common structured experts’ judgment exercises 
are based on eliciting directly the probability of one or more 
specific events (e.g., Neri et al. 2008; Aspinall and Cooke 
2013; Hincks et al. 2014), weighting the different experts 
based on their calibration against seed questions (Cooke 
1991). This approach is not particularly suitable to track 
the evolution of the volcanic system that is rapidly evolving 
with time (see Cronin 2008 for the Ruaumoko exercise at 
Auckland Volcanic Field). In these cases, it may be conveni-
ent to set up procedures (during a quiescent period) to iden-
tify monitoring anomalies that anticipate one specific event 
of interest, i.e., establish a direct link between anomalies 
and probability. Clearly, different experts’ judgment proce-
dures should lead to similar results if properly implemented, 
because all of them aim at describing what a volcanological 
community thinks about pre-eruptive processes (Lindsay 
et al. 2010).

Volcanologists already strongly rely on subjective inter-
pretation of monitoring anomalies, usually in terms of alert 
levels (see, for instance, the alert levels at Vesuvius: http:// 
www. prote zione civile. gov. it/ attiv ita- rischi/ risch io- vulca 
nico/ attiv ita/ piano- emerg enza- vesuv io# livel li_ aller ta, Rosi 
et al. 2022), but their definition and the practical attribution 
of alert levels during an unrest are vague and not clearly 
rooted in a scientific domain (Marzocchi et al. 2012, 2021a, 

b; Papale 2017). A more structured and transparent proba-
bilistic procedure is essential to quantitatively forecast the 
evolution of a volcanic unrest using experts’ judgment. This 
approach has significant advantages: the use of probabil-
ity facilitates the establishment of transparent and quan-
titative decision-making protocols, clarifies the roles and 
responsibilities of the different experts, and is a formidable 
educational and communication tools for both society and 
individual scientists.

To date, several efforts have been devoted to translating 
the observation of one or more precursors into a probabilistic 
assessment using directly formal expert judgment, such as 
in the setup of a Bayesian Belief Network (BBN; e.g., Aspi-
nall et al. 2003; Aspinall and Woo 2014; Hincks et al. 2014; 
Christophersen et al. 2018). In most applications of the 
Bayesian Event Tree scheme (BET; Marzocchi et al. 2004, 
2008), experts are elicited regarding which and what level 
of monitoring anomalies best characterize a specific pre-
eruptive phase (e.g., a magmatic intrusion or an impending 
magmatic eruption; Lindsay et al. 2010; Selva et al. 2012; 
Scott et al. 2022). Then, the observation of one or more of 
these anomalies are automatically transformed into prob-
abilities through a formalized subjective procedure (Selva 
et al. 2014), which is described by an exponential learning 
curve with which is associated an uncertainty that mimics 
the “confidence” on the probabilistic assessment (the mean-
ing of the word “confidence” here is taken from the IPCC 
report; IPCC 2013).

In this paper, we aim at improving, modifying, clarify-
ing, and generalizing the approach described above in sev-
eral ways. First, we root the procedure in an entropy-based 
framework, in which the observation of anomalies is infor-
mation about E that can be translated into entropy and then 
into probability of E. Second, we modify the functional form 
of the learning curve giving a more formal interpretation 
of the weight associated to each anomaly. Third, we embed 
the procedure in a formal unified probabilistic framework 
(Marzocchi and Jordan 2014) that provides a clear and 
unambiguous link between the probability distribution and 
the different kinds of uncertainty that affect the assessment. 
Notably, the proposed model is very general and it can be 
either implemented in a new revision of the BET method or 
it can be used as a stand-alone model to forecast eruptive 
activity, or to set up the conditional probabilities in other 
models like for example the BBN.

