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Abstract: The exacerbation of wildfires, attributed to the effects of climate change, presents substantial
risks to ecological systems, infrastructure, and human well-being. In the context of the Sustainable
Development Goals (SDGs), particularly those related to climate action, prioritizing the assessment
and management of the occurrence and intensity of extensive wildfires is of utmost importance.
In recent times, there has been a significant increase in the frequency and severity of widespread
wildfires worldwide, affecting several locations, including Australia, Italy, and the United States of
America. The presence of complex phenomena marked by limited predictability leads to significant
negative impacts on biodiversity and human lives. The utilization of satellite-derived data with
neural networks, such as convolutional neural networks (CNNs), is a potentially advantageous
approach for augmenting the monitoring capabilities of wildfires. This research examines the
generalization capability of four neural network models, namely the fully connected (FC), one-
dimensional (1D) CNN, two-dimensional (2D) CNN, and three-dimensional (3D) CNN model.
Each model’s performance, as measured by accuracy, recall, and F1 scores, is assessed through K-fold
cross-validation. Subsequently, T-statistics and p-values are computed based on these metrics to
conduct a statistical comparison among the different models, allowing us to quantify the degree
of similarity or dissimilarity between them. By using training data from Australia and Sicily, the
performances of the trained model are evaluated on the test dataset from Oregon. The results
are promising, with cross-validation on the training dataset producing mean precision, recall, and
F1 scores ranging between approximately 0.97 and 0.98. Especially, the fully connected model
has superior generalization capabilities, whilst the 3D CNN offers more refined and less distorted
classifications. However, certain issues, such as false fire detection and confusion between smoke and
shadows, persist. The aforementioned methodologies offer significant perspectives on the capabilities
of neural network technologies in supporting the detection and management of wildfires. These
approaches address the crucial matter of domain transferability and the associated dependability
of predictions in new regions. This study makes a valuable contribution to the ongoing efforts in
climate change by assisting in monitoring and managing wildfires.

Keywords: bushfire; climate change; convolutional neural network; hyperspectral imagery; PRISMA;
sustainable development goals; transfer learning; wildfire

1. Introduction

Recent technological advances in object recognition, deep learning, and remote sensing
have revolutionized the way we can manage, detect, and track emergency and catastrophic
events, such as wildfires, volcanic eruptions, and landslides [1–3]. In recent years, the
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increasing frequency and intensity of fires have made them a critical issue, significantly
impacting the ecosystem and contributing to climate change [4,5]. Therefore, having a
real or near-real-time forest fire detection system is vital to prevent significant losses and
protect human lives. Satellite remote sensing is a cost-effective way to meet the need to
detect, map, and study forest fires, and recent advances in sensors have made it easier [6,7].
For instance, the National Oceanic and Atmospheric Administration’s Advanced Very
High-Resolution Radiometer and Landsat Thematic Mapper [8] were used to assess the
burned areas, while NASA used MODIS and VIIRS data to provide a near-real-time global
fire monitoring service [9]. In particular, hyperspectral (HS) data collected by satellite
sensors provide high spatial and spectral resolution of the Earth’s surface, which can help
identify wildfire [10], because it provides the necessary data in the infrared wavelengths to
find burning areas and active fires [11]. Previous research examined EO-1 Hyperion data
for temperature retrieval and fire detection over specific Alaskan boreal [12]. The analysis
employed a Random Forest algorithm, achieving an F1 score of 0.97. Spectral analyses
of a wildfire and biomass burning based on potassium emission signatures have been
performed previously in published work using the laboratory, airborne, and space-borne
HS-RS [13,14]; HS images have been used to characterise plumes, clouds, and fires [15].

This research employed PRISMA (PRecursore IperSpettrale della Missione Applica-
tiva) [16] satellite data, a state-of-the-art hyperspectral imagery source, to reliably and
comprehensively detect wildfires through convolutional neural networks. In addition,
the IRIDE constellation project is slated to launch additional satellites with hyperspectral
sensors in the upcoming five years (2027), making it Europe’s largest low-altitude multi-
sensor Earth observation satellite space programme [17]. The project was founded by the
Italian “Piano Nazionale di Ripresa e Resilienza” [18], through a partnership involving the
Italian and European Space Agency and the Italian Ministry for Innovation and Digital
Transition. On the one hand, HS imagery has the potential for the development of new
analyses and methodologies; on the other hand, the exponential growth in the diversity and
dimensionality of data presents new challenges for researchers. While these data represent
a valuable resource, their organization and effective utilization pose significant difficulties.
One of the primary challenges is data management and storage. Effectively handling,
storing, and managing the extensive datasets generated by hyperspectral imagery require
specialized infrastructure and significant computational resources.

In very recent years, a novel approach called HSI-VecNet was proposed in [19] for
processing hyperspectral images (HSI) by learning vector representations from spectral-
spatial data. It outperforms existing methods by addressing memory and distortion issues.
The approach combines object classification and junction prediction to improve HSI vector-
ization. Again, in [20], a hyperspectral image segmentation method is introduced. It utilizes
the Multi-Gradient based Cellular Automaton and an evolutionary algorithm (ECAS-II) to
create customized segmenters from low-dimensional training data, outperforming existing
methods in remote sensing hyperspectral imaging. In addition to these data management
methods, Machine Learning (ML) techniques are an excellent solution for addressing this
issue due to their remarkable performance in classification and segmentation tasks.

