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Abstract: Stromboli is an open-conduit active volcano located in the southern Tyrrhenian Sea and
is the easternmost island of the Aeolian Archipelago. It is known as “the lighthouse of the Mediter-
ranean” for its continuous and mild Strombolian-type explosive activity, occurring at the summit
craters. Sometimes the volcano undergoes more intense explosions, called “major explosions” if
they affect just the summit above 500 m a.s.l. or “paroxysms” if the whole island is threatened.
Effusive eruptions are less frequent, normally occurring every 3–5 years, and may be accompanied or
preceded by landslides, crater collapses and tsunamis. Given the small size of the island (maximum
diameter of 5 km, NE–SW) and the consequent proximity of the inhabited areas to the active craters
(maximum distance 2.5 km), it is of paramount importance to use all available information to forecast
the volcano’s eruptive activity. The availability of a detailed record of the volcano’s eruptive activity
spanning some centuries has prompted evaluations on its possible short-term evolution. The aim of
this paper is to present some statistical insights on the eruptive activity at Stromboli using a catalogue
dating back to 1879 and reviewed for the events during the last two decades. Our results confirm the
recent trend of a significant increase in major explosions, small lava flows and summit crater collapses
at the volcano, and might help monitoring research institutions and stakeholders to evaluate volcanic
hazards from eruptive activity at this and possibly other open-vent active basaltic volcanoes.

Keywords: Stromboli volcano; major explosions; paroxysms; explosion frequency; effusive eruptions;
eruption forecasting

1. Introduction

Stromboli is the easternmost volcanic island of the Aeolian Archipelago, located in the
southern Tyrrhenian Sea (Italy; Figure 1a). It has a conical shape and is up to 924 m a.s.l. and
at most 5 km wide along a NE–SW direction (Figure 1b). Two villages are located on the NE
and W flanks, Stromboli and Ginostra, respectively (Figure 1b), with a total number of about
540 residents, increasing more than ten times during the summer season due to tourists [1].
The active summit craters are located within an elliptical crater depression, oriented NE–SW
and located within the upper Sciara del Fuoco (SdF) depression at an elevation of about
750 m a.s.l. (Figure 1b). The almost persistent and mild explosive activity displayed by
the summit vents is the origin of the island’s name being used for these kinds of eruptions
observed around the world. Indeed, the term Strombolian-type explosive activity [2–5]
refers to mild explosions common to many other volcanoes, such as Tajogaite (La Palma,
Canary Islands; [6]), Shishaldin (Alaska; [7]), Fuego and Pacaya (Guatemala; [8,9]), Villarrica
(Chile; [10]), Etna and Vesuvius (Italy; [11,12]), Karymsky (Kamchatka, Russia; [13]), Yasur
(Vanuatu; [14,15]), Erebus (Antarctica; [5,16]), Aso and Sakurajima (Japan; [17,18]) and
Kilauea (Hawaii; [19]), among others. Strombolian explosions are characterized by the
bursting of a gas slug at the magma-free surface [3,20–22]. The power of an explosive
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event is given by its magnitude and intensity, with the explosive magnitude defined by
the erupted volume of ejecta, and the intensity by the ratio between erupted volume and
eruption duration [2]. The difficulty of obtaining magnitude and intensity values of each
explosive event has prompted the proposal of several alternative classifications, initially
based on the area affected by the fallout [23] and gradually involving a growing number of
geophysical, volcanological and remote sensing measurements [22,24–35].
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and Ginostra on the NE and W flanks of the island, respectively. The Sciara del Fuoco depression 
(SdF) on the NW flank is where the present lava flows expand. The active craters are located in the 
upper part of the Sciara del Fuoco, and their position is marked by the red ellipse. The yellow and 
red dots indicate the position and labels of the INGV monitoring cameras, both thermal (in red, 
SPCT, SCT, SQT, SPT), infrared (in red, SPI) and visual (in yellow, SCV, SQV, SPV), used for the 
assessment of the eruptive activity and the compilation of the catalogue (Table S1). An observatory 
(white square) was established in 1895 at Semaforo Labronzo on the north flank of the island [23]. 

In general, we can distinguish three main types of explosive activity at Stromboli. (1) 
The first class comprises the persistent, mild Strombolian explosions that occur at a fre-
quency of one every few minutes to a few tens of minutes [20,36], and eject a mixture of 
gas, spatter and ash up to a few tens of meters from the crater rim. These are further dis-
tinguished into Type 0 when erupting just gas [37], Type 1 when erupting gas and coarse 
ballistics, and Type 2a and 2b when erupting gas and either ballistics plus ash or just ash 
without ballistics [22]. (2) The second type is major explosions (ME), and these are more 
powerful explosive events occurring on average twice a year and involving tephra fallout 
well outside the crater terrace, but normally affecting the top of the island above 500 m 
a.s.l., with eruptive columns rising a few hundred meters above the crater rim [23,31–
33,38,39]. (3) The third type is called paroxysms (P). These are very powerful explosive 
events involving more than one vent and forming eruptive columns more than 1 km above 
the craters and occurring at a frequency of one every few decades [23,39–43]. The last five 
episodes occurred on 5 April 2003, 15 March 2007, 3 July and 28 August 2019, and 19 July 
2020 [29,30,42,44–51]. This latest event of 19 July 2020 was on the boundary between ME 
and P because it was characterized by several discrete pulses involving more than one 
crater zone, and on the basis of the seismic trace, VLP size, area involved by the fallout, 
height of the eruptive column, thermal signature and magma source depth [32,34,51,52]. 
The collapse of the eruptive column accompanying the paroxysms may cause pyroclastic 

Figure 1. (a) The southern Tyrrhenian Sea and location of the Aeolian Archipelago, with Stromboli
island in the red circle. (b) Google maps image of Stromboli island, with the villages of Stromboli and
Ginostra on the NE and W flanks of the island, respectively. The Sciara del Fuoco depression (SdF)
on the NW flank is where the present lava flows expand. The active craters are located in the upper
part of the Sciara del Fuoco, and their position is marked by the red ellipse. The yellow and red dots
indicate the position and labels of the INGV monitoring cameras, both thermal (in red, SPCT, SCT,
SQT, SPT), infrared (in red, SPI) and visual (in yellow, SCV, SQV, SPV), used for the assessment of the
eruptive activity and the compilation of the catalogue (Table S1). An observatory (white square) was
established in 1895 at Semaforo Labronzo on the north flank of the island [23].

