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Abstract: Previous studies have shown that solar wind, a plasma medium with turbulent dynamics,
exhibits anomalous scaling features, i.e., intermittency, in the inertial domain. This intermittent nature
has primarily been investigated through the study of the scaling features of the structure functions
of single quantities. We use a novel approach based on joint multifractal analysis in this study to
simultaneously investigate the scaling characteristics of both the magnetic field and the plasma
velocity in solar wind turbulence. Specifically, we focus on the joint multifractal behavior of magnetic
and velocity field fluctuations in both fast and slow solar wind streams observed by the ESA-Ulysses
satellite, with the goal of identifying any differences in their joint multifractal characteristics.
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1. Introduction

Space plasmas display non-trivial, non-linear, and complex dynamics, which take
the form of multiscale features, chaos, and turbulence in many astrophysical and space
environments. Understanding and studying this emergent complexity necessitate the
application of methods and approaches developed in other research areas, especially those
derived from dynamical systems physics.

In this sense, the heliosphere, which includes solar wind and planetary environments,
provides a natural laboratory for studying how the complexity and complex dynamical
features emerge in space plasmas. Within these plasma environments, phenomena like
turbulence and chaos play critical roles in plasma diffusion, transport, energization, and
particle acceleration. The investigation of turbulence in space plasma media, especially in
solar wind, has a rich history that dates back to the late 1960s when Coleman [1] made sig-
nificant strides in this field. Utilizing magnetic and plasma observations from the Mariner
2 spacecraft, he presented the first evidence of the turbulence spectrum of solar wind
fluctuations spanning over several frequency decades. This groundbreaking discovery
laid the foundation for extensive research aimed at gaining a deeper understanding of
the turbulent nature and dynamics of solar wind. Furthermore, these findings are con-
sistent with the inherent characteristics of solar wind as a plasma with remarkably low
viscosity and resistivity, resulting in high kinetic and magnetic Reynolds numbers in the
magnetohydrodynamic (MHD) equations. These high Reynolds numbers indicate the
dominance of non-linear terms over dissipative terms, implying that significant turbulent
effects are likely in solar wind. Over the years, researchers have made significant progress
in understanding the turbulent nature of solar wind [2,3]. However, in the 1970s and
1980s, when in situ observations were mainly carried out in the ecliptic plane, a significant
advance in our comprehension of solar wind turbulence took place. During this period,
spacecraft observations were limited to a narrow latitudinal range around the solar equa-
tor, offering only a bidimensional (2D) perspective of the heliosphere. Fortunately, this
limitation was overcome in the 1990s with the launch of the Ulysses spacecraft. Ulysses
provided a unique opportunity to extend investigations to the high-latitude regions of the
heliosphere, providing crucial insights into how turbulence evolves in the polar regions.
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Researchers have primarily focused on studying the spectral and scaling features of solar
wind turbulence, examining how they evolve with the radial distance from the Sun within
the heliosphere, and comparing these observed features to theoretical predictions from
magnetohydrodynamic (MHD) approaches [3,4].

It is now well established in the context of solar wind research that turbulence in
solar wind exhibits the property of intermittency. Intermittency is a common feature
observed in many complex physical systems in nature, indicating that fluctuations are
not strictly self-similar and that energy is not distributed uniformly in space across all
scales. This phenomenon challenges the classical Kolmogorov 5/3 law of turbulence,
which assumes a globally scale-invariant and homogeneous behavior (Kolmogorov, 1941).
However, Obukhov (1962) later proposed that the energy transfer rate from larger to
smaller structures, initially assumed to be scale-independent by Kolmogorov, can actually
fluctuate over space and time. This variability in energy dissipation and transfer rates
forms the foundation of intermittency. In the case of solar wind turbulence, intermittency
is manifested through fluctuations of energy at different scales. Early investigations into
solar wind’s fluctuations date back to the 1990s, primarily focusing on investigating the
anomalous scaling features of structure functions in the inertial range [5–9]. These studies,
in particular, revealed the presence of anomalous scaling laws for structure functions
of solar wind velocity fluctuations at various scales, encompassing both the inertial and
injection ranges of scales. Additionally, studies explored the multifractal character of
measures related to magnetic and velocity field fluctuations [10,11], as well as the features
of probability density functions (PDFs) of magnetic and velocity field increments in the
inertial range [12,13]. Intermittency in solar wind at fluid MHD scales has been attributed
primarily to coherent structures of solar or local origin that are advected by the wind. These
structures, which have been identified as primarily parallel shocks, slow mode shocks, or
tangential discontinuities/current sheets, appear to play an important role in the generation
of intermittent features in solar wind [14].