In this work, the potential offered by the combination of HS data (retrieved by
PRISMA) and ML techniques has been investigated by analyzing different wildfire scenar-
ios. When combined with neural network methodologies, PRISMA’s continuous spectral
signature can lead to more accurate and broader classification feature extraction, avoiding
confusion between different classes. For instance, in [21], R. U. Shaik et al. employed an
automatic semi-supervised machine learning approach to distinguish between 18 different
types of wildfire fuel using PRISMA hyperspectral imagery. Other works exploit PRISMA
images to improve classification accuracy; in [22], the framework incorporates interpola-
tion to compensate for the loss of noisy bands and utilizes Principal Component Analysis
and Locality Preserving Projection for the extraction of hybrid features that preserve spa-
tial information. Moreover, R. Grewal et al. [23] demonstrate that Deep Learning-based
techniques, particularly spectral-spatial classification using CNN, outperform ML-based
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methods in HS classification, such as in [22], where a deep learning-based spectral-spatial
framework for hyperspectral image classification is proposed. The framework integrates
feature extraction, feature selection, and deep learning techniques to address the challenges
of processing multidimensional data, resulting in improved performance compared to
existing methods. At the end, in [24,25], a survey which encompasses hyperspectral image
classification using machine learning techniques is provided.

Even though preliminary studies have already shown the successful usage of neural
networks for hyperspectral imagery analysis [26–28], there are not many applications using
neural network approaches for PRISMA hyperspectral data. Moreover, no previous studies
(apart from the ones from the authors of this work) dealt with wildfire detection and
analysis. Our earlier studies have demonstrated the potential for artificial intelligence,
on-board computing, and satellite constellations to serve as interconnected components
for future services that should aid in monitoring and prompt responses to wildfire events.
The quality of the information that can be extracted from PRISMA HS imagery was in-
vestigated in [29], where analytical methodologies were proposed to locate wildfires and
estimate the temperature of active fire pixels. At the same time, we showed the possibility
of implementing Trusted Autonomous Satellite Operations [30–32] by utilizing artificial
intelligence [33,34] on-board satellites with astrionics for data processing [35–37]. For the
purpose of providing real-time or near real-time disaster management, the same has been
used in Distributed Satellite Systems [38–40].

This investigation aims to contribute to the advancement of research by contributing
in the following ways, starting from the promising results that were achieved by combining
ML and HS data:

• Presenting the potential of deep learning techniques to detect spectral dependencies
in wildfire situations. Different approaches are proposed based on spectral and
spatial analyses.

• Using models trained in Australia and Sicily, performing generalization tests in Oregon
to assess the methodology’s generalization capacity. The information contained in
the trained networks is transferred to another domain, performing inferences in a
different ecosystem, with respect to the one used for the training.

• Discussing the potential to make efficient use of ML-based methodologies in order to
deliver notifications in the event that a new wildfire breaks out. With this regard, the
computational performances of the proposed methodologies are discussed.

This paper is organized as follows. In Section 2, the dataset is described in terms of
areas of interest and hyperspectral PRISMA imagery. The description of the methodology
is provided in Section 3, where the four neural networks are introduced. The results of
the training (using datasets from Australia and Sicily) and the testing (in Oregon) are
reported in Section 4, while Section 5 deals with the discussion of the numerical findings.
Finally, concluding remarks are provided in Section 6.

2. Dataset Definition

This section provides an overview of the PRISMA hyperspectral data and the regions
of interest that were utilized in training, validating, and testing the neural network models.

2.1. PRISMA Data

PRISMA was launched on 22 March 2019, with a hyperspectral and panchromatic
payload that can produce extremely high-quality HS images. The camera has 173 channels
of Short-Wave InfraRed (SWIR) and 66 channels of Visible and Near InfraRed (VNIR) in the
spectral range of 0.4–2.5 nm. With an accuracy of ±0.1 nm, the average spectral resolution
across the entire range is less than 10 nm. The panchromatic camera’s ground sampling
distance for PRISMA images is 5 m, while the hyperspectral camera is 30 m. The PRISMA
data are made available for free for research purposes by the Italian Space Agency [41].
HS and panchromatic data are delivered in the HDF5 format in four levels:

• L1, radiance at the top of the atmosphere, radiometrically and geometrically calibrated;
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• L2B, radiance geolocated at-ground;
• L2C, reflectance geolocated at-surface product;
• L2D, geocoded version of the Level 2C product.

In this investigation, we made use of PRISMA Level 2D data. For detailed information
on PRISMA product specifications, please refer to the PRISMA product specifications
document at https://prisma.asi.it (accessed on 15 July 2023).

2.2. Areas of Interest

The current investigation is concentrating its efforts on collecting data from three
different continents, Oceania (New South Wales, Australia), North America (Oregon,
United States of America), and Europe (Sicily, Italy), as shown in Figure 1. HS imagery was
acquired in Australia, Sicily, and Oregon on 27 December 2019, 5 August 2021, and 17 July
2021, respectively.

Figure 1. Selected areas of interest for investigation.

These locations have witnessed significant impacts on human lives, property, and
the environment, emphasizing the need for improved fire management practices. Their
diverse geographic, environmental, and ecological factors contribute to unique and complex
wildfire concerns and are used to verify the effectiveness of the proposed approach in
diverse ecosystems. Therefore, these geographic areas emerge as very promising testbeds
for conducting a rigorous evaluation of the effectiveness of our proposed methodology
within a different spectrum of ecosystems. In particular, by examining the Global Agro-
Ecological Zones (GAEZ) map made available by the Food and Agriculture Organization
of the United Nations (FAO) (at https://gaez.fao.org/, accessed on 5 June 2023), it can be
noticed that these regions comprise distinct agro-ecological zones. Specifically, the map
emphasizes that Oregon is situated in a relatively more humid region compared to the
others, while the Australian region stands out as the driest among them. This further
underscores the pronounced ecological diversity and intricacy inherent in these territories.

The reference pixels employed for training, validation, and testing of the CNN were
identified meticulously and manually through an analysis of the spectral characteristics
exhibited by pixels within the images of each area of interest. Within these three images,
seven distinct categories are discerned: fire, smoke, burned areas, vegetation, bare soil,
water, and clouds (see Table 1). However, it is worth noting that the first five categories
were mostly identified in both the Australian and Oregon images, whereas in the case of the
Sicily image, the presence of clouds and water is evident in this area. Once the dataset was
created, pixels from Australia were combined with the cloud and water classes from Sicily
to assess the training and validation datasets. Oregon and three hot spots corresponding
to small pastoral fires in Sicily were used as the test dataset. Due to the manual nature of

https://prisma.asi.it
https://gaez.fao.org/
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the dataset labeling process, it was not feasible to comprehensively label the entirety of
the images.