In general, we can distinguish three main types of explosive activity at Stromboli.
(1) The first class comprises the persistent, mild Strombolian explosions that occur at a
frequency of one every few minutes to a few tens of minutes [20,36], and eject a mixture
of gas, spatter and ash up to a few tens of meters from the crater rim. These are further
distinguished into Type 0 when erupting just gas [37], Type 1 when erupting gas and coarse
ballistics, and Type 2a and 2b when erupting gas and either ballistics plus ash or just ash
without ballistics [22]. (2) The second type is major explosions (ME), and these are more
powerful explosive events occurring on average twice a year and involving tephra fallout
well outside the crater terrace, but normally affecting the top of the island above 500 m a.s.l.,
with eruptive columns rising a few hundred meters above the crater rim [23,31–33,38,39].
(3) The third type is called paroxysms (P). These are very powerful explosive events
involving more than one vent and forming eruptive columns more than 1 km above the
craters and occurring at a frequency of one every few decades [23,39–43]. The last five
episodes occurred on 5 April 2003, 15 March 2007, 3 July and 28 August 2019, and 19 July
2020 [29,30,42,44–51]. This latest event of 19 July 2020 was on the boundary between ME
and P because it was characterized by several discrete pulses involving more than one
crater zone, and on the basis of the seismic trace, VLP size, area involved by the fallout,
height of the eruptive column, thermal signature and magma source depth [32,34,51,52].
The collapse of the eruptive column accompanying the paroxysms may cause pyroclastic
density currents (PDC) spreading along the SdF barren slope (Figure 1b) and possibly on
the sea surface, up to 2 km away from the coastline [32,33,53].
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Effusive eruptions may occur as slow lava output from the summit vents, forming
small lobes confined within the crater terrace, or as larger volume lava flows spreading
above the crater rim and on the crater outer flanks and along the upper SdF, or again as
major lava flows spreading from eruptive vents and fissures along the SdF and down to the
coast and beyond. As such, they can range widely, both in duration, spanning from hours
to months, and volume, between 103 and 107 m3 [23,33,44,45,53–59]. Often associated
with the eruptive activity, landslides have also occurred along the SdF [60–62], as have
sudden collapses of portions of the summit crater [53,63] and more rarely tsunamis [64–66].
An increasing number of landslides detected by the seismic network were related to the
opening of effusive vents along the SdF [67], but also to the crumbling of lava flow fronts
during their expansion on the steep SdF slope [44,53,57]. Crater collapses are recently
becoming more frequent due to the growth of the NE crater on the edge of the crater
rim [63,68], making it prone to collapse as soon as the magma level within the conduit rises
and magma lateral intrusion increases the cone instability [32,33,45,61,69,70].

The mild weather and beautiful landscape have led to the volcano being visited
by tourists for centuries, with regular descriptions of its activity dating back to the 18th
century [23]. A daily and systematic record of the explosive activity started in 1895, when
an observatory was established at Semaforo Labronzo [23], on the north side of the island
(Figure 1b). Barberi et al. [23] were the first to publish a critical re-examination of available
reports and documents of about three centuries of volcanic activity at Stromboli, producing
a very detailed catalogue updated to 1990, with the aim of assessing the types of hazards
and their probability of occurrence, as well as estimating the areas exposed to eruptive
phenomena. A paper by Rosi et al. [39] represented the frequency of eruptive events in
two graphs, with the first encompassing the period from 1990 to 2012 and the second
from 1900 to 2012. Together with explosive activity, they also take into account effusive
activity, pyroclastic density currents and hot avalanches, wildfires, landslides and tsunami,
giving a description of the number of recorded events and of the related hazards. A new
catalogue of the explosive activity published by Bevilacqua et al. [71] comprised a review
of the scientific literature of the last 140 years, including 180 explosive events, of which
36 were classified as paroxysms. Using this catalogue, Bevilacqua et al. [72] quantified
the temporal rate of major explosions and paroxysms as a function of time passed since
the last event occurred, finding that recurrence hazard levels were significantly elevated
in the weeks and months following a major explosion or paroxysm, and then gradually
decreased over longer periods. In this paper, we present a new database based on the
catalogues by [23,71], which we have updated, reviewed and improved with the aim of
gaining additional information that could prove useful for hazard assessment.

2. Data

The new catalogue of volcanic and instability events, namely the basis of this paper
(Table S1), comprises the previous catalogues by [23,71–73], that we have completed, re-
viewed and improved, adding effusive activity, crater collapses, landslides and tsunami,
especially for events occurring after 2000. In doing so, we have gathered information col-
lected by the INGV–OE (Istituto Nazionale di Geofisica e Vulcanologia–Osservatorio Etneo)
monitoring systems, updated to the end of June 2023 and published in the daily and weekly
reports available at (https://www.ct.ingv.it/index.php/monitoraggio-e-sorveglianza/
prodotti-del-monitoraggio/comunicati-attivita-vulcanica, accessed on 20 August 2023).
In addition, we have used new, unpublished data obtained from the analysis of visual,
infrared and thermal images recorded by the INGV–OE monitoring cameras (Figure 1b).
The features of the monitoring cameras and their frequency of acquisition are described
in detail by [33] in their Supplementary Materials, and by [32]. Our catalogue is available
here as Supplementary Materials (Table S1).

Following [71,72], in our catalogue the explosive activity is divided into three classes.
Paroxysms (P) are the most energetic explosive events involving the whole crater zone,
which may affect the whole island and the settled area and produce eruptive columns more
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than 1 km above the craters [23,32,39,40], and which are often associated with pyroclastic
density currents (PDC) and hot avalanches [42,44,50]. Major explosions (ME) are explosive
strombolian events more powerful than the persistent explosive activity, which involve
one or more crater zones and result in eruptive columns rising several hundred meters
above the craters. Their tephra fallout mainly affects the summit of the volcano above
500 m a.s.l. [23,29,32]. Uncertain (U) explosive events are those in between major explosions
and persistent explosive activity [71,72]. We have considered U those that are mentioned in
the INGV–OE activity reports as “strong explosions” or “explosions more powerful than
normal”, but for which we do not have enough data to classify as major explosions.

Our dataset comprises effusive activity, distinguished in three categories of different
size and/or duration: class F comprises small lava flows lasting less than 1 day, or intra–
crater lava flows having volume up to 103 m3; FF are overflows from the crater rim and
small lava flows lasting more than 1 day and less than 1 month, having volumes greater
than 103 m3 and less than 106 m3; and FFF are flank eruptions, involving the opening of
eruptive fissures on the Sciara del Fuoco, a duration of 1 month or more, and/or lava
volumes greater than 1 × 106 m3. In order to further clarify our choices for the three lava
flow classes, it is worth pointing out that the most common data available on lava flows is
their duration, which can be considered a reliable proxy for erupted volume. This is true
for all cases, but not for the small lava flows spreading within the crater when the magma
level is too high. These tiny lava flows can last several days, but result in extremely small
lava flows (tens of meters long, directly observed) due to their very low effusion rate, much
less than 0.1 m3 s−1. This is why we have considered the volume as criteria for classifying
the intra–crater lava flows (F class), which even when lasting several days result in very
small erupted volumes. Conversely, the duration for overflows and flank eruptions is a
good proxy for erupted volumes. In these instances, we have distinguished the FF class
(1 day to less than 1 month duration and/or lava volumes less than 1 × 106 m3) from the
FFF class (flank eruptions and overflows lasting 1 month or more, and/or lava volumes
greater than 1 × 106 m3) using the duration as the main distinctive criteria.

For the explosive and effusive activity until 1985, we relied on the description of
references reported in the last column of Table S1. For the most recent events after 1985,
we largely used the INGV–OE activity reports that describe the events on the basis of the
analysis of the signals recorded by the monitoring networks. These comprise thermal and
visual cameras, seismic stations, ground deformation measurements (tilt, global positioning
system (GPS) and strainmeters), geochemical measurements on the plume and of the gases
released from the ground and an estimation of the thermal output from the volcano
retrieved from satellite. When the INGV–OE reports were not sufficiently detailed to
classify an event, we used the analysis of the videos recorded by the INGV–OE monitoring
cameras to distinguish between explosive activity (on the basis of the plume’s height, area
affected by the fallout, event duration and/or involvement of more than one crater area)
following [32]. For effusive activity, the analysis of the videos was used to estimate the
duration of the lava flow output, which is a good proxy for the erupted volume. However,
it is worth noting that small intra–crater effusive activity can be detected only when direct
observations are available in the INGV–OE monitoring reports, or when at least one of the
summit monitoring cameras (SPI, SPT, SPV; Figure 1b) were available and the weather was
good enough to allow visibility within the crater depression.