All previous studies have focused on analyzing single quantities (velocity field, mag-
netic field and so on), without considering the potential correlations between the singular
character of different quantities. Investigating the cross-singularity spectra associated with
two distinct measurable quantities using joint multifractal analysis introduced by Meneveau
et al. [15] could be a promising step forward in characterizing the intermittent nature of
solar wind turbulence.

Indeed, this method extends the traditional multifractal formalism to multiple vari-
ables, allowing for the investigation of simultaneous cascading processes [15,16].

In this study, we utilize joint multifractal analysis to examine the magnetic and velocity
fields in two distinct solar wind conditions: high-latitude fast solar wind and low-latitude
slow solar wind, as observed by the Ulysses mission. Indeed, one of the most significant
characteristics of solar wind is its bimodal nature, as it can be classified into two main types:
fast and slow solar wind [3]. These two types of solar wind exhibit distinct properties and
have different origins. Fast solar wind is typically observed at high latitudes of the Sun,
near its poles. It originates from coronal holes, which are regions in the Sun’s corona with
lower magnetic field intensity. These coronal holes allow high-speed plasma streams to
escape more easily into space. Fast solar wind is characterized by higher speeds, reaching
up to 700 km per second at 1 astronomical unit (AU) from the Sun, and lower densities
compared to slow solar wind. On the other hand, slow solar wind is mostly observed at
low latitudes of the Sun, near the equator. It comes from regions with closed magnetic field
lines, known as the streamer belt. Slow solar wind flows along these magnetic field lines
and is released into the interplanetary space. When compared to fast solar wind, it has
lower speeds, around 400 km per second at 1 AU, and higher densities.

The goal of this study is to investigate change in the correlation between the singularity
spectra of these two solar wind conditions within the MHD inertial range.
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2. Method: Joint Multifractal Analysis

The multifractal formalism is undoubtedly one of the most powerful statistical tech-
niques for investigating the scaling and self-similarity properties of mathematical and
physical objects and signals. In detail, a multifractal measure can be conceptualized from
a broad mathematical perspective as a fractal measure defined on a fractal domain or set,
where multifractality arises due to the interplay between two families of singularities. The
aim of the multifractal formalism is to describe the self-similarity of a fractal object by using
a hierarchy of generalized dimensions, denoted as Dq or Renyi’s dimensions. Additionally, it
involves the multifractal singularity spectrum, f (α), which characterizes the dimensions
associated with the set of singularities of strength α [17].

Joint multifractal analysis represents a natural multidimensional extension of the
multifractal formalism. It was originally introduced by Meneveau et al. [15] in the context
of high-Reynolds-number turbulence to quantify the correlation between intermittent fields,
specifically, the coexisting distributions of such fields. Over time, this method has found
applications in various research fields, including financial markets’ studies, investigations
related to rainfall, agronomy studies, and more [16,18–20]. The versatility of this approach
has enabled its application in diverse domains, making it a valuable tool for exploring
correlations in intermittent phenomena.

Despite the original method proposed by Meneveau et al. [15], which was based on
the traditional partition functions approach, alternative methods have been developed over
time to explore the joint multifractality of coupled measures. Some of these alternative
methods include joint structure–function analysis, multifractal wavelet coherence analysis,
and others (see Ref. Jiang et al. [16] for more details). In this study, we focus on the
traditional method proposed by Meneveau et al. [15], which is based on partition function
analysis. This method assumes that the measures defined on the velocity and magnetic
field coexist in the same sample space domain.