Table 1. Number of labelled reference pixels in Australia, Sicily, and Oregon.

Number of Points per Class

Location Fire Smoke Burned
Areas Vegetation Bare

Soil Water Clouds

Australia 74 45 72 65 55 0 0
Oregon 72 9 47 50 40 0 0
Sicily 3 0 0 0 0 35 26

2.2.1. New South Wales, Australia

Australia is one of the world’s most fire-prone countries. The climate of the nation is
hot and dry, and the vegetation becomes especially flammable. Australia has a long history
of devastating wildfires, colloquially known as bushfires. Wildfires thrive in the country’s
broad landscapes, extensive forested sections, and dry climate. Australia’s distinctive
flora and fauna, notably eucalyptus trees rich in highly flammable oils, are contributing
to the intensity and swift spread of fires. The horrific 2009 “Black Saturday” bushfires
and the 2019–2020 blaze season are great examples of how wildfires may have disastrous
effects on populations, wildlife, and ecosystems. The first area of interest in this study is
Ben Halls Gap National Park in Australia, located about 250 km north of Sydney in the
New South Wales region. This park is known for its cool temperatures, high elevation
and significant rainfall. However, in 2019, the area was hit by a severe wildfire due to a
combination of warm temperatures, high winds, and low humidity. An RGB composite
of the region was included in this study, with labelled points used to test and train our
CNN (as shown in Figure 2). Within the composite, we located two major fires: one in the
southern portion near 151.2°E, 31.59°S, and the next in the northern portion near 151.3°E,
31.46°S. Additionally, 151.18°E, 31.39°S in the north-west is the location of a smaller active
fire. On 27 December 2019, PRISMA acquired the image over this area of interest. The first
row of Table 1 shows how many labelled pixels were found in the Australia image, where
the Water and Clouds classes were not labelled as they are absent.

Figure 2. RGB PRISMA composite image in the Australian area of interest with input labelled points.
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2.2.2. Oregon, USA

The United States of America (USA) is highly susceptible to wildfires due to its abun-
dant wilderness and typically humid and hot weather conditions. The country has a history
of experiencing numerous extreme wildfire events, with distinct wildfire patterns across
different regions. Western states, including California, Oregon, and Colorado, frequently
face severe wildfires attributed to a combination of factors such as arid climates, elevated
temperatures, and extensive wildland–urban interfaces. The US region investigated in this
research is located in the Fremont-Winema National Forest in Oregon (42.616°N, 121.421°W).
The Bootleg fire, which was started by lightning on 6 July 2021, garnered widespread media
attention for two main reasons. First, a high-voltage transmission line that links hydroelec-
tric power plants in the Pacific North-West to electricity demand centres in Los Angeles,
California, was nearby when the fire started. Second, a concentration of dry forest (more
information can be found at https://inciweb.nwcg.gov/incident/7609/, accessed on 3 May
2022) was created as a result of the fire spreading quickly due to a combination of grass,
shrubs, and timber that a beetle kill had previously impacted. On 15 July, aerial data
collection was impeded by pyrocumulus clouds that formed along the southeastern edge
of the Bootleg fire. The Bootleg fire covered a region of about 1008 km as of 17 July 2021,
according to satellite images, and it continued to burn unchecked until October 1, 2021,
when it covered a distance of 1674 km. The RGB composite of the search area and labelled
points using the transfer learning approach test is shown in Figure 3 along with the number
of labelled pixels found in the Oregon image, which is displayed in the second row of
Table 1. Similarly to the Australian case, the water and cloud classes are absent in Oregon
as well. Additionally, the smoke pure pixel class is smaller in size compared to the other
classes, containing only nine instances.

Figure 3. RGB PRISMA composite image with input labelled points in the Oregon area of interest.

2.2.3. Sicily, Italy

Italy is highly susceptible to wildfires due to a combination of vegetation cover and
climate regimes, particularly during summer. Human-caused wildfires are also common
occurrences in the country. Italy’s hot and dry summers, particularly in its coastal regions,
contribute to the prevalence of wildfires. The country’s landscapes, notably in coastal
and mountainous areas, are prone to ignition and rapid fire spread. As a result, wildfires
pose significant challenges to local governments in managing urban–wildland interactions
and preserving historical sites and diverse ecosystems. Notable examples of major fire
occurrences in Italy include the 2017 Central Italy wildfires and the 2007 Southern Italy

https://inciweb.nwcg.gov/incident/7609/
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wildfires. These incidents emphasize the need for effective wildfire management strategies
to safeguard communities, cultural heritage, and natural resources from the devastating
impacts of wildfires. Summer 2021 was very dry in Italy, with temperatures far above
the seasonal average and creating favourable conditions for wildfires with the highest
number of fires in Europe [42], with 14 of the 49 largest fires registered across Europe, the
Middle East, and North Africa. The third study area of this paper is situated in the South-
Central region of Sicily, with coordinates approximately at 37.429°N and 14.249°E. PRISMA
acquisition was planned under very urgent acquisition (within the project “Progetto per
Sviluppo di prodotti iperspettrali prototipali evoluti” Rif: CMM-PRO-18-013, funded by
Italian Space Agency) aiming to map the fire front on the region, but the large fire was
suppressed at the time of PRISMA acquisition (Figure 4).

Figure 4. RGB PRISMA composite image in the Sicily area of interest with input labelled points.

However, three hot spots were detected by using the Hyperspectral Fire Detection
Index (HFDI) [29,43,44], and verified during the manual inspection of the pixels spectrum,
by using both the NIR-SWIR color composition and spectral behaviour of active fires’
reflectance. The presence of clouds and water are evident in this area, which has been
utilized for training the CNN in detecting and distinguishing between these two categories;
meanwhile, the three hot spots corresponding to small pastoral fires were excluded from
the dataset; they were utilized to validate the generalization ability assessment process, i.e.,
to verify if the CNN trained on Australia fires can also successfully detect the small fires in
Sicily. Figure 4 reports the RGB composite of the research area along with the water and
cloud points that were used for the training and the three small fires in the south of the area.
The last row of Table 1 reports the total number of labelled pixels found in the Sicily image.
The Sicily dataset primarily serves as the main source for training and evaluating the water
and cloud classes, whereas only a limited number of three fire pixels are detected.