Our aim was to propose some statistical considerations on a set of data concerning
the volcanic activity recorded at Stromboli from 1879 to 2023. During this time interval,
the 180 major and paroxysmal explosive events listed by [72] until 2020 increased to
278 explosive events (Table 1(a)). We have changed the classification by [71,72] from
uncertain (U) to major explosions (ME) for a few explosive events when the description of
the events mentioned the emission of the highly vesiculated golden pumice together with
the crystallized dark scoria. In fact, following the literature [38,43,73–76], golden pumice is
erupted during major explosions and paroxysms. In addition, several ME and lava flows
occurred in 1935–1937, not included by [71], were added based on the accounts by [23,77,78].
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Additional ME events compared to the catalogue by [72] were added based on the accounts
by [54,79–85] and several INGV–OE monitoring reports, as specified in Table S1. Only one
ME event from the list of [72] was rated as a paroxysmal (P) event (6 December 1985), on
the basis of the description provided by [23,56]: “a large–scale emission of ashes, gases
and vapour, forming an eruptive cloud and a small hot avalanche”, this being rated as a
sequence that characterizes paroxysms (Table S1).

Table 1. (a) Number of events occurring at Stromboli volcano within the specified lapse of time.
ME = major explosions; U = uncertain major explosions; P = paroxysmal explosions; F = small
lava flows lasting less than 1 day, or intra–crater lava flows having a maximum volume of 103 m3;
FF = overflows from the crater rim and small lava flows lasting more than 1 day and less than
1 month, having volumes greater than 103 m3 and less than 106 m3; FFF = flank eruptions, involving
opening of eruptive fissures on the Sciara del Fuoco, duration of 1 month or more, and/or lava
volumes of 1 × 106 m3 or greater. PDC = pyroclastic density currents; T = tsunami; C = crater failure;
L = landslides. (b) Some statistical information on the dataset: the first column shows the event
class, the second column the date of the first recorded event, and the third to seventh columns show
the minimum, maximum, median and standard deviation of the inter–event time τ, here expressed
in days.

(a)

Interval/Type of Event ME U P F FF FFF PDC T C L Total

1879–1960 48 37 36 43 30 13 3 3 0 1 214

1961–1984 6 1 0 0 4 1 0 0 0 0 12

1985–2000 38 0 1 4 1 1 1 0 1 1 48

2001–2023 104 2 5 73 20 4 20 3 9 6 246

1879–2023 196 40 42 120 55 19 24 6 10 8 520

Events/year 1879–2023 1.35 0.28 0.29 0.83 0.38 0.13 0.17 0.04 0.07 0.06 3.59

(b)

Type of Event First Record Min (τ) Max (τ) Median (τ) σ (τ)

ME 04-Feb-1879 0 4255 64 651

U 18-Oct-1881 7 9995 386 1958

P 05-Feb-1879 13 9645 326 2095

ME + U + P 04-Feb-1879 0 4247 61 437

F 30-Jun-1891 1 11,376 30 1301

FF 17-Nov-1882 1 6403 311 1506

FFF 24-Oct-1888 30 6956 1915 2409

F + FF + FFF 17-Nov-1882 0 3683 26 603

PDC 19-Oct-1900 1 15,083 162 4157

T 22-May-1919 56 21,314 5092 8146

C 22-Nov-1992 6 7356 70 2433

L 13-Nov-1915 36 30,944 878 11,279

The overall number of events considered in this paper consists of 520 records from
1879 to June 2023, as shown at the bottom of the last column of Table 1(a). Among
the 278 explosive events, 196 are classified as major explosions (ME), 42 as paroxysmal
explosions (P) and 40 as uncertain major explosions (U). For the older events, before 1985,
to define the U class we relied on the descriptions of the references listed in Table S1, and
they essentially did not differ from those listed by [71]. The other classes contained in our
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catalogue (Table S1) were Pyroclastic Density Current (PDC), Tsunami (T), Crater Failure
(C) and Landslides (L).

The number of events in the sub–intervals 1879–1960, 1961–1984, 1985–2000 and
2001–2023 are reported in Table 1(a), which shows the non–uniform distribution of events
with time. It appears, for instance, that during the 82 years from 1879 to 1960, 214 total
events were reported (or 2.6 event/year), which is much less than the 246 events recorded
during the 23 years from 2001 to 2023 (10.7 event/year). The last row in Table 1(a) reports
the number of events per year for each class, obtained by dividing the number of events
during 1879–2023 by 145, i.e., the total number of years comprised by our dataset.

An interesting and useful parameter for hazard assessment is the inter–event time,
which is the lapse of time between two events. Some simple statistics, such as minimum,
maximum, median and standard deviation of the inter–event time, denoted by τ, are
reported in Table 1(b). In particular, the high mean value of the inter–event time for events
classified as FFF, PDC, T and L, compared with the explosive events, suggests a lack of
completeness in the dataset regarding these classes of events. In addition, it should be
noted that the first episode of crater collapse (C) on record is also the most recent among
the classes here described, and occurred in 1992 [86] (Tables S1 and 1(b)). However, all
the other C events on record occurred during the last ten years, displaying a significant
increase with time [32,33,53,69], which is probably related to the growth of the NE crater
vents on the crater edge [68].

The main cause of the non–uniform distribution of the events at Stromboli is of course
due to the fact that in recent times the observations have been instrumental and much
more accurate and continuous than in the past. However, an intrinsic irregularity of the
Stromboli volcano’s activity should not be overlooked, as testified by the low number of
total events (12) recorded during 24 years (0.50 event/year) of relatively recent activity,
from 1961 to 1984, compared with the 48 events recorded during 15 years of activity from
1985 to 2000 (3.2 event/year). If we do not consider the first interval of time, ranging
from 1879 to 1960, when for at least 40 years Stromboli craters were monitored daily by
the Italian Navy from the Semaforo Labronzo lighthouse [23], the increase in the total
number of events recorded between 1961 and 2023 strongly suggests improvements in the
monitoring systems, especially following the 2002–03 flank eruption, landslide and tsunami
that heavily impacted the island [44,87–90]. As we can see in Table 1(b), P and U classes
have a maximum inter–event time that is similar (~26–27 years) and almost twice that of
ME and of all explosive classes (ME + U + P) considered together (~12 years), whereas the
median inter–event time value is about ~1 year for P and U and ~2 months for ME and for
all explosive classes together, respectively. For effusive events, the smaller F flows have a
maximum recurrence time of ~31 years, whereas for FF and FFF this is ~18–19 years, and for
all effusive classes together (F + FF + FFF) it is ~11 years. The median values of inter–event
time for F, FF and FFF are ~1 month, ~1 year and ~5 years, respectively, with the median
inter–event time for all effusive classes together being just 1 month. Thus, it appears that
both explosive and effusive events have a very similar median recurrent time, of ~2 and
~1 month, respectively. The time distribution of events in the dataset distinguished by class
is shown in Figure 2.