Consider two distinct experimental measures, φ1 and φ2, defined over the same
domain S . Let si(`) be a non-overlapping partition of order N of the domain S , consisting
of elementary boxes of dimension `, i.e., ∑N

i=1 si(`) ≡ S . For each box, consider the fractions
εi,1(`) and εi,2(`) of the measures associated with each box, and define two new measures
µi,j(p, `) (where j = 1, 2) of moment order p as follows:

µi,j(p, `) =
[
εi,j(`)

]p, ∀j = 1 or 2. (1)

In the case of the standard multifractal analysis, we now compute the scaling features
of the partition function associated with the defined measure, i.e.,

χ(`, p) = ∑
i

µi(p, `) = ∑
i
[εi(`)]

p ' `τ(p), (2)

where τ(p) is the scaling exponent associated with the moment order p. From this equation,
by simply applying a Legendre transform, it is possible to compute the corresponding
multifractal spectrum f (α), i.e.,

f (α) = pα(p)− τ(p), (3)

where α(p) = dτ(p)/dp.
Analogously, in the case of the joint multifractal analysis, it is possible to introduce a

joint-partition function χ(`; p, q) as

χ(`; p, q) = ∑
i

µi,1(p, `)µi,2(q, `) ≡∑
i
[εi,1(`)]

p[εi,2(`)]
q. (4)

In the case of scaling features, the partition function χ(`; p, q) is expected to scale with
the box dimension ` according to a power law,

χ(`; p, q) ∼ `τ(q,p), (5)
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where τ(q, p) is a joint-scaling exponent analogous to the exponent τ(q) of single multifrac-
tal analysis.

The knowledge of the joint-scaling exponent τ(q, p) allows computing the joint-
singularity spectrum f (α, α′) using a double Legendre transform that links the triads (τ, p, q)
with the corresponding ( f , α, α′), i.e.,

α(q, p) =
∂

∂q
τ(q, p), (6)

α′(q, p) =
∂

∂p
τ(q, p), (7)

f (α, α′) = qα(q, p) + pα′(q, p)− τ(q, p). (8)

It is important to remark that this kind of analysis is complementary to the usual
structure–function analysis, being a link between the observed joint-scaling exponent
τ(q, p) and the structure–function ones. For an extended discussion on this point, we invite
the readers to refer to Meneveau et al. [15] and to Benzi and Toschi [21].

3. Data

We use data from the ESA-Ulysses mission in this study, focusing on magnetic and
velocity field measurements in the heliosphere. More specifically, we look at two distinct
time periods: a high-latitude fast solar wind period from 1 July 1995 to 31 December 1995,
and a low-latitude slow solar wind period from 1 September 1997 to 28 February 1998.
These time periods have also been previously examined in some other works, including
those by Bavassano et al. [22,23], and Consolini et al. [24]. Data come from the NASA-
CDAWeb service of the NSSDC Data Center (accessed on 3 March 2023) and refer to
1 min magnetic field measurements and 4 ÷ 8 min plasma velocity measurements. Table 1
provides the key information for the two selected time periods including also the Alfvén

velocity cA and the fast magnetosonic velocity, cMS =
√

c2
A + c2

s , where cs is the sound
velocity, and the ion plasma beta β.

Table 1. Average features of the two selected time periods. Latitude is in the Solar Ecliptic Coordinate
System. # 1 and # 2 refer to the fast period and the slow period, respectively. 〈cA〉 and 〈cMS〉 are the
average Alfvén and fast magnetosonic velocities, respectively.

R Lat[SE] 〈v〉 〈B〉 nRMS 〈cA〉 〈cMS〉 〈β〉
(au) (deg) (km/s) (nT) (cm−3) (km/s) (km/s)

# 1 [2.44± 0.37] [72± 6] [780± 20] [1.21± 0.35] 0.44 40 50 1.5
# 2 [5.34± 0.05] [7.8± 2.6] [368± 23] [0.68± 0.39] 0.39 24 31 0.5

The plots in Figure 1 show the radial velocity vR for the two time periods chosen,
indicating that they correspond to quasi-stationary solar wind conditions. The data are
represented in the radial–transverse–normal (RTN) reference frame, with a resolution of
4 min (data relative to magnetic field measurements have been downsampled, whereas data
relative to velocity field measurements have been interpolated to achieve a resolution of
4 min). The datasets contain over 64,000 data points, allowing us to investigate moments in
the range q ∈ [−4, 4]. For our analysis, we focus on the two components perpendicular to
the radial direction, namely the transverse (T) and normal (N) components.
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Figure 1. The radial velocity behavior of the two selected time periods.