3. Methods

Due to the limited number of labeled pixels, we aim to assess the performance of the
neural network through a comparative analysis of different approaches to determine the
best one. We use cross-validation and statistical comparison to evaluate the performance
of each method. In this context, the fully connected approach serves as the reference due
to its simplicity, while the other approaches, including 1D CNN, 2D CNN, and 3D CNN,
progressively increase in complexity. This section presents these various neural networks
(Figure 5) and their evaluation methods.
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Figure 5. Architectures of the proposed neural networks.

3.1. Architecture of the Models

The fine-tuning of hyperparameters involved iterative adjustments, including trial and
error techniques. This systematic refinement aimed to strike a balance between complexity
and efficiency while continuously monitoring validation dataset results. Importantly, the
four networks utilized a similar structural design, featuring three hidden layers and a
softmax output layer. This uniformity allowed for a direct and meaningful comparison
among the networks. All of the models were trained using the Adam optimizer and the
categorical cross-entropy loss function. The networks have been implemented using Python
and Keras. The segmentation analysis is performed by running the models for each pixel
in the image. All experiments were conducted on a personal computer equipped with
12 GB of RAM, an Intel Core i7-12700H 2.70 GHz CPU from the 12th Generation, and an
NVIDIA GeForce RTX 3080 Ti GPU with 16 GB of dedicated RAM (manufactured by Intel
and NVIDIA Corporation, Santa Clara, California, United States). All of the models were
trained with a maximum of 200 epochs and an automatic early stopping criterion based on
a patience parameter of 30 epochs.

3.1.1. Fully Connected Model

The architecture of the FC neural network consists of three identical hidden layers,
except for the parameter defining the number of units, which is progressively reduced.
The model processes input data with 230 features and has seven output classes. It con-
sists of three dense layers with decreasing units (900, 450, and 225) and ReLU activation.
The model’s weights are initialized using the “Henormal” initializer, and “L2” regulariza-
tion is applied to prevent overfitting. The output layer (D4) has 7 units with a softmax
activation for class probabilities. The model is compiled using the Adam optimizer with a
learning rate of 10−4 and categorical cross-entropy loss.

3.1.2. One-Dimensional Convolutional Neural Network

The 1D-CNN architecture was described and exploited in previous
works [30,35,36,39,45–47]. Its input consists of pixel spectral signatures, represented as an
array with a length of 230, defined by SWIR and VNIR PRISMA channels. The first hidden
layer consists of a one-dimensional convolutional layer with 128 filters, a kernel equal
to 3, the same padding, an L2 kernel regularizer with λ = 10−5, and a ReLU activation
function. This layer is followed by a max pooling layer with a pool size of 2 and a stride of 2.
The sequence comprising convolutional and max pooling layers is replicated immediately
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thereafter, but with 64 filters in the convolutional layer. Then, the output of the flattening
layer is passed through a fully connected layer of 32 units equipped with a ReLU activation
function. Lastly, the model includes a dense unit with a softmax activation function for
multi-class classification purposes.

3.1.3. Two-Dimensional Convolutional Neural Network

The model takes 5 × 5 images with 230 channels as input and consists of two convo-
lutional layers with 3 × 3 kernels, and 128 and 64 filters, respectively, followed by max
pooling layers. It includes a dropout layer with a 50% dropout rate to prevent overfitting.
A flatten layer is used to reshape the output from the last max pooling layer into a 1D
vector. Subsequently, there are two dense (fully connected) layers. The first dense layer has
32 units with a ReLU activation function, and the second dense layer has 7 units with a
softmax activation function to produce class probabilities. The model is trained using the
Adam optimizer with a learning rate of 10−4 and L2 regularization with a lambda value
of 10−5.

3.1.4. Three-Dimensional Convolutional Neural Network

The 3D-CNN input is represented by a 5 × 5 × 230 hyperspectral cube wherein the
central pixel is labelled, and neighbouring pixels are included, referenced from their spectral
signatures. As presented in Figure 5, the first hidden layer is a 3D convolutional layer with
128 filters, kernel equal to 3 × 3 × 3, same padding, L2 kernel regularizer with λ = 10−5,
and ReLU activation function. This layer is followed by a max pooling layer with a pool
size of 3 and a stride of 1. Afterwards, the data flows through another 3D convolutional
layer with 64 filters, kernel equal to 3 × 3 × 3, the same padding, an L2 kernel regularizer,
and a ReLU activation function. Similarly to the 1D-CNN architecture, this layer is followed
by another max pooling layer with the same parameters. The output is then processed
through a flattening layer before arriving at a fully connected layer of 32 units equipped
with a ReLU activation function. Lastly, the model includes a dense unit with a softmax
activation function for multi-class classification purposes.

3.2. Cross-Validation and Statistical Comparison

Cross-validation is a fundamental technique used in neural networks and other areas
of machine learning to evaluate model performance and mitigate the risk of overfitting [48].
It consists of dividing the available dataset into multiple subsets, called folds, and using
these folds iteratively to train and evaluate the model. The main reason for using cross-
validation is to evaluate the ability of a neural network to generalize to unseen data.
By training and evaluating the model on different subsets of data, cross-validation provides
a more reliable estimate of model performance than a single train-test split. To split the
dataset for each network, the “KFold” function from the “Scikit-learn” [49] library was
exploited to split the dataset (Table 1) into five folds for each network. This specific
approach was repeated five times, resulting in a total of twenty-five training iterations for
each individual network.