Figure 2 shows that the number of ME events has significantly increased in recent years,
especially from the year 2000 onwards, while the number of P and especially of U events has
decreased. Both of these effects could be related to the improved instrumental acquisitions,
although an increase in the ME events and decrease in the P events between 2007 and 2012
have been attributed to structural changes following the recent flank eruptions [91]. In
contrast to ME events, it appears that the frequency of P events occurring in the period
1900–1960 was slightly higher than in recent years, but in terms of number of events per
year these are much lower values than the ME events. Concerning the classes of F and
FF events, there seems to be a slight increase in recent years, probably also in this case
attributable to improved instrumental observations, while the distribution of FFF events
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seems fairly uniform over time. Since these events are larger in size, it is possible that their
record is fairly complete.
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lava flows lasting less than 1 day or intracrater lava flows having a maximum volume of 103 m3;
FF = overflows from the crater rim and small lava flows lasting more than 1 day and less than
1 month, having volumes greater than 103 m3 and less than 106 m3; FFF = flank eruptions, involving
the opening of eruptive fissures on the Sciara del Fuoco, a duration of 1 month or more, and/or lava
volumes of 1 × 106 m3 or greater; PDC = pyroclastic density currents; T = tsunami; C = crater failure;
L = landslides.

Given the non–uniform temporal distribution of the events, the average number
of events per year shown in the last row of Table 1(a) is poorly representative. Indeed,
it is easy to see that the average number of events per year is heavily dependent on
the length of window w over which the averaging is performed. In order to obtain a
representation that was visually understandable, we have averaged the number of events
over non–overlapping time windows of w = 24 years, obtaining the results shown in
Figures 3a and 3b for explosive and effusive events, respectively.

Figure 3a shows that the number of ME per year was lower than 1 (on average 0.6)
for a long time, until the end of 1970s, and then increased, reaching 1.25 events/year until
2000 and about 4.3 events/year in recent years. The number of paroxysm (p) events per
year fluctuated around the value 0.4 events per year until the early 1940s, and then the
value decreased, and it currently fluctuates around the value of 0.2 events per year. The
number of U–type events per year fluctuated around the value of 0.8 until the 1910s and
subsequently continuously decreased, reaching a level of about 0.1 events per year at
present. Figure 3b shows that the average number per year of F–type events was 0.2 to
about 0.6 from 1879 to the 1950s, then decreased to ~0.2 in 1970s and then rose again to a
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level of ~0.8 events/year from 2000 to the present. The average level of FF events increased
from 0.2 to 1 from 1879 to 1950s, fell to ~0.2 and then increased to ~3 in recent years. Finally,
the average level of FFF events increased from 0.1 to 0.2 from 1879 to 1950s then decreased
to 0.05 until the 2000s, and increased to ~0.2 events/year until recently. However, we stress
once again that these results are rudimentary and susceptible to different interpretations as
the length of the chosen time window varies. This can also be interpreted as saying that
both explosive and effusive activity at Stromboli are non–stationary processes.
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To further appreciate the inhomogeneity in the frequency of occurrence of the events,
we have represented the cumulative distribution as a function of time. In particular,
in Figures 4a and 4b the cumulative number of explosive events and lava flow events,
respectively, are reported, whereas in Figure 4c we have represented the classes PDC
and T, and in Figure 4d the classes C and L. In more detail, Figure 4a shows that while
the cumulative curve of explosive events of P and U types had a regular growth, the
cumulative curve for ME events underwent a sharp rise after 1989. Previously, this curve
exhibited a rapid but limited growth during 1900–1906 and 1932–1938. Concerning effusive
events, there have been changes during 1900–1907, 1936–1939 and recently after 2008,
again probably related to the improved monitoring system, with the exception of events
belonging to the class FFF that, having greater size and duration, probably did not pass
undetected even when the monitoring system did not exist. Figure 4c displays a general
increase in occurrence for PDC and T events and Figure 4d shows the behaviour of C
and PDC events. It appears that data referring to C have been collected since 1992 and
the cumulative rate is rapidly growing, especially from 2013. It is worth noting here that
crater collapses (C) often trigger the formation of PDC along the Sciara del Fuoco, and
that these collapses are becoming more frequent since the growth of the NE Crater outside
the crater terrace and on the crater rim [33,45,53,62,63]. This has caused the formation
of a thick apron of talus on the NE flank of the crater depression [68], which is prone to
remobilization when the magma level within the upper conduit rises and magma lateral
intrusion occurs [33,45,63,92,93]. As regards the increase in landslides after 2002, it has been
found [67] that the daily number of landslides recorded by the seismic monitoring system
increased just before the start of a flank eruption as a consequence of the slope and summit
inflation and opening of ephemeral vents and fissures on the Sciara del Fuoco [92,93].
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Furthermore, the number of landslides increases significantly during effusive erup-
tions, when the crumbling of lava flow fronts triggers debris mobilization and the deep
erosion of the slope [60]. The greater increase in the number of recorded tsunamis can
again be attributed to the improved monitoring system, which also enables 0.5 m waves to
be detected, as those formed as a consequence of the 2019 paroxysmal episodes and PDCs
entering the sea [50,94]. Due to the small number of events belonging to the PDC (only
24), the T (6), C (10) and L (8) classes present in our catalogue were considered insufficient
to make reliable statistics; in this work, we will deal with the statistical analysis of data
concerning explosive and effusive events without making a distinction between their class.
In other words, we refer as a whole to the events ME + U + P as “explosive” and to those
F + FF + FFF as “effusive”. Furthermore, given the lack of homogeneity in the acquisition
methods, for each class of events we first carried out a statistical analysis on the entire
catalogue (1879–2023) and then an analysis referring to a portion of the catalogue from
1985 until 2023. The choice of the most recent interval of time was due to the fact that in
1985 the activity of the Stromboli volcano passed under the control of the Italian CNR–IIV
(Consiglio Nazionale delle Ricerche–Istituto Internazionale di Vulcanologia), which merged
within INGV (Istituto Nazionale di Geofisica e Vulcanologia) in 1999, and although progress
in adapting the instrumentation has been progressive, we can consider the data in the
catalogue to be more reliable from 1985.
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One of the parameters of greatest interest for the purposes of hazard assessment is
the inter–event time (τ), i.e., the time interval between two consecutive events, which we
will statistically analyse in this paper. The inter–event time for the considered time interval,
without distinguishing among event classes (ME+P+U) and reported in days, is shown in
Figure 5.
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Figure 5. (a) Inter–event times (in days) for the explosive events (ME + P + U) and (b) effusive events
(F + FF + FFF) occurring at Stromboli during 1879–2023.

The time series of the inter–event time, being related to the number of events per
year considered above, exhibits an irregular behaviour, although it is possible that the
significant increase recorded between 1970 and 1990 for both explosive and effusive events
(Figure 5a,b) is caused by a lack of or scant information recorded in that period.