Monitoring observations are information

In a generic volcano monitoring system, volcanologists 
record a set of measurements 

{
a1, a2,… , aL

}
 at a generic 

time t, where L is the number of monitoring observations. 
The observations can be continuous or discrete variables (for 

http://www.protezionecivile.gov.it/attivita-rischi/rischio-vulcanico/attivita/piano-emergenza-vesuvio#livelli_allerta
http://www.protezionecivile.gov.it/attivita-rischi/rischio-vulcanico/attivita/piano-emergenza-vesuvio#livelli_allerta
http://www.protezionecivile.gov.it/attivita-rischi/rischio-vulcanico/attivita/piano-emergenza-vesuvio#livelli_allerta
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example,  CO2 flux and number of earthquakes, respectively), 
taken in different time windows, e.g., instantaneous meas-
ure (the magnitude of the earthquake just occurred), or the 
cumulative observation in a time window (e.g., the number 
of earthquakes in the last month).

The information provided by these measurements in 
terms of one specific event E is given by the fact that anoma-
lous values are, or are not, observed. This can be quantita-
tively defined through a degree of anomaly. For example, if 
the observed measurement ai is anomalous with respect to a 
background state of the volcano, it can indicate the presence 
of a magmatic intrusion, or the occurrence of an impend-
ing eruption. In mathematical terms, the set of observations {
a1, a2,… , aL

}
 is transformed into a set of N anomalies {

z1, z2,… , zN
}
 , where zi is a continuous number between 0 

and 1, which defines the degree of anomaly of each obser-
vation: 1 (0) if it is (not) anomalous, and the fraction in 
between represents an intermediate degree of anomaly, indi-
cating the existing uncertainty in defining the actual anom-
aly. We stress that N ≥ L (number of anomalies equal to or 
larger than the number of monitored parameters), as one 
anomaly can also be defined by the simultaneous observa-
tion of different parameters, or a single observation may be 
connected to different types of anomalies (e.g., number of 
seismic events and maximum magnitude per day); if some of 
the monitoring anomalies alone are not considered informa-
tive about E, they can be neglected by setting a weight equal 
to zero (see below).

Marzocchi et al. (2008) use a fuzzy logic scheme for map-
ping ai into zi . For i = 1,… , L , when an anomaly is charac-
terized by high values of the monitoring parameter.

or when it is characterized by low values

where amin and amax are, respectively, the minimum and max-
imum value of the monitoring variable which defines when 
the parameter is certainly anomalous or not (see Fig. 1).

In some cases, the information is given by the simulta-
neous observation of different parameters, i.e., an anomaly 
can be also defined as

where L < i ≤ N  and Ki are the size of a subset of single 
monitoring anomalies ( Ki ≤ L).

(1a)

zi =

⎧
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1
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Fig. 1  Variation of the degree 
of anomaly z as a function of 
the monitoring variable a : upper 
panel from Eq. (1a); lower panel 
from Eq. (1b)
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The monitoring information is then summarized by the 
cumulative degree of anomaly (hereafter anomaly score) 
observed at time t that is given by 

where �i is the un-normalized weight of the ith anomaly that 
will be described in subsection “Weighting the anomalies.”

Information, entropy, and probability

In the previous section, we condensed all the information 
regarding monitoring observations about E into one single 
value Z(t) that describes the anomaly score observed at t. 
Information can be related to the probability of E through 
the physical concept of entropy.

Although the entropy has been defined in different ways 
depending on the physical framework of interest, such as 
thermodynamics, information theory, and quantum mechan-
ics, all of these definitions can be reduced more or less 
directly to the following equation:

where H is the entropy of a system that is composed by a finite 
set of equally probable microstates that can be aggregated 
in a few macrostates, or outcomes of the process, M, each 
macrostate with probability Pi (Shannon 1948). In our specific 
case, we usually have two outcomes (M = 2) that we name 
“event” (E) and “no event” ( E ), each one characterized by a 
probability P1 = PE and P2 = 1 − PE , respectively.