Once cross-validation was performed for each model, the p-value and the t-statistic
were calculated pairwise to compare the networks. Specifically, the p-value, a crucial statis-
tical measure, quantified the evidence against the null hypothesis, positing no significant
difference in network performance. By computing the p-value for each network pair, the
investigation determined whether a statistically significant discrepancy existed in their
performance. The t-statistic is essential for comparing the performance of two networks
and determining which one is better based on the direction of the difference between
their averages. It is a statistical measure used to test hypotheses about population means,
especially in cases with small sample sizes or unknown population standard deviations.



Remote Sens. 2023, 15, 4855 10 of 22

3.3. Models’ Performances on the Test Dataset

The evaluation of a machine learning model’s generalization ability and its application
in regions beyond the training domain are critical aspects of geographical classification
problems. Generalization refers to the model’s capacity to perform well on unseen data
from the same distribution as the training data. When a model is trained in one geograph-
ical region and subsequently tested in distant regions, it provides a valuable test of its
generalization capability. By assessing the model’s performance in geographically distinct
regions, one can gauge its adaptability to variations in geographical features and ascertain
whether it can provide meaningful predictions in new settings.

Moreover, the scenario of testing the model in geographically distant regions with
different characteristics can also be viewed as an example of transfer learning. Transfer
learning involves leveraging knowledge obtained from one task or domain to enhance
performance on a related task or domain. This challenge aligns with the essence of transfer
learning, as the model must adjust to varying geographical features, climatic conditions,
and other factors in the testing regions, to yield reliable results.

The combined assessment of generalization ability and transfer learning implications
in geographical classification problems is crucial for gauging the model’s robustness and
potential real-world applicability in regions with diverse geographical traits. Two gen-
eralization and transfer learning test cases were considered in this work. In Sicily, cloud
and water pixels were selected to take part in the training dataset so that, here, both the
generalization and the transfer learning approaches are reduced slightly, as some pixels
(even though only for a few classes) were used in the training process. For the Sicily case,
only a visual inspection of the results is reported without providing a numerical evaluation
of the model performances. However, the model was transfer-learned in Oregon without
additional re-training or fine-tuning. The accuracy of this transfer learning approach is
evaluated using labelled pixels from the Oregon area, which served as an unseen scenario.

4. Results

In this section, the results of the different models in terms of their performance and
similarity are reported. Cross-validation is used to assess the performance of the models,
while statistical comparisons (p-value and t-statistic methods) are employed to gauge
the degree of similarity among the various neural networks. Furthermore, performance
metrics related to inference time and the number of parameters are also considered as
additional factors for comparing the various models. At the conclusion, predictions for
each image are provided to ease visual inspection and support final considerations based
on the visual assessment.

4.1. Cross-Validation

Cross-validation was performed on the training dataset, and checked on the test
dataset. Table 2 presents the mean precision (µP), recall (µR), and F1 scores (µF1), along
with their corresponding standard deviations (σP, σR, and σF1) on the training dataset for
each neural network. The mean precision, recall, and F1 scores are all around 0.97 to 0.98,
with standard deviations of approximately 0.01 to 0.08. These small standard deviations
suggest that the models consistently achieve high performances across the various cross-
validation rounds, indicating their ability to predict positive samples and correctly identify
true positive samples accurately. Overall, the table demonstrates that the neural networks
exhibit stable and comparable performance, as indicated by the similar mean scores and
low standard deviations.

Table 3 presents the mean precision (µP), recall (µR), and F1 scores (µF1), along with
their corresponding standard deviations (σP, σR, and σF1) carried out by performing the
prediction of each neural network on the test dataset. The results obtained from the eval-
uation reveal a remarkable similarity in the behaviour of the neural networks, with the
FC model exhibiting slightly better performance, but it is crucial to delve deeper into the
intricacies of the models and their underlying architectures. The results emphasize a clear
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performance gap between the training dataset and the test dataset, with an approximate
20% reduction in performance. While this disparity does raise concerns about potential
overfitting, it is crucial to recognize the significant environmental diversity present across
Australia, Sicily, and Oregon. These environmental variations can reasonably account for
the observed differences in performance. Therefore, it is essential to interpret these results
while considering both the limited data points available and the environmental diversity.
Further investigation and additional data collection may be necessary to definitively ascer-
tain the presence and extent of overfitting.

Table 2. Mean precision, recall, and F1 scores of 25 results performed with the cross-validation
method on the training and validation dataset (Australia and Water/Clouds Sicily Labels).

µP σP µR σR µF1 σF1

FC 0.98 0.01 0.98 0.01 0.98 0.01
1D-CNN 0.98 0.02 0.98 0.02 0.98 0.03
2D-CNN 0.97 0.02 0.97 0.02 0.97 0.02
3D-CNN 0.97 0.03 0.97 0.05 0.97 0.06

Table 3. Mean precision, recall, and F1 scores of 25 results performed with the cross-validation
method on the test dataset (Oregon and Fire Sicily Labels).

µP σP µR σR µF1 σF1

FC 0.79 0.03 0.83 0.02 0.67 0.02
1D-CNN 0.74 0.02 0.82 0.02 0.63 0.05
2D-CNN 0.62 0.04 0.70 0.05 0.50 0.06
3D-CNN 0.68 0.06 0.75 0.05 0.60 0.06

In the final analysis, Figure 6 presents an example of a confusion matrix for the
test dataset, offering a more comprehensive evaluation of each model’s segmentation
performance. Notably, all models demonstrate accurate recognition of both the fire and
smoke classes, with one exception being the 2D-CNN model. In the case of the 2D-
CNN model, specific pixels categorized as the fire class are erroneously classified as the
burned class, and similarly, certain pixels from the smoke class are also misclassified as the
burned class.

Furthermore, in the case of the 2D-CNN, a higher degree of confusion is observed
in the burned class, with approximately 50% of the labeled pixels being misclassified as
bare soil. Furthermore, in the case of the 2D-CNN, approximately 50% of the labeled pixels
in the burned class are misclassified as bare soil, while for the other models, the opposite
pattern is observed. That is, a higher degree of confusion occurs in the bare soil class, where
around 50% of the labeled pixels are misclassified as burned.