3. Methods

In order to analyse the time series of the inter–event times from a statistical point
of view, we applied an approach similar to that considered for the inter–event time of
Lava Fountains (LFs) at Mt. Etna [95]. This approach starts from the observation that the
probability density function (pdf) of the inter–event time of volcanic activity belongs to
the class of heavy tailed distributions; that is, they have longer tails than the exponential
distribution and in particular are one–tailed, as suggested by the histograms shown in
Figure 6, which are characterized by right–tails.
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Figure 6 shows that at Stromboli, 86% of explosive events and 79% of effusive events,
respectively, belong to the first bin of the histogram, which corresponds to an inter–event
time of approximately 1 year. In order to fit such kinds of histograms, only a few partial
density models are appropriate: the log–normal, the Weibull, the generalised Pareto and
the log–logistics. To strengthen the appropriateness of the use, the log–normal and the
Weibull distributions were considered [72] to model the inter–event time between major
explosions and paroxysms at Stromboli, while the log–logistic has been found to be suitable
to fit inter–event times of volcanic eruptions [96,97]. The mathematical representation of
these distributions is reported in [95]. Moreover, as well as the above–mentioned models,
we have also considered the so–called power law distribution that fits better than the
alternative the tail, which usually comprises the most energetic events. The power law
distribution for a continuous variable x is written as:

p(x) =
α− 1
xmin

(
x

xmin

)−α

(1)

In many cases, when dealing with power law, it is useful to also consider the Comple-
mentary Cumulative Distribution Function (CCDF), which is expressed as:

P(x) = Pr(X ≥ x) =
(

x
xmin

)1−α

(2)
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where α is the power law exponent and xmin is a lower bound for x. The presence of
this lower bound, which is not required for traditional probabilistic models, is necessary
because this density diverges as x → 0 . The use of the power law distribution as an
alternative to other probability distribution models has been recognized as valid because
various natural phenomena, including the field of geosciences, seem to follow this type of
distribution, even if a rigorous statistical analysis is particularly complex. The difficulties
arise because the power law is valid for a portion of the dataset, which normally escapes
the smaller events due to the difficulty of detecting them, and larger ones due to the finite
size of the physical systems. Bak [98] first discussed the ubiquity of power law distributions
in natural systems. To refer to the vast literature concerning this kind of distribution is a
hard task and is beyond the scope of this paper. By limiting to the application of power law
models in geoscience, it is possible to cite the review paper by [99]. In order to objectively
inter–compare the considered probabilistic models, we have computed the AIC (Akaike
Information Criterion) index, which allowed taking into account the model likelihood and the
number of model parameters. Indeed, for a jth model, the AIC is defined as in Expression (3)

AICj = −2Lj + 2k j (3)

where Lj is the likelihood and k j is the number of model parameters. In turn, the likelihood
is defined by Expression (4):

Lj = ∑n
i=1 log

(
pj(xi)

)
(4)

where pj(x) is the partial density function (PDF) of the candidate distribution model j,
considered for fitting a given dataset X = {x1, x2, · · · xn}. The best model is the candidate
with the smallest AIC.

4. Numerical Results

In this section, we implement the models for estimating the probability of occurrence
of the inter–event time discussed in Section 3. In more detail, in Section 4.1 we consider
the inter–event times of explosive and effusive events recorded from 1879 to 2023, while
in Section 4.2 we consider the shortened and more recent portion of the catalogue, which
refers to the time interval 1985–2023. As previously mentioned, this was motivated by
looking at Figure 2, which shows that the number of events per year versus time for the
classes of events here considered is quite different. Indeed, for instance, there could be a
lack of P events after 1960 and before 2020 which, according to [72] could be attributed to
under–sampling between 1960 and 1985. Furthermore, ref. [91] pointed out an increasing
number of major explosions and a decreasing number of paroxysms at Stromboli after
2007, for which they suggest structural modifications of the shallow conduit caused by
flank eruptions.

4.1. Statistical Models for the 1879–2023 Data Set

For the 1879–2023 data set, the estimated model parameters of the log–normal, Weibull,
generalised Pareto and log–logistics distributions are reported in Table 2(a,b) for explosive
and effusive inter–event time, respectively.

The AIC performance indices obtained for the two classes of events (explosive and
effusive) and for each of the four probabilistic models considered (Log–normal, Weibull,
GPareto and Log–logistic) are shown in Table 3, while the trends of the CCDF curves are
shown in Figures 7a and 7b for explosive and effusive events, respectively.
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Table 2. (a) Model parameters for the inter–event time dataset for major explosions and paroxysms
at Stromboli between 1879 and 2023 (see Table S1 for the entire dataset, and [95] for the mathematical
expressions of these models). (b) Model parameters for the inter–event time dataset for effusive
events at Stromboli between 1879 and 2023.

(a)

Model

Log–normal µ = 3.92 [3.69, 4.14] σ = 1.83 [1.69, 2.00]

Weibull a = 122.63 [98.90, 151.92] b = 0.60 [0.55, 0.65]

Generalized Pareto k = 0.94 [0.67, 1.22] σ = 55.57 [42.21, 73.17] θ = 0

Log–logistic µ = 3.98 [3.75, 4.20] σ = 1.06 [0.96, 1.18]

(b)

Model

Log–normal µ = 3.43 [3.11, 3.76] σ = 2.25 [2.04, 2.50]

Weibull a = 97.55 [68.84, 136.27] b = 0.45 [0.41, 0.50]

Generalized Pareto k = 1.92 [1.49, 2.35] σ = 15.92 [11.08, 22.88] θ = 0

Log–logistic µ = 3.35 [3.01, 3.68] σ = 1.34 [1.19, 1.50]

Table 3. AIC indices of compared models for the inter–event time dataset of explosive and effu-
sive events.

Dataset Log–Normal Weibull GPareto Log–Logistic

Explosive 3285 3304 3298 3298

Effusive 2195 2229 2205 2209
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Results in Table 3 show that for both the explosive and effusive events, the AIC indi-
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7a,b shows that none of the models seem to satisfactorily fit the right tail of the dataset, 
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generalized Pareto model and log–logistic distributions (a) for explosive events and (b) for effusive
events. The 1879–2023 dataset was considered.

Results in Table 3 show that for both the explosive and effusive events, the AIC indices
of the four standard models were quite similar. However, a visual inspection of Figure 7a,b
shows that none of the models seem to satisfactorily fit the right tail of the dataset, which
comprises the most energetic events. This is essentially because conventional probabilistic
models try to fit the entire dataset. On the contrary, as will become clear below, power law
models focus on modelling the events belonging to the tail of the distribution, i.e., those
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characterised by x ≥ xmin and therefore may be more effective. Referring to the power law
models, the estimated parameters α and xmin and the corresponding standard deviations
σα and σxmin and the plausibility index for explosive and effusive events are reported in the
first two rows of Table 4, whereas the patterns of the CCDF of empirical and power law
models are shown in Figure 8a,b. As concerns the plausibility index [100], it ranges between
(0, 1) and a common practice is to discard a power law model if p < 0.1; otherwise, it is
considered plausible.

Table 4. Parameters of the power law model for the inter–event time of explosive, effusive, F effusive
and FF + FFF effusive events.