In the information-theory view of entropy, entropy is igno-
rance, i.e., we are most unsure about the evolution of the sys-
tem when the two outcomes are equally likely (in our case, 
P1 = PE = 0.5 or maximum ignorance about the evolution of 
the system) that corresponds to the maximum of Eq. (3). The 
minimum of H (H = 0) is achieved when we are sure about the 
evolution of the system, either towards a “no event” ( PE = 0 ) 
or to an “event” ( PE = 1 ). When the two outcomes have a 
quite different societal impact, e.g., when E is a volcanic erup-
tion, it is convenient to consider the two outcomes of Eq. (3) 
separately. The term −ln(Pi) is called the entropy score (Daley 
and Vere-Jones 2004) and it is particularly important being a 
measure of the unpredictability of the particular outcome i; 
i.e., −ln(PE) is a measure of the unpredictability of E: when 
E is perfectly predictable, the entropy score −ln(PE) is zero, 
whereas when E has a very low probability the entropy score 
goes towards infinity. It is worth noting that the expected value 
of this score (e.g., the mean value) is given by Eq. (3) (assum-
ing that we are using the true probabilities).

According to the definition of the entropy score as a 
measure of the unpredictability of the outcome, we may 

(2)Z(t) =
∑N

i=1
�izi

(3)H = −
∑M

i=1
Piln

(
Pi

)

call the unpredictability of E , −ln
(
1 − PE

)
 , as the predict-

ability of E: the predictability goes towards infinity when PE 
is approaching to 1, i.e., we are becoming certain about E, 
and it goes towards zero when E becomes more and more 
unlikely. In our case, the predictability of E is a function of 
the observed anomalies in favor of E, whose information 
condensed in Z. Under this interpretation, the simplest way 
in which we may use the monitoring information to linearly 
modify the predictability of E as a function of Z is

Note that Eq. (4) is slightly different from the two-param-
eter equation used in Marzocchi et al. (2008; see Eq. (29) in 
their Appendix B); we will discuss the differences in sub-
section “Weighting the anomalies.” The parameter k sets a 
lower bound of predictability when the monitoring network 
shows no anomalies, that is, k accounts either for potential 
informative anomalies that the present monitoring system 
is not able to detect, and/or for the intrinsic unpredictability 
of the evolution of the system (even for a perfectly moni-
tored system), an unrest can start during the time window � . 
Hence, the parameter k can be set, at a first order, depending 
on the quality of the monitoring network; it is expected that 
the more developed the monitoring network, the smaller k.

From Eq. (4), we can establish how the probability PE 
evolves as a function of the anomalies detected.

Equation (5) looks like a simple learning curve with some 
additional interesting features. First, the relationship is mono-
tonically increasing so that the larger Z , the larger the probability 
PE . Second, the relationship implies that the largest increase in 
probability occurs when one of the monitoring variables shows 
some degree of anomaly; as more monitored variables become 
anomalous, the probability continues to rise, but more slowly, 
i.e., moving from zero to one anomaly is much more important 
than moving from three to four anomalies. Third, Eq. (5) states 
that the probability of E depends only on the anomaly score Z. 
Despite its simplicity, this approach is very flexible; for example, 
if E represents the occurrence of an eruption, the model can han-
dle quite different conceptual physical models, envisioning the 
existence of a single pre-eruptive pattern (a sort of silver bullet 
approach), or different pre-eruptive scenarios, before eruptions 
that can be tracked though Z(t).

Weighting the anomalies

The definition of the weights �i in Eq. (2) is of paramount 
importance to determine PE . In this subsection we discuss 
the implications of choosing different weighing schemes for 
the monitoring anomalies.