Figure 6. Cont.
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Figure 6. Confusion matrix from inference analysis in Oregon from the (a) FC, (b) 1D-CNN,
(c) 2D-CNN, and (d) 3D-CNN approaches.

4.2. Statistical Comparison: p-Value and T-Statistic

The statistical analysis utilized the “stats.ttest_ind” function from the “SciPy” library,
enabling a comparison of performance metrics between different pairs of networks, and
it was performed on the training dataset, and checked on the test dataset. Tables 4 and 5
present the p-values and t-statistics obtained from the pairwise comparisons of F1 scores
between different network pairs on the test dataset:

• p-value: at the top of Table 4, the p-values of 0.002, and 0.049 indicate highly statis-
tically significant differences in F1 scores between the FC network and the 2D-CNN
and 3D-CNN networks, respectively. Conversely, the p-value of 0.5 for the comparison
between the FC and 1D-CNN networks indicates no statistically significant difference
in F1 scores between these models. This suggests that the FC architecture has similar
performance to the 1D-CNN model but not to the 2D-CNN and 3D-CNN models in
terms of F1 scores. The bottom of Table 4 reveals important insights into the perfor-
mance differences among the neural network architectures on the Oregon dataset.
The FC and 1D-CNN models exhibit slightly similar F1 scores, as indicated by the
p-value of 0.19 in their comparison. On the other hand, the p-values of 4.10 × 10−13

and 3.96 × 10−5 suggest highly statistically significant differences between the FC and
2D-CNN, as well as the FC and 3D-CNN, respectively. Similarly, the other p-values,
1.35 × 10−12, 3.60 × 10−4 and 9.96 × 10−3 for the comparisons between the 1D-CNN
and the 2D-CNN, the 1D-CNN and the 3D-CNN, and the 2D-CNN and the 3D-CNN
networks indicate a statistically significant difference in F1 scores between these mod-
els. Thus, while the FC and 1D-CNN models exhibit similar performance, all of the
other combinations show significant performance differences.

• T-Statistic: at the top of Table 5, it becomes evident that all of the observed values are
relatively small. The t-statistic values, ranging from 1.50 to 2.81, indicating that the
observed differences between the networks’ F1 scores are not large enough to assert a
clear superiority of any specific network confidently. In contrast, the results derived
from the evaluation of the Oregon dataset offer interesting and noteworthy insights
(see the table located at the bottom of Table 5). In particular, a profound revelation
emerges, indicating the clear underperformance of the 2D architecture when pitted
against its counterparts. Indeed, the 2D architecture suffers a defeat in each pairwise
challenge, revealing its inherent limitations compared to the other neural network
architectures considered in this study.
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Table 4. p-Value analysis for F1 score.

Training and Validation Dataset (Australia and Water/Clouds Sicily Labels)

FullyCon 1D-CNN 2D-CNN 3D-CNN

FullyCon 1.00 0.50 0.002 0.049
1D-CNN - 1.00 0.039 0.069
2D-CNN - - 1.00 0.18
3D-CNN - - - 1.00

Test Dataset (Oregon and Fire Sicily Labels)

FullyCon 1D-CNN 2D-CNN 3D-CNN

FullyCon 1.00 0.19 4.10 × 10−13 3.96 × 10−5

1D-CNN - 1.00 1.35 × 10−12 3.60 × 10−4

2D-CNN - - 1.00 9.96 × 10−3

3D-CNN - - - 1.00

Table 5. T-Statistic analysis for F1 score.

Training and Validation Dataset (Australia and Water/Clouds Sicily Labels)

FullyCon 1D-CNN 2D-CNN 3D-CNN

FullyCon 0.00 1.50 1.04 2.33
1D-CNN - 0.00 2.81 2.61
2D-CNN - - 0.00 2.13
3D-CNN - - - 0.00

Test Dataset (Oregon and Fire Sicily Labels)

FullyCon 1D-CNN 2D-CNN 3D-CNN

FullyCon 0.00 2.87 20.55 8.79
1D-CNN - 0.00 14.20 4.97
2D-CNN - - 0.00 −9.56
3D-CNN - - - 0.00

The results from both analyses indicate significant performance differences between
the different network pairs, suggesting that each model exhibits distinct strengths and
weaknesses when evaluated on the specific datasets and geographical contexts. This
observation is clearly depicted in Figure 7, where the two extreme cases (marked in bold
in Table 4) are reported. The histograms visually illustrate that the case FC vs. 1D-CNN,
on the left side, shows a significant overlap of data points, while the case FC vs. 2D-CNN,
on the right side, displays complete separation between the data points. Especially, on the
left side of Figure 7, a darker shade of blue was employed to clearly demarcate the regions
where the two distributions overlap. Additionally, a thin red line traces the contour of the
FC distribution to emphasize its underlying trend.

4.3. Inference Time and Model Complexity

In Table 6, the training time, the inference time, and the number of parameters are
reported. All of the models demonstrate rapid training times on a range between 10
and 40 s. Moreover, the inference times for all models are impressively low, with val-
ues in a range between 0.3 and 0.6 ms. The number of parameters is also of the same
order of magnitude. The results in Table 6 show valuable insights into the delicate bal-
ance between performance and computational complexity. Indeed, selecting an appro-
priate model depends on the application’s specific requirements. For instance, the FC
model demonstrates impressive computational speed, as evidenced by its relatively short
training (about 10 s) and inference times (about 0.3 ms) compared to the other models.
Despite being the most computationally heavy with the highest number of parameters,
the FC model’s efficient training and inference times indicate its capability to process data
quickly and make predictions in a timely manner.
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Figure 7. Histograms show p-value significance in extreme cases: the case FC vs. 1D-CNN (0.50 in
Table 4), on the left side, and the case FC vs. 2D-CNN (4.10 × 10−13 in Table 4), on the right side. The
thin red line, on the left side, traces the contour of the FC distribution to emphasize its underlying
trend.

Table 6. Training time, inference time and parameters for each model.