Dataset α xmin σα σxmin pvalue

Explosive 2.14 147 0.22 74.28 0.20

Effusive 1.50 26 0.32 207.39 0.01

F effusive 1.53 41 0.20 217.72 0.14

FF + FFF effusive 1.85 261 0.52 474.08 0.13
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The results in Table 4 indicate that while the power law is a plausible model for the 
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time between effusive events, since in this latter case we have 𝑝𝑝 = 0.01 < 0.1. Indeed, Fig-
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Figure 8. Empirical complementary cumulative distribution function (CCDF) (blue circles) and its
power law model fit (dotted black line): (a) obtained by using the inter–event time of explosive events
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The results in Table 4 indicate that while the power law is a plausible model for the
inter–event time of explosive events, since p = 0.2 > 0.1, it is not so for the inter–event
time between effusive events, since in this latter case we have p = 0.01 < 0.1. Indeed,
Figure 8b shows that the furthest data of the tail remain quite distant from the dashed line
(i.e., the power law). Given the impossibility of finding a unique power law model for all
the effusive events, we decided to fit separate power law models for classes F and FF +
FFF, obtaining the results indicated in the third and fourth rows of Table 4 and Figure 9a,b
for F and FF + FFF events, respectively. With this distinction, the plausibility indexes for
the F and FF + FFF classes are now 0.14 and 0.13, respectively, thus indicating that the
corresponding power law models are plausible.
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Figure 9. Power law model for (a) F inter–event times and (b) for FF and FFF inter–event times. The
blue star symbol in the abscissa indicates the estimate τmin that for the considered dataset is equal to
147 days and 26 days, respectively.

To perform an objective comparison between the power law models and the alterna-
tives (i.e., the Log–normal, Weibull, Generalized Pareto and the Log–Logistic), in Table 5
we report the AIC indices (lowest value is the best). Of course, to make the comparison
consistent, the costs for the alternative models were computed on the subset τ ≥ 147 days
for explosive models, for τ ≥ 41 days for the effusive F models and for τ ≥ 261 days for
the FF + FFF models, which were the xmin values computed for the mentioned dataset (see
Table 4).

Table 5. AIC indices of compared models for the inter–event time dataset for explosive, F effusive
and FF + FFF effusive.

Dataset PowerLaw Log–Normal Weibull GenPareto Log–Logistic

Explosive 1193 1430 1403 1438 1436

F effusive 814 900 891 923 908

FF + FFF effusive 639 709 692 702 706

The results in Table 5 show that the power law model is slightly better than the log–
normal, Weibull, generalized Pareto and log–logistic in fitting the tail of the dataset, since
it exhibits the lowest AIC index. The direct comparison among the empirical CCDF, the
power law model and the other distribution models of inter–event times are reported in
Figures 10a, 10b and 10c for explosive, F and FF + FFF effusive events, respectively.

4.2. Statistical Models for the 1985–2023 Dataset

For this shortened dataset, the total number of explosive events (ME + U + P) was
150, while for the class F and FF + FFF we had 77 and 26 events, respectively. We fitted the
long–tail distribution models mentioned above and the corresponding power law models.
For brevity, we report in Table 6 the parameters of the power law models only.
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Figure 10. Log–log plot of the empirical complementary cumulative distribution function (CCDF) of
inter–event times and the five considered cumulative probability distribution models obtained by
using the entire dataset: (a) ME + P + U events, (b) F events, (c) FF + FFF events.
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Table 6. Parameters of the power law model for the inter–event time of explosive, F effusive and FF+
FFF events estimated for the reduced dataset.

Dataset α xmin σα σxmin pvalue

Explosive 3.31 233 0.47 56.91 0.94

F effusive 1.59 29 0.26 73.90 0.15

FF + FFF effusive 2.40 271 0.58 173.31 0.81

It is possible to see that for the shortened dataset, the power law models are also
plausible since we have estimated p = 0.94, p = 0.15 and p = 0.81, for the explosive, F and
FF + FFF events, respectively, all of which are greater than 0.1.

The direct comparison among the power law models and the four alternative models is
summarized in Table 7 in terms of AIC indices and in Figure 11a–c in terms of CCDF curves.

Table 7. AIC indices of compared models for the 1985–2023 period. According to the xmin column of
Table 6, the indices were computed for τ ≥ 233 days, τ ≥ 29 days and τ ≥ 271 days for explosive, F
and FF + FFF inter–event times, respectively.

Dataset Power Law Log–Normal Weibull GenPareto Log–Logistic

Explosive 1189 1425 1398 1434 1431

F effusive 440 499 490 513 516

FF + FFF effusive 17 219 213 223 219

It is possible to see that for the shortened 1985–2023 dataset, the power law models
also performed better than the alternatives to fit tails of inter–event times of both explosive
and effusive events.

4.3. Statistical Interpretation of Results

In this work, we have highlighted that the events characterizing the activity of the
Stromboli volcano from 1879 to today, whether explosive or effusive in nature, have an
irregular temporal distribution; in other terms the inter–event time is a random variable
(Figures 2–5). Therefore, the probabilistic approach is the only one we can use to answer
questions such as “what is the probability that after an explosive event has occurred,
another one will occur with an inter–event time greater or equal to six months (formally:
Pr(τ ≥ 182.5 days)?” From the probabilistic point of view, this is equivalent to calculating
the Complementary Cumulative Distribution Function of the random variable τ (the inter–
event time) in correspondence with the value 182.5 days (i.e., 6 months). All the CCDF
graphs shown in this paper report the inter–event time expressed in days. While the use of
the log–normal, Weibull, GPareto and log–logistic distributions is not required to fix an xmin
prior to the fitting, the power law is usually more accurate in modelling the events belonging
to the tail of the distribution, as found in this paper (Figure 11). However, considering that
the different models provide values that are not very different from each other, in addition
to calculating the probability estimated by using the individual models, we reported the
average of their values. Numerical results are organized as follows: Table 8(a–c) refer to
the entire dataset, while Table 9(a–c) refer to the shortened dataset. The last column in each
table indicates the probabilities obtained by averaging the different models.
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Table 8. (a) Complementary cumulative probability for inter–event times τ ≥ 15 and 30 days,
τ ≥ 6 months, τ ≥ 1, 2 and 3 years, estimated for explosive events by using the power law and the
alternative model fitted by using the entire dataset. For τ ≥ 15, 30 days the power law model is not
applicable (N.A.) since for this model we have computed xmin = 147 days (see Table 4), which simply
means that the model is not reliable for inter–event times lower than this value. (b) Complementary
cumulative probability for inter–event times τ ≥ 15 and 30 days, τ ≥ 6 months, τ ≥ 1, 2 and 3 years,
estimated for F effusive events by using the power law and the alternative model fitted by using the
entire dataset. For τ ≥ 15 and 30 days, the power law model is not applicable (N.A.) since for this
model we have computed xmin = 41 days (see Table 4), which simply means that the model is not
reliable for inter–event times lower than this value. (c) Complementary cumulative probability for
inter–event times τ ≥ 15 and 30 days, τ ≥ 6 months, τ ≥ 1, 2 and 3 years, estimated for FF + FFF
effusive events by using the power law and the alternative model fitted by using the entire dataset.
For τ ≥ 15 and 30 days, and τ ≥ 6 months, the power law model is not applicable (N.A.) since for
this model we have computed xmin = 261 days (see Table 4), which means that the model is not
reliable for inter–event times lower than this value.

(a)

Inter–Event Time Power Law Log–Normal Weibull GenPareto Log–Logistic Average Pr.

τ ≥ 15 days N.A. 0.75 0.75 0.78 0.77 0.77

τ ≥ 30 days N.A. 0.61 0.65 0.64 0.63 0.63

τ ≥ 6 months 0.25 0.23 0.27 0.22 0.23 0.24

τ ≥ 1 year 0.11 0.13 0.14 0.12 0.13 0.13

τ ≥ 2 years 0.05 0.07 0.05 0.06 0.07 0.06

τ ≥ 3 years 0.02 0.04 0.02 0.04 0.05 0.03

(b)

Inter–event time Power Law Log–Normal Weibull GenPareto Log–Logistic Average Pr.