(4)−ln
(
1 − PE

)
= k + Z

(5)PE = 1 − exp[−(k + Z)] = 1 − a exp(−Z)
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Conceptually, the weights of Eq. (2), �i , have to be con-
strained considering their relative and absolute importance. 
Specifically, the ratio of two weights must reflect the relative 
importance of one anomaly with respect to the other; con-
versely, the absolute importance of one anomaly considers if 
its weight depends, or not, on how many monitoring param-
eters are measured (N in Eq. 2). To make this point clear, we 
consider two cases: in the first case (case A) �i is independent 
of how many other monitoring parameters, N, are considered; 
in the second case (case B), �i are normalized, i.e., 

∑
i�i = 1 , 

hence �i depends on N. In case A, we are assuming that each 
monitoring anomaly yields an absolute amount of information 
about E that does not depend on how many other anomalies are 
or are not observed. In case B, we are assuming that the absolute 
importance of one anomaly changes depending on how many 
other monitoring parameters are considered.

For example, let us assume that one anomaly i brings twice as 
much information as another anomaly j. In this case�i

�j

= 2 , but 
the absolute values of the weights are left unconstrained; they 
could be 10 and 5, 2 and 1, and 0.01 and 0.005. The absolute 
importance of each anomaly bounds them to specific values. For 
example, in case A, we may say that the full anomaly for param-
eter i ( zi = 1 ) implies that E is almost certain (say,PE = 0.95 ); 
hence, from Eq.  (5), we get�i = −[a + ln(0.05)] ≈ 3 − a , 
and�j = (3 − a)∕2 . In case B, the weight �i has to consider the 
fact that we are measuring N monitoring parameters and even the 
observation of no anomalies counts. Here, we use case A, i.e., 
each anomaly (composed by one parameter or by a combination 
of parameters) has its own physical meaning, regardless how 
many parameters are measured.

Notably, the defined approach is different to that dis-
cussed by Marzocchi et al. (2008), where the translation 
between Z and probability was made considering two param-
eters, a and b. To relate the two approaches, Eq. (2) can be 
re-written using normalized weights �̃i.

where b =
∑

i�i . This equation gives a clear interpretation of 
the parameter b used in Marzocchi et al. (2008): the chosen 
value of b represents the normalization factor (not necessar-
ily equal to 1) that was attributed to the weights �i.

A complete description of uncertainties 
in eruption probability: a taxonomy 
of uncertainties

Equation (5) provides the probability of E given a specific 
anomaly score Z. However, this probability does not con-
tain yet another important piece of information, i.e., how 
much the selected anomalies effectively represent a reliable 

(6)Z =
∑N

i=1
�izi = b

∑N

i=1
�̃izi

information for E and hence a reliable estimation of the 
probability calculated by Eq. (5). This can be measured by 
the degree of consensus among volcanologists on the identi-
fied anomalies. In the IPCC report (IPCC 2013), this addi-
tional piece of information is mimicked by the “confidence,” 
a qualitative quantity that describes the subjective reliability 
of the likelihood given by a model.

In an attempt to incorporate formally this additional level 
of uncertainty in eruption forecasting and volcanic hazard, 
Marzocchi et  al. (2004, 2008) describe the probability 
through a distribution instead of a single number. At that 
time, the proposed approach could be considered purely 
heuristic because it does not conform with standard 
frequentist (e.g., Hacking 1965) or subjective (e.g., Lindley 
2000) probabilistic frameworks, for which the probability 
is just one number. More recently, Marzocchi et al. (2021a, 
b) have introduced a formal unified probabilistic framework 
for eruption forecasting based on Marzocchi and Jordan 
(2014). This framework allows probability to be described 
by a distribution. In this section, we do not describe 
this framework in detail (that is deeply described in the 
references reported above), but we show how this framework 
can be applied to describe the uncertainty on the probability 
given by Eq. (5).