Training Time (s) Inference Time (ms) Number of
Parameters

FullyCon 10.62 0.36 716,407
1D-CNN 11.93 0.30 488,263
2D-CNN 23.78 0.42 341,191
3D-CNN 41.36 0.60 687,943

4.4. Additional Consideration from Visual/Manual Inspection

Given the scarcity of available pixels, a visual inspection of the segmentation and
manual spectral analysis of specific pixels of interest, like large fire clusters, can provide
further valuable results and insights into the various models. Unfortunately, the absence of
a definitive ground truth map is a consequence of the unpredictable nature of wildfires.
This inherent challenge underscores the necessity for in-depth research to develop models
capable of generating such maps. This is the primary reason why this study has been
undertaken—to address this critical need.

In this section, a representative case of training and test results of each model is
selected and for each area of interest, the segmentation results over the entire PRISMA
image are reported. Following this, a rigorous manual and visual inspection of the spectral
data is conducted. The primary objective in this phase is to extract overarching insights
from each segmentation within the different regions under investigation, with a specific
emphasis on the analysis of macro zones associated with each class. During this detailed
inspection, instances are revealed where certain macrozones do not authentically represent
the underlying data.

4.4.1. Australia

While conducting a visual inspection of the Australian dataset, no additional signif-
icant findings emerged. This outcome, in line with the numerical results obtained across
various datasets, underscores the consistency and reliability of our model’s performance.
It is important to note that a substantial portion of our model’s training data originates
from Australia. Consequently, the similarity in predictions between this region and others
comes as no surprise. However, one can notice that the 3D model’s results offer a smoother,
lower-noise image compared to the other models (refer to Figure 8 for visual comparison).
This notable improvement can be attributed to the intricacies of the training process.
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Unlike the other models, the 3D model takes into account the spectral information of the sur-
rounding area for each labeled pixel, rather than solely relying on the pixel’s own spectrum.

Figure 8. Segmentation results in Australia from the (a) FC, (b) 1D-CNN, (c) 2D-CNN, and (d) 3D-
CNN approaches.

4.4.2. Oregon

Figure 9 shows the results of transfer learning conducted in Oregon, presenting the
predictions of the overall region for each analyzed model. Notably, the differences discussed
in the confusion matrix are clearly evident. Moreover, the results obtained seem to suggest
the presence of a significant active fire in Oregon, indicated by the black boxes in Figure 9,
which the 3D model would not be able to detect. However, a thorough manual inspection
reveals that no actual wildfire exists in those regions. Instead, the yellow pixels under
consideration were manually classified as burnt areas, which is the same class correctly
identified by the 3D model. This result underscores the potential advantages of the 3D
model in real-world applications, as it demonstrates greater robustness in recognizing
spatial patterns by incorporating contextual information from the surrounding areas.
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Figure 9. Segmentation results in Oregon from the (a) FC, (b) 1D-CNN, (c) 2D-CNN, and
(d) 3D-CNN approaches.

4.4.3. Sicily

The results of domain adaptation in Sicily are presented in Figure 10. It can be observed
that all models accurately identify the burned areas in the upper right of the image, as
well as successfully detect the three small pastoral fires. However, a notable discrepancy
arises in the FC and 1D-CNN models, where a higher number of pixels are mislabeled as
smoke in comparison to the 2D and 3D networks. In this context, the 2D and 3D CNN
models demonstrate superior performance in image classification compared to the FC
and 1D models, although they still face challenges in distinguishing smoke from shadows.
This issue is more prominent in the 2D and 3D models. The underlying cause is the model’s
limited ability to recognize shadows, which leads to confusion with the smoke spectrum,
the closest known spectrum in this scenario. Furthermore, similar to the observations made
in Oregon, all models except the 3D-CNN exhibit a tendency to detect relatively large
fires near the burned areas, which do not actually exist. As a result, the 3D-CNN model
emerges as the most reliable in accurately discerning real wildfires from false positives.
Its advantage lies in its capability to recognize complex spatial features, especially in
differentiating between the burned and fire classes where confusion is most prevalent.
In conclusion, the 2D and 3D models, which integrate spatial information, demonstrate
improved performance in smoothing and denoising image classifications.
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Figure 10. Segmentation results in Sicily from the (a) FC, (b) 1D-CNN, (c) 2D-CNN, and (d) 3D-CNN
approaches.

5. Discussion

This research was driven by the need to better manage wildfire events, as modern
machine learning tools and hyperspectral imagery can provide useful information during
and after the disaster. Considering the potentialities of PRISMA hyperspectral imagery, this
study compared the results coming from different neural networks; the first two models (FC
and 1D-CNN) are designed exclusively for spectral analysis, while the second two models
(2D and 3D-CNN) are specifically tailored for conducting combined spatial and spectral
analysis. The dataset is collected by manual inspection. Especially, the training and valida-
tion datasets are composed of the pixels from Australia, and the water and cloud classes
in Sicily, while the test dataset is composed of the pixels from Oregon and the fire class
from Sicily. Concerning the training of the four models, it was noted that the performances
evaluated with the K-fold cross-validation were quite similar for the different approaches.
Indeed, accuracies in the training dataset and test datasets were almost the same.
Cross-validation was used to evaluate model performance and assess generalization
capabilities. The results indicated stable and comparable performance across different
cross-validation rounds for all neural network architectures, even if the FC results were
slightly better.
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The study conducted pairwise comparisons between neural network architectures
using the p-value and t-statistic. The analysis conducted on both the training dataset
and the test dataset revealed statistically significant differences in model performance,
indicating that each architecture exhibited distinct strengths and weaknesses on the specific
datasets and geographical contexts, except for FC and 1D-CNN. From the t-statistic, the FC
model is recognized as the best model.

The study also analyzed the computational efficiency of each model, including training
time, inference time, and the number of parameters. All models demonstrated very high
computational speed, making them suitable for applications requiring quick processing
and predictions, having a similar number of parameters. This is a very interesting outcome
from an operational point of view, as all of the proposed methodologies could be used to
assist ground operations and other management and detection operations.