τ ≥ 15 days N.A. 0.62 0.65 0.58 0.61 0.60

τ ≥ 30 days N.A. 0.50 0.55 0.45 0.49 0.50

τ ≥ 6 months 0.20 0.21 0.26 0.19 0.20 0.21

τ ≥ 1 year 0.14 0.13 0.16 0.14 0.13 0.15

τ ≥ 2 years 0.10 0.08 0.08 0.10 0.08 0.10

τ ≥ 3 years 0.08 0.06 0.05 0.08 0.06 0.07

(c)

Inter–event time Power Law Log–Normal Weibull GenPareto Log–Logistic Average Pr.

τ ≥ 15 days N.A. 0.89 0.89 0.94 0.91 0.91

τ ≥ 30 days N.A. 0.82 0.83 0.89 0.85 0.85

τ ≥ 6 months N.A. 0.51 0.58 0.56 0.54 0.55

τ ≥ 1 year 0.39 0.37 0.43 0.38 0.39 0.36

τ ≥ 2 years 0.22 0.25 0.28 0.23 0.26 0.23

τ ≥ 3 years 0.15 0.19 0.19 0.17 0.20 0.17
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Table 9. (a) Complementary cumulative probability for inter–event times τ ≥ 15 and 30 days,
τ ≥ 6 months, τ ≥ 1, 2 years, estimated for explosive events by using the power law and the
alternative model fitted by using the shortened dataset. For τ ≥ 15 and 30 days, the power law model
is not applicable (N.A.) since for this model we have computed xmin = 233 days (see Table 7), which
means that the model is not reliable for inter–event times lower than this value. (b) Complementary
cumulative probability for inter–event times τ ≥ 15 and 30 days, τ ≥ 6 months, τ ≥ 1, 2 and 3 years,
estimated for F effusive events by using the power law and the alternative model fitted by using the
shortened dataset. For τ ≥ 15 and 30 days the power law model is not applicable (N.A.) since for this
model we have computed xmin = 29 days (see Table 7), which means that the model is not reliable for
inter–event times lower than this value. (c) Complementary cumulative probability for inter–event
times τ ≥ 15 and 30 days, τ ≥ 6 months, τ ≥ 1, 2 and 3 years, estimated for FF + FFF effusive
events by using the power law and the alternative model fitted by using the shortened dataset. For
τ ≥ 15 and 30 days, τ ≥ 1, 2 and 3 years, the power law model is not applicable (N.A.) since for this
model we have computed xmin = 271 days (see Table 7), which simply means that the model is not
reliable for inter–event times lower than this value.

(a)

Inter–Event Time Power Law Log–Normal Weibull GenPareto Log–Logistic Average Pr.

τ ≥ 15 days N.A. 0.71 0.73 0.74 0.72 0.72

τ ≥ 30 days N.A. 0.54 0.60 0.58 0.55 0.57

τ ≥ 6 months N.A. 0.14 0.15 0.13 0.15 0.14

τ ≥ 1 year 0.04 0.07 0.04 0.05 0.08 0.06

τ ≥ 2 years 0.01 0.03 0.01 0.02 0.04 0.02

(b)

Inter–event time Power Law Log–Normal Weibull GenPareto Log–Logistic Average Pr.

τ ≥ 15 days N.A. 0.53 0.57 0.46 0.50 0.52

τ ≥ 30 days 0.43 0.40 0.46 0.34 0.37 0.40

τ ≥ 6 months 0.14 0.14 0.17 0.14 0.12 0.14

τ ≥ 1 year 0.09 0.08 0.09 0.10 0.08 0.09

τ ≥ 2 years 0.06 0.04 0.04 0.07 0.05 0.05

τ ≥ 3 years 0.05 0.03 0.02 0.06 0.03 0.04

(c)

Inter–event time Power Law Log–Normal Weibull GenPareto Log–Logistic Average Pr.

τ ≥ 15 days N.A. 0.77 0.80 0.83 0.81 0.80

τ ≥ 30 days N.A. 0.68 0.73 0.72 0.72 0.71

τ ≥ 6 months N.A. 0.39 0.46 0.36 0.41 0.40

τ ≥ 1 year 0.31 0.29 0.33 0.26 0.30 0.30

τ ≥ 2 years 0.17 0.20 0.20 0.18 0.21 0.19

τ ≥ 3 years 0.09 0.16 0.14 0.14 0.16 0.14

Starting with the explosive events, we report in Table 8(a) the values of the five consid-
ered CCDF to estimate the probabilities for inter–event times of τ ≥ 15 days, τ ≥ 30 days,
τ ≥ 6 months, τ ≥ 1, 2 and 3 years. For τ ≥ 15 days, τ ≥ 30 days, the power law model
is not applicable (N.A.) since the model holds for τmin ≥ 147 days. It is possible to see that
by varying τ from 15 days to 3 years, the average cumulative complementary probability
varies from 0.77 to 0.03. In brief, we can say that after an explosive event has occurred there
is on average, a probability of 77% that another one may occur after 15 days or more, and
this probability reduces to 3% that the next explosive event will occur after 3 years or more.
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In an analogous way, we can interpret the results reported in Table 8(b,c), which refer
to F and FF + FFF events, respectively.

For the models estimated by using the shortened dataset (1985 to 2023), the results are
reported in Table 9(a–c) for explosive, F and FF + FFF events, respectively.

In order to evaluate the differences using the whole (1879–2023) and shortened
(1985–2023) datasets, we report in Figure 12a–c the CCDF obtained by averaging the
five probability models (see the last columns of Tables 8(a–c) and 9(a–c)). The graphic rep-
resentation helps realize that the complementary cumulative probabilities are, on average,
lower when using the shortened dataset than the full dataset for all kinds of considered
classes (i.e., explosive, F and FF + FFF). This is because the marked increase in events
recorded in recent times (see Figure 4) implies a reduction in inter–event times compared
to the whole dataset.
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Figure 12. Comparison between the inter–event time average complementary cumulative probabili-
ties obtained by using the entire (1879–2023) and the shortened dataset (1985–2023): (a) for explosive
events, (b) for F effusive events, (c) for FF + FFF effusive events.