The unified probabilistic framework is rooted in the 
definition of an experimental concept, which allows us 
to define an unambiguous hierarchy of uncertainties. Let 
us assume that we collect the sequence of observations 
when the anomaly score is equal to Z . The sequence can 
be collected at regular time windows or can be any ordinal 
sequence; in any case, it will be represented as a sequence 
of bins where the anomaly score is equal to Z. Then, we 
define the binary variable ei : ei = 0 if E does not occur in 
the ith bin, and ei = 1 if E occurs. According to the de Finetti 
theorem (1974), if we can assume that the sequence ei is 
stochastically exchangeable (Draper et al. 1993) and the 
sequence must have a well-defined, but unknown, frequency 
of occurrence of the event E, �̂(given an anomaly score 
Z ). In practice, we may consider the probability of E as a 
frequency (unknown) of a well-defined experimental concept 
reflecting the natural (also named aleatory) variability. The 
uncertainty on the estimation of such an unknown frequency 
may be described by a distribution (the so-called epistemic 
uncertainty) through the subjectivist mathematical apparatus 
typical of Bayesian methods, which is particularly suitable to 
handle uncertainties. The use of the frequentist interpretation 
of probability with the subjective mathematical apparatus is 
the main reason for use of the term “unified” to characterize 
the probabilistic framework described in this paper.

From a more physical point of view, the application 
of this framework to the development described in the 
previous sections comes with the following assumptions: 
(i) all information regarding E at the time t is summarized 
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by the anomaly score Z(t) , (ii) future observations collected 
in forecasting time windows with equal anomaly score Z are 
exchangeable, i.e., if the observations are shuffled, we are 
not losing any information about the process.

In this framework, Eq. (5) can be rewritten as

where �b is our best estimation of the probability PE , 
i.e., the unknown frequency of the experimental concept 
described above. The uncertainty over this unknown fre-
quency (epistemic uncertainty) can be described assuming 
that � ∼ Beta(�, �) , whose �b is the expectation value (the 
average), 𝜙b ≡< 𝜙 > . This distribution is named Extended 
Experts Distribution (EED) by Marzocchi and Jordan 
(2014).

In some cases, such as in hazard analysis, this beta 
distribution can be obtained by fitting N estimations given 
by different models {�i, �̃i} , where �̃i is the normalized 
weight of the ith forecast. In our case, we do not have a 
set of estimations, but we get the average < 𝜙 >≡ 𝜙b 
of the distribution using Eq.  (7); the variance of � can 
be conveniently expressed in terms of the equivalent 
number of data Λ , as defined in Eq. (11) in Appendix A of 
Marzocchi et al. (2008). The maximum possible variance is 
set when Λ = 1 , which means that the information equals 
the information of one single datum. Of course, we can 
use Λ > 1 , with increasing values of Λ as the confidence 
that volcanologists have in the definition of the anomalies. 
In practice, this value can be defined through an expert 
elicitation session. Having set the average and variance 
(standard deviation) of � , we can get the parameters of the 
prior distribution Beta(�, �) (Marzocchi et al. 2021a, b).

It is worth noting that, in contrast to the subjectivist 
framework, for which all models are “wrong” and 
model validation is pointless (Lindley 2000), the unified 
framework allows model validation. Specifically, we can 
define an ontological null hypothesis, which states that 
the true aleatory representation of future occurrence of 
natural events—the data generating process—mimics a 
sample from the EED that describes the model’s epistemic 
uncertainty. According to the ontological null hypothesis, 
the true unknown frequency �̂  of the experimental concept 
defined by a well-defined anomaly score Z cannot be 
distinguished from a realization of the EED, i.e., �̂ ∼ p(�) . 
If the data are inconsistent with the EED, the ontological 
null hypothesis can be rejected, which identifies the 
existence of an ontological error (Marzocchi and Jordan 
2014). In other words, the “known unknowns” (epistemic 
uncertainty) do not necessarily completely characterize 
the uncertainties, presumably due to effects not captured 
by the EED—“unknown unknowns”—associated with 
ontological errors. An interesting implicit consequence of 

(7)�b = 1 − exp[−(k + Z)] = 1 − a exp(−Z)

the unified probabilistic framework is that it challenges 
the false syllogism adopted in many critics to the use of 
experts’ judgment (e.g., Stark 2022): science is objective, 
and volcanic analysis relies on subjective experts’ judgment; 
hence, volcanic hazard analysis is not science. More details 
on this topic can be found in Marzocchi and Jordan (2014) 
and Marzocchi et al. (2021a, b).