Figure 2 illustrates the power spectral densities of the magnetic and velocity fields
along the three directions during the two selected time periods. In more detail, the top
section of the figure exhibits two panels, displaying the power spectral densities obtained
for the magnetic field (left panel) and the velocity field (right panel) during the fast solar
wind period. Conversely, the bottom panels pertain to the analysis conducted for the
slow solar wind period, with the left panels representing the power spectral densities
of the magnetic field and the right panels depicting those of the velocity field. All the
spectral densities exhibit a quasi −5/3 spectral interval, which is consistent with previous
studies [see Ref.[3]]. However, the range of scales where the −5/3 spectral interval is
present is wider in the slow solar wind period than in the fast solar wind period. This
difference might be attributed to a distinct turbulence aging between the two solar wind
types, indicating that turbulence is more developed in the slow solar wind period than in
the fast one. Another possibility is that they originate from different solar regions, namely
coronal holes and closed magnetic field regions. We would like to emphasize that to make
a meaningful comparison with theoretical predictions, it is necessary to consider spectra in
the Fourier k−space. However, since solar wind is supersonic and super-Alfvénic, we can
reasonably assume that Taylor’s hypothesis holds, i.e., f = vswk, where vsw is solar wind
velocity. Another crucial aspect that becomes apparent from the spectral characteristics is
the sudden decrease in power at frequencies greater than 10−3 Hz in the velocity spectra.
This decline might be attributed to instrumental limitations. As a result, we focus our joint
multifractal analysis on temporal scales longer than 10 min. Moreover, in accordance with
Elsasser’s equation for MHD, it is preferable to use the magnetic field (b) in Alfvén units
rather than directly considering it in nanotesla (nT), i.e.,

b → bA =
b√
4πρ

, (9)

where ρ is the plasma density. Here, we perform the analysis of the joint multifractal
features by using as dynamical variables the magnetic field in Alfvén units and the
velocity field.
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Figure 2. The power spectral densities (PSDs) of the magnetic and velocity fields for the selected time
periods of fast and slow solar wind. The dashed lines represent the typical K41 turbulence spectra
∼ k−5/3, assuming Taylor’s hypothesis is valid.

4. Analysis and Results

The first step necessary to perform joint multifractal analysis requires defining a proper
set of measures µi over the data set. Among the different measures that can be used to
investigate multifractality over data samples, we opt for a measure related to the energy
dissipation (transfer) rate ε in fluid turbulence, similar to the one introduced by Marsch
et al. [11]. In detail, we define the following measures,

µb(t) =
[
δbA

R,τ(t)
]2

+
[
δbA

T,τ(t)
]2

+
[
δbA

N,τ(t)
]2

, (10)

µv(t) = [δvR,τ(t)]
2 + [δvT,τ(t)]

2 + [δvN,τ(t)]
2, (11)

which are related to the total kinetic and magnetic energy dissipation rates, respectively. The
expression δx(t) = x(t+ τ)− x(t), with τ = 4 minutes as the data resolution, represents the
difference in the values of either the magnetic field or the velocity field at two time points.
The term “x” represents the components of the magnetic or velocity field measured along
the transverse (T), normal (N), and radial (R) directions. These measures are subsequently
renormalized so that ∫

Ωt
µi(t)dt = 1, (12)

where Ωt is the selected time interval. Figure 3 displays the renormalized measures
obtained by applying Equations (10) and (11) for fast and slow solar wind, respectively.
Upon initial examination, it is evident that the measure µb,v of the slow solar wind exhibits
a more intermittent character.



Fractal Fract. 2023, 7, 748 7 of 13

µ v
(t)

t

Fast SW

µ b
(t)

t

Fast SW

µ v
(t)

t

Slow SW

µ b
(t)

t

Slow SW

Figure 3. The renormalized measures as obtained by applying Equations (10) and (11) for fast and
slow solar wind, respectively.

After computing the singularity spectrum, f (α), of the individual measures based
on the definitions provided in Section 2, we present the results for the magnetic field and
velocity of the fast and slow solar wind in Figure 4. It can be seen that the magnetic field
measure for both fast and slow solar wind has a wider singularity spectrum than the velocity
measure, with the slow solar wind having a more pronounced singularity spectrum.
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 v

Figure 4. The multifractal singularity spectra f (α) of the magnetic and velocity field measures for the
fast and slow solar wind.