The average CCDF plots show that the differences between the models (1879–2023 and
1985–2023) become more pronounced for longer inter–event times (this is more clearly visi-
ble in Figure 12a,b). This is because long inter–event times are less frequent in observations
made from 1985 onwards and therefore less probable.
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5. Discussion

In this paper, we present a new catalogue of events (Table S1) occurring at Stromboli
volcano from 1879 until June 2023. Although the catalogue cannot be considered complete, it
is still the most complete currently available. The dataset comprises a total of 278 explosive
and 194 effusive events, plus other classes that might be useful for hazard assessment. In
this dataset, explosive events are distinguished into three classes, major explosions (ME),
paroxysms (P) and uncertain (U), this last having an intensity in between major explosions
and the mild and persistent Strombolian activity always present at the summit vents. The
effusive activity is distinguished into three classes on the basis of magnitude and intensity:
very brief and small intra–crater effusions (F), small overflows (FF) and flank eruptions
(FFF). In our catalogue, we have also listed landslides (L), crater collapses (C), pyroclastic
density currents (PDCs) and tsunamis (T). These last four categories were not mentioned
in the previous catalogues, and the frequency of their occurrence is too low to allow us to
apply any statistics. In fact, we had just 24 episodes of PDCs, 60% of which have occurred
since 2001 (Tables S1 and 1), and most of them are related to column collapse following
paroxysmal eruptions [32,33,45,50,94]. Of the six T events, 50% occurred after 2001. Our
catalogue contains ten events of C, 90% of which occurred after 2001, and six events of L,
with five of them taking place after 2001 (Tables S1 and 1). For these four classes of events
(L, C, PDC, T), we can consider that the collection of information is much more complete
now than it was in the past, and thus that the historical accounts before 2001 were not
complete. However, it is worth noting that the first C event (Table 1(b)) was recorded in
1992 [86], and that nine out of the ten C events occurred during the last decade (Table 1(a)).
Although the low number of L, C, PDC and T events does not allow a statistical treatment
of their frequency of occurrence, these events are being recorded by the present monitoring
system and represent an important hazard to the Stromboli population. Such a hazard must
be taken into account when considering the approach of people and tourists to specific sites
of the island, such as the summit craters or the northern coast, or the deep ravines at the
sides of the Sciara del Fuoco [23,39,61,64,92,93,101].

The Stromboli volcano extends above the sea for up to 924 m and below the sea down
to ~—2000 m depth [102–105]. Thus, considering the whole size of the volcanic edifice,
it is often compared in size to Mt. Etna, which rises up to 3347 m a.s.l. [106–108]. How-
ever, the sizes and capacities of the plumbing systems of the two volcanoes are notably
different [109–114], and this is also testified by the large difference between the erupted vol-
umes. Indeed, effusive activity at Etna results in the output of an average ~30–50 × 106 m3

lava [115–118], whereas flank eruptions at Stromboli produce on average 3–10 × 106 m3

lava [44,53,55–58]. Despite the small size of its plumbing system, Stromboli was in a steady
state for almost 2000 years [75,111,119], with a persistent and mild Strombolian activity that
characterises its summit, and with no significant changes in the morphology and position
of the active vents within the crater terrace, at least during the last century [120–122]. Con-
sidering the small size of its plumbing system [113,114], it is conceivable that subtle and
limited changes in its shape and or capacity may cause important changes in the frequency
of occurrence of eruptive events. In particular, [91] pointed out a several–fold increase in
the number of major explosions and small overflows observed between 2007 and 2012 and
a comparable decrease in the number of paroxysmal explosions and flank eruptions when
compared to the previous period. [91] explain this with a structural change caused by the
2002–03 and 2007 flank eruptions, which caused an expansion of the upper conduit and
thus a greater capacity of the upper 250 m of the feeding system. This small change would
have been sufficient to allow efficient mixing between the gas–rich magma rising from
the deep storage [52,73,74,123] and the gas–poor magma residing within the uppermost
conduit [124,125], resulting in a greater number of major explosions and a smaller number
of paroxysms, and in a greater number of small overflows and fewer flank eruptions [91].
This result is further demonstrated by our analysis of the eruptive activity at Stromboli,
extended until June 2023, and can be only partially attributed to an improved monitoring
system, which was completely rebuilt in 2003 [39,88–90]. The statistical models reported in
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this work represent a contribution to the hazard assessment of both explosive and effusive
events. In fact, they allow the evaluation of the cumulative complementary probability that
an event of a certain class will occur with an inter–event time greater than or equal to a
prefixed value assigned in days. The results provided are to be considered fairly robust as
they were obtained by averaging the estimated probabilities using five different distribution
models, even if they obviously depend on the degree of completeness of the catalogue.
This last consideration, above all, concerns effusive events for which the completeness of
the catalogue is, to date, less certain than for explosive events. In addition to the recent
increase in the number of major explosions and overflows from the crater rim, the summit
crater failure events have also increased significantly [33,45,53,63], as can be observed from
Table 1 and Figure 2. This is the result of the asymmetric growth of the summit cone, which
from 2010 onwards saw the NE crater piling up welded and loose scoria and spatter on
the edge of the NE crater rim [68]. This asymmetric cone growth formed a wide, steep
and thick talus, making the summit cone more prone to collapse. In turn, more frequent
collapses of the summit cone are responsible for the recent increase in the number of PDC
and landslides recorded along the SdF. The search for the reasons for this NE displacement
of the summit feeding system is not trivial. However, presumably these changes must
be related to processes occurring within or near to the shallow plumbing system. Here,
we propose that the NE displacement of the seismicity recorded below Stromboli before
the 2007 and 2014 flank eruptions [126], as well as the lateral dike intrusion recorded in
1996 [127], might be connected. In fact, given that the Stromboli feeding system is very
small [91,113,114], even a little perturbation at depth might cause an observable change at
the surface.

6. Concluding Remarks

One of the novelties of the work here presented is to have compiled a dataset, updated
to the end of June 2023, including not just the explosive activity, but also the effusive activity
occurring as overflows from the crater rim or as flank eruptions, as well as tsunamis,
crater collapses, landslides and PDC. Furthermore, for estimating the hazards related
to the explosive activity at Stromboli, we have considered, in addition to well–known
heavy–tailed distributions such as the log–normal, already taken into account by previous
authors [72], the use of the power law distribution. Indeed, it has been shown that this
model is plausible as it fits as well or even better than the traditional heavy tail distribution
models for those events belonging to the tail of the distribution, which are the most
powerful and hazardous (i.e., those characterized by xi ≥ xmin). However, the most
important consequence of this result is not limited to the model accuracy, but rather to the
fact that the power law distribution is characterised by the scale invariance. The lack of a
characteristic scale also implies the lack of a characteristic frequency of events. In our case,
this implies that the average inter–event time is not relevant for the hazard assessment,
similar to what happens in many natural events, including earthquakes and floods, in
terms of the expected magnitude of the most likely event, in both time and space.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15194822/s1, Table S1. The overall number of events considered
in this catalogue consists of 520 records from 1879 to June 2023. Among the 278 explosive events, 196
are classified as major explosions (X), 42 as paroxysmal explosions (XX) and 40 are uncertain major
explosions (U), which means that they lie at the boundary between the persistent explosive activity
and major explosions. The remaining events have been classified as lava flows, further subdivided on
the basis of duration and erupted volume as F (small lava flows lasting less than 1 day, or intra–crater
lava flows having volume up to 103 m3), FF (overflows from the crater rim and small lava flows
lasting more than 1 day and less than 1 month, having volumes greater than 103 m3 and less than
106 m3) and FFF (flank eruptions, involving opening of eruptive fissures on the Sciara del Fuoco,
duration of 1 month or more, and/or lava volumes greater than 1 × 106 m3); then Pyroclastic Density
Current (PDC), Tsunami (T), Crater Failure (C) and Landslides (L). In the table here below, in white
are evidenced the explosive events; in red the effusive events; in green the instability events, either

https://www.mdpi.com/article/10.3390/rs15194822/s1
https://www.mdpi.com/article/10.3390/rs15194822/s1
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crater failure, landslides or pyroclastic density currents; in yellow tsunami. Time is expressed in UTC,
local time (LT) only when specified [128–146].
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