Tracking the probability of magmatic unrest 
during the 1982–1984 phase at Campi 
Flegrei

The unrest episode in 1982–1984 has been the most impor-
tant event in that area since the last eruption in 1538 at 
Monte Nuovo, with a maximum vertical displacement of 
1.79 m, and the recording of about 5500 felt seismic events 
(Orsi et al. 1999). A full probabilistic forecast for such an 
unrest episode has been reported by Selva et al. (2012) using 
the most updated BET model for the volcano and the avail-
able monitoring observations. A forecasting time window 
of � = 1 month has been used. Here, we show the practical 
implementation of the method described in this paper to one 
of the BET nodes, i.e., node 2, dedicated to the quantifica-
tion of the time-dependent probability of a magmatic unrest 
during a phase of unrest (where the probability at node 1 of 
BET is equal to 1).

For the sake of example, here we use the monitoring 
anomalies identified in the fifth experts’ elicitation car-
ried out for the Campi Flegrei, which has been thoroughly 
described in Selva et al. (2012). The monitoring parameters 
and thresholds for the detection of a magmatic unrest are 
reported in Table 1, reproduced from Selva et al. (2012). In 
this example, we calculate the probabilities through Eq. (7) 
using a = 0.9. This means that if we do not observe any 
anomaly in the monitored parameters, then �b = 0.1 (see 
Eq. 7).

Figure 2 shows the month-by-month variation of the Z 
parameter (Eq. 2) and the consequent variation of the prob-
ability of magmatic unrest, �b (Eq. 7), from the start of the 
unrest (August 1982) until its end (December 1984). We can 
see that the highest values of the probability of magmatic 
unrest are reached between the months of June and Septem-
ber 1983 due to the opening of a fracture near the Solfatara 
volcano and in particular to the occurrence of deep seismic 
events on September 10, 1983.

Figure 3 shows the Beta distributions of the probability 
calculated in September 1983 using �b = 0.76 as the mean 
value for that month and different equivalent numbers of 
data Λ to show the effect of the epistemic uncertainty on 
the shape of the distribution. The figure shows that in Sep-
tember 1983 the monthly probability of a magmatic unrest 
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ranged from 0.58 (10th percentile) to 0.91 (90th percentile) 
for Λ = 10 (black curve). Figure 4 shows the time variation 
of the 10th, 50th, and 90th percentiles of each distribution 
obtained during the examined time for different values of Λ . 
Figures 3 and 4 show that an increase in confidence on the 
probabilistic assessment (higher Λ ) implies a reduction of 
the epistemic uncertainty, as expected.

Although this specific tutorial example concerns Campi 
Flegrei, the procedure may be applied to any volcano. 

Application of the procedure requires a specific elicitation 
to identify the anomalies for the particular volcano and the 
change of the parameter a (or k) that characterizes the spe-
cific level of monitoring of the volcano. For example, if we 
consider a volcano that is less well-monitored than Campi 
Flegrei, we should consider a smaller value of a (a higher 
value of k), representing the possibility that some signals of 
magmatic intrusion in the forecasting time window � will 
not be detected by the monitoring system.