Following the approach proposed by Meneveau et al. [15], we utilize the multifractal
singularity spectrum of the individual measures to calculate the expected joint multifractal
singularity spectrum, f (αv, αb), assuming independent measure distributions. This is given
by the following expression,

f (αv, αb) = f (αv) + f (αb)− d, (13)

where d is the dimension of the domain over which is defined the measures (here, d = 1).
Figure 5 shows the expected joint-singularity spectra of independent measure

distributions.
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Figure 5. The joint multifractal singularity spectra f (αv, αb) of the magnetic and velocity field
measures expected in the case of independent measure distributions (see Equation (13)) for the fast
and slow solar wind, respectively.

Let us now compute the joint-partition function χ(δt; q, p) at different timescales
δt and as a function of the moment orders (q, p) for both the fast and slow solar wind
intervals. In both cases, we find a well-defined scaling interval for the joint-partition
function in the range δt ≥ 10 min, which corresponds to exploring spatial scales of
` ≥ 5 · 105 km and 2 · 105 km for the fast and slow solar wind, respectively. We have
explored values of q and p in the range of (−4, 4) with a resolution of 0.1. Figure 6 presents
an example of the behavior of the joint-partition function χ(δt; q, p) for different combina-
tions of (q, p) during the fast solar wind period.

200
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0
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-100

ln
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t; 
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 p

)

6543210

ln (δt/δt0)
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 (q, p) = (4,  -4)
 (q, p) = (4,  4)
 (q, p) = (0,  4)

Figure 6. The behavior of the joint-partition function χ(δt; q, p) for different values of (q, p) in the
case of the fast solar wind period.

Using Equation (5), we computed the joint-scaling exponents, τ(q, p), as a function
of the moments (q, p). The results are depicted in Figure 7 for both intervals. Noticeable
differences are observed among the joint-scaling exponents, τ(q, p), of the two periods. In
particular, τ(q, p) for the fast solar wind covers a wide range of values.

Using the double Legendre transforms in Equations (6)–(8), we evaluate the corre-
sponding joint-singularity spectrum f (αv, αb). The results are presented in Figure 8.
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Figure 7. The behavior of the joint-partition exponent τ(q, p) in the case of the fast and slow solar
wind periods as a function of the moments (q, p). The suffixes v and b indicate to which quantity the
moment-order refers.
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Figure 8. The behavior of the joint-singularity spectrum f (αv, αb) in the case of the fast and slow
solar wind periods. The light-gray line is the bisector line.

The two joint-singularity spectra have distinct features. Both spectra are stretched
along the bisector line, suggesting that the singularities of the two chosen quantities have
some correlation. This correlation becomes clearer when the joint-singularity spectra
obtained from the analysis are compared to those obtained from the case of independent
distributions (see Figure 5). However, the observed correlation is more pronounced in the
case of the fast solar wind, where the core of the joint-singularity spectrum (the yellow area
in Figure 8) appears symmetric with respect to the bisector line. However, despite having a
similar shape to the fast solar wind spectrum, the joint-singularity spectrum for the slow
solar wind appears to be less symmetric with respect to the bisector line. We performed an
additional test to confirm the existence of a significant correlation in the joint-singularity
spectra. To change the positions of the singularities, we shuffled the time series of the
two measures associated with the magnetic and velocity fields. Following that, we ran
the joint multifractal analysis on the shuffled measures. Figure 9 presents the results of
this test for the fast solar wind case. The most notable finding is that the joint-singularity
spectrum f (αv, αb) becomes fully circular, losing its elongated character. This significant
shape change suggests that magnetic and velocity field singularities occur in a manner that
is clearly correlated. The slow solar wind case also yielded a similar result.
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Figure 9. The behavior of the joint-partition function exponents τ(qv, pb) and the joint-singularity
spectrum f (αv, αb) as obtained by shuffling the magnetic and velocity field measures for the fast
solar wind.