When considering the classification ability for each class, smoke and burned soil pixels
are well recognized by all models both in Australia and in Oregon. Referring to Figure 6,
all of the models tend to confuse the other classes in the Oregon test case. Notably, the
confusion matrices in Figure 6 only relate to a reduced subset of pixels from the Oregon
area of interest and a visual inspection of the segmentation maps can provide additional
valuable details.

Furthermore, visual and manual spectrum inspections of the classification maps are
conducted. These inspections suggests that the 3D-CNN model outperformed the others in
recognizing spatial patterns and exhibited better performance in distinguishing between
burned areas and false positives. Indeed, the 2D and the 3D models provide the most clear
and less-noisy maps, due to their ability to mix spectral and spatial information. However,
the 3D model seems to be the only one to avoid important false alarms, unlike the other
models, which detect a fire that was not actually present, as is clearly shown in the zoomed
areas on the right of Figure 9. Moreover, similar conclusions are obtained in Sicily, where
the graphical inspection of the segmentation maps reported in Figure 10 demonstrates that
a large number of pixels were misclassified as smoke by the 1D model. The results from the
3D model show that the shadows from the clouds were classified as smoke. Nonetheless,
this error can be accepted as the class ’shadow’ and was not considered in the set of input
labels. To sum up, the numerical results seem to confirm a slight superiority of the fully
connected model, but the visual/manual inspection of the segmentation maps reveals that
those from the 3D models are less noisy than the ones provided by the other models.

This specific aspect deserves further investigation for future work. Notably, an ensem-
ble of the proposed models could be proposed for further investigation, as it could merge
the benefits from each singular model.

The network’s intrinsic limitation lies in its reliance on a restricted amount of input
data. Indeed, this limitation is inherent to the field of fire detection, where the availability
of reliable ground truth maps is inherently scarce. This scarcity of ground truth data
underscores the significant and ongoing interest in this field, as researchers strive to address
this fundamental challenge. Moreover, the results underscore a noticeable performance
gap between the training dataset and the test dataset, with an approximate 20% reduction
in performance. While this divergence does raise valid concerns about potential overfitting,
it is vital to acknowledge the substantial environmental diversity across Australia, Sicily,
and Oregon. These environmental variations are reasonable factors contributing to the
observed performance differences. Therefore, it is essential to interpret these findings
while keeping in mind the limitations of the available data points and the impact of
environmental diversity. Further investigations and additional data collection may be
required to conclusively determine the presence and extent of overfitting.

Despite its high precision in detecting fire, smoke, and scorched earth with the aid of
low-noise signal PRISMA datum, the network becomes confused when shadows are present
and may classify them as smoke. Moreover, the confusion matrices in Figure 6 based on the
small set of labeled points in Oregon show that apart from fire and smoke, the other classes
can be confused in new scenarios. Therefore, to increase the CNN performance for future



Remote Sens. 2023, 15, 4855 19 of 22

works, the CNN training dataset should be increased, and this operation can be conducted
both manually (which is a time-consuming activity that generates high-reliability results)
or automatically (which is a fast operation that can generate a noisy input dataset). In the
latter case, the training dataset could be increased by using together Jeffries Matusita (JM)
and Spectral Angle Mapper (SAM) distances between two spectra that compute spectral
similarity, as reported in [50–52]. In this way, it would be possible to insert in each class
similar spectrum signals by scanning the entire hypercube data from PRISMA. To improve
the model’s ability to distinguish shadows from clouds, it is crucial to add new classes,
thus obtaining a more sophisticated neural network capable of performing more precise
analyses. Simply following the aforementioned steps may not be sufficient in all cases.
In some cases, errors may arise due to the fact that individual pixels are composites of
several signals, such as with smoke, causing confusion within the neural network system.
To mitigate this issue, a potential solution could be the implementation of a CNN for an
unmixing analysis. In this case, the input dataset should report the percentage of each class
in each pixel instead of the majority class. This analysis will be considered in future works
for the improvement of the current results.

6. Conclusions

Satellite-based data processing is an essential asset in disaster management, espe-
cially in wildfires, offering valuable information for both pre-fire strategic planning and
post-fire recovery efforts. Using satellite data can enhance our comprehension and con-
trol of these complex and ever-changing phenomena, reducing the adverse impacts and
human casualties associated with wildfires. The research conducted in the present in-
vestigation primarily aimed to identify wildfires through the utilization of hyperspectral
imagery obtained from the PRISMA satellite. This was achieved by employing artificial
neural networks (ANNs), with a specific focus on convolutional neural networks (CNNs).
The current research presents findings on segmentation studies employing a fully connected
(FC) network and three different CNN architectures (one-dimensional, two-dimensional,
and three-dimensional models, also referred to as 1D, 2D, and 3D models) testing the
generalization ability through domain adaption. Based on the findings presented, it ap-
pears that the fully connected model achieves top performances in classification abilities,
even though the models based on a spatial-spectral analysis provide smother and less-
noisy maps. More specifically, the classification maps indicate that the 3D model exhibits
a greater capacity to avoid false alarms compared to the other models. This result un-
equivocally supports prioritizing the development of the 3D model. While the findings
may not conclusively establish it as the superior solution, the lower false alarm rate ob-
served with the 3D model suggests its potential for further investigation and refinement.
This direction presents a promising avenue for future research and development in the
context of wildfire detection.

Overall, the proposed methodologies have the potential to offer significant assistance
in complementing other assessments performed on the ground for the purposes of wildfire
identification and management. The Oregon test dataset demonstrates effective detection
of fire and smoke classes. As an example, the fire class is categorized with a perfect F1 score
of 100%, according to the FC and 1D model. Nevertheless, it is worth noting that all models
exhibit a tendency to misclassify other classes regularly and are prone to generating false
alarms. Future research endeavors could potentially enhance the findings of this study by
incorporating larger training datasets and employing more complex neural networks that
possess the ability to do unmixing research studies.
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