Table 1  List of parameters to assess the probability of magmatic 
unrest (Selva et al. 2012). With the term “inertia,” we mean the time 
during which an anomaly is considered active after its detection. The 
parameters in bold are the ones that we consider in this tutorial appli-
cation, because some monitoring observations were not available at 
that time. Owing to some lack of information about earthquake mag-

nitude of each event, here we assume that all magnitudes were above 
the M = 0.8 threshold. Asterisk ( ∗) is the number of earthquakes 
divided by the number of days from the start of the counting. This 
choice makes the inertia proportional to the number of earthquakes 
recorded (and to the total energy emitted); that is, the higher the num-
ber of earthquakes, the longer the inertia

Parameter Inertia Units Threshold Weight

1) # deep VT (> 3.5 km, M > 0.8) ( ∗) ev/day  > 2–20 0.90
2) # deep LP (> 2.0 km) ( ∗) ev/month  > 3–20 0.50
3) # VLP/ULP ( ∗) ev/month  > 1–5 1
4) Presence of tremor Last month - Yes/no 1
5) Presence of deep tremor (> 3.5 km) Last month - Yes/no 1
6) Uplift Cum. last 3 months cm  > 5–15 1
7) New fractures Last 3 months - Yes/no 0.20
8) Macroscopic variation on the deformation pattern 

(tens of m)
Last 3 months - Yes/no 1

9) Presence of acid gases (HF, HCl,  SO2) Last week - Yes/no 1
10) Variation in magmatic component Last month - Yes/no 0.10

Fig. 2  Variation of Z (left 
panel) and variation of the 
probability of magmatic unrest 
�
b
 during the examined period 

(right panel)
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Conclusions

To date, a satisfactory and complete physical knowledge of 
pre-eruptive processes is not available. This lack does not 
mean that volcanologists know nothing about pre-eruptive 
phenomena; volcanological knowledge is prevalently heuris-
tic or based on a few conceptual models that remain mostly 
untested and forecasts are mainly based on the interpretation 
of precursory anomalies, where available. In this paper, we 
have formalized such knowledge in terms of information, 
which is overall summarized by the score anomaly Z. Then, 
we have developed an entropy-based strategy to move from 

information (detection of anomalies) to entropy and eventually 
to probability of the event of interest.

This methodology

 i. Is transparent and describes how we obtain probabili-
ties from volcanological information, which is particu-
larly important for the reproducibility of the results and 
to parametrize subjective expertise in a way that future 
generations can understand what we think we know.

 ii. Provides forecasts in almost real-time. This is particu-
larly appealing during a rapidly escalating volcanic 
unrest and it is a distinctive feature with respect to 
more classical experts’ judgment procedures that elici-
tate directly the probabilities.

 iii. Is the simplest way to translate information into erup-
tion probabilities. The largest step in probability is 
associated with the first observed anomaly. A generic 
further probability step associated to ith anomaly tends 
to decrease when i increases; in other words, the largest 
step in probability is moving from a score anomaly Z 
from 0 to 1, and it decreases for increasing Z.

 iv. Is based on an unambiguous taxonomy of uncertain-
ties, where aleatory variability, epistemic uncertainty, 
and ontological error are clearly defined and formally 
described. This unambiguous taxonomy of uncer-
tainties allows, at least in principle, the validation of 
the forecasts. Worthy of note, the quantification and 
separation of uncertainties of different kinds allows 
quantification of the confidence associated with the 
probabilistic assessment.

 v. Is versatile and it can be applied to any kind of volcano 
or event we are interested in, e.g., the presence of magma 
or not in an unrest episode, the location of vent open-
ing, the occurrence of an eruption in a forecasting time 
window. The method can be used as a stand-alone model 
to provide eruption forecasting given a set of monitoring 
anomalies, or to set up the conditional probabilities that 
are necessary to implement models based on the Bayesian 
Event Tree or Bayesian Belief Network.
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Fig. 3  Probability density functions of magmatic unrest for the month 
of September 1983, calculated using three different values of Λ . An 
increase of the equivalent number of data corresponds to a narrowing 
of the distribution, i.e., to a decrease of the epistemic uncertainty

Fig. 4  Variation of the median (solid lines) and of the 10th and 90th 
percentiles (dashed lines) of the probability distributions of magmatic 
unrest during the episode of unrest for three different values of Λ. As 
for Fig. 3, a larger Λ implies a narrower 80% confidence interval
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