5. Discussion and Conclusions

The analysis of the joint multifractal features of the magnetic and velocity fields in
turbulent solar wind reveals a significant degree of correlation between the multifractal
characteristics of the two quantities. The correlation degree can be estimated by computing
the corresponding correlation coefficient, which, according to Meneveau et al. [15], is
defined as follows:

r =
−∂2

q,pτ√
∂2

qτ ∂2
pτ

∣∣∣∣∣
q=p=0

=
−∂2

p,qτ√
∂2

qτ ∂2
pτ

∣∣∣∣∣
q=p=0

. (14)

In our case, the correlation coefficients for fast and slow solar wind are of r = 0.53 and
r = 0.60. These correlation values are considered very high according to the conventional
classification, where r = 0.5 denotes a strong correlation.

Examining the two joint multifractal spectra in Figure 8 reveals that the slow solar
wind has a broader range of singularities. Furthermore, the significant amplitude along
the αb direction suggests that the magnetic field is more intermittent than the velocity field.
When the slow solar wind case is compared to the fast solar wind case, it is clear that the
magnetic field in the slow solar wind is more intermittent. This observation is supported by
the values of the individual intermittency exponents of the two measures [15], denoted as:

µb = − ∂2

∂q2 τ(q, p)

∣∣∣∣∣
q=p=0

, (15)

µv = − ∂2

∂p2 τ(q, p)

∣∣∣∣∣
q=p=0

. (16)

These values are reported in Table 2. While the fast solar wind shows nearly identical
intermittent exponents for both individual measures, the slow solar wind exhibits differ-
ent values, and notably, the intermittent exponent associated with the magnetic field is
significantly larger than the others.

Table 2. Values of the individual intermittency exponents of the two measures (see Equations (15)
and (16)).

Period µb µv

# 1: fast 0.158 0.160
# 2: slow 0.235 0.143
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A possible explanation for the observed features could be the different degree of
Alfvénicity between fast and slow solar wind. In the case of Alfvénic turbulence, a high
degree of correlation is expected between magnetic and velocity field fluctuations [3]. To in-
vestigate this further, we can compute the normalized cross-helicity σC and the normalized
residual energy σR as follows:

σC =
2〈v · b〉
〈v2〉+ 〈b2〉 (17)

σR =
〈v2〉 − 〈b2〉
〈v2〉+ 〈b2〉 (18)

where 〈. . .〉 represents the time average over a certain interval T [22–24]. These two quanti-
ties provide information about the different roles of magnetic and kinetic energies and the
relations between field fluctuations. Specifically, σC measures the energy balance between
outward- and inward-propagating Alfvénic fluctuations, while σR quantifies the balance
between kinetic and magnetic energy. Both quantities can vary within the range of [−1, +1].

Figure 10 displays the joint histogram of σC and σR computed at a 1 h scale. The
distributions exhibit a significant difference. Specifically, the fast solar wind shows a
more Alfvénic nature, whereas the slow solar wind appears to be characterized by non-
Alfvénic fluctuations. This result supports the existence of magnetic field structures (see,
e.g., Refs. [22,23]). Therefore, the more intermittent character of the magnetic field measure
can be attributed to the presence of singularities associated with magnetic structures, such
as flux tubes and shocks.
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σ r
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Figure 10. The joint-histograms of the two quantities σC and σR computed on a time scale of one
hour, for fast and slow solar wind. For progressively higher frequency values, the colors range from
dark-blue to dark-red. The dashed white circle indicates the locus σ2

C + σ2
R = 1.

We presented an advancement in the analysis of the intermittency in solar wind in this
study, as it investigates the correlation between the singularity character of magnetic field
and velocity fluctuations in a novel way. The obtained results show a strong correlation
between the singular character of the measure defined on the magnetic field and the one
on the velocity field in the inertial range of solar wind. This implies that the source of this
correlation must be found in the Alfvénic nature of solar wind turbulence. Furthermore,
the study emphasizes the importance of magnetic structures such as flux tubes and shocks
in shaping the correlation observed in the intermittent nature of the two quantities in the
case of solar wind at 5 au [22–24]. What makes this research interesting is the use of the
joint multifractal analysis method in the context of solar wind properties. By adopting this
innovative approach, it is possible to gain a deeper understanding of how different solar
wind quantities are interconnected, unveiling a multifaceted view of solar wind’s behavior.

In conclusion, this study offers valuable new insights into solar wind turbulence,
shedding light on the complex dynamics of the heliosphere. By employing cutting-edge
analysis methods, it sets the stage for further exploration of space plasma turbulence.
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