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S U M M A R Y 

In this paper, we gather and take stock of the results produced by the Operational Earthquake 
Forecasting (OEF) system in Italy, during its first 10 yr of operativity. The system is run in 

real-time: every midnight and after each M L 3.5 + event, it produces the weekly forecast of 
earthquakes expected by an ensemble model in each cell of a spatial grid covering the entire 
Italian territory. To e v aluate the performance skill of the OEF-Italy forecasts, we consider here 
standard tests of the Collaboratory for the Study of Earthquake Predictability, which have been 

opportunely adapted to the case of the overlapped weekly OEF forecasts; then we also adopt 
new performance measures borrowed from other research fields, like meteorology, specific to 

validate alarm-based systems by a binary criterion (forecast: yes/no; occurrence: yes/no). Our 
final aim is to: (i) investigate possible weaknesses and room for improvements in the OEF-Italy 

stochastic modelling, (ii) provide performance measures that could be helpful for stakeholders 
who act through a boolean logic (making an action or not) and (iii) highlight possible features 
in the Italian tectonic seismic activity. 

Key words: Probabilistic forecasting; Statistical methods; Time-series analysis; Earthquake 
interaction, forecasting, and prediction; Statistical seismology. 
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1  I N T RO D U C T I O N  

In 2009, the International Commission for Earthquake Forecasting 
(ICEF) for Civil Protection, nominated by the Italian government 
after the M L 5.9 ( M w 6.1) earthquake occurred in L’Aquila (Italy) 
on 2009 April 6, introduced the concept of Operational Earthquake 
Forecasting (OEF) as a tool to gather and disseminate authoritative 
information about the time dependence of seismic hazards, as well 
as to help both stakeholders to establish rational seismic risk re- 
duction strategies, and communities to be prepared for potentially 
destr uctive ear thquakes; the full repor t was released in 2011 (Jordan 
et al. 2011 ). 

Earthquake forecasting was not a novelty, because models already 
existed and were applied in practice (e.g. Reasenberg & Jones 1989 ; 
Rhoades & Evison 2004 ; Gerstenberger et al. 2005 ; Holliday et al. 
2005 ; Michael et al. 2020 ). Nonetheless, the ICEF report empha- 
sizes the importance of features that were not yet considered at that 
time, such as, for example, the need to provide continuous infor- 
mation and the importance of testing the forecasts. The first model 
that fully complies, at least in principle, with the ICEF requirements 
has been published in 2014 by the seismic hazard centre at the Isti- 
tuto Nazionale di Geofisica e Vulcanologia (INGV, Marzocchi et al. 
2014 ). 

Although the model has been published in 2014, since 2009 the 
OEF-Italy system is run 24/7 on a computer physically placed at 
2502 
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the INGV in Rome (Marzocchi & Lombardi 2009 ; Marzocchi et al. 
2012 , 2017 ). It is performed over a specific 0.1 ◦ × 0.1 ◦ grid lattice 
of N c = 8993 cells purposely placed inside an area covering the 
whole national territor y, oppor tunely selected for Italy according 
to the standards proposed by the Collaboratory for the Study of 
Earthquake Predictability (CSEP, https://scec.usc.edu/scecpedia/C 

SEP Working Group , Schorlemmer et al. 2018 ), which is an in- 
ter national infrastr ucture aimed at standardizing and quantitati vel y 
e v aluating earthquake predictions and forecasts at a global scale. 
Both the CSEP polygon and the OEF grid are shown in Fig. 1 , where 
it can be observed that Sardinia is not included in the analysis as 
instrumental seismicity in this island is not enough to calibrate the 
model: this area is in fact not af fected b y acti ve tectonics like in the 
case of the Apennines or other Italian regions. Although not visible 
in the map, we stress that the area around the Etna volcano (Sicily) 
is also excluded from the analysis, because the seismic activity be- 
neath active volcanic areas is driven by different mechanisms (e.g. 
magma intrusions), which are not well captured by the probabilistic 
models behind OEF-Italy. 

In the specific, at the midnight of each day, and after the occur- 
rence of any M L 3.5 + event recorded in real-time by the Italian 
Seismic Network, the OEF system produces the next week’s fore- 
cast of earthquakes with local magnitude M L 4.0 + or 5.5 + , or 
with microseismic Modified Mercalli Intensity MMI VI + , VII + or 
VIII + , fixed at user’s will. In what follows, we will refer to these 
 by Oxford University Press on behalf of The Royal Astronomical Society. 
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Figure 1. CSEP polygon (piecewise black curve) embracing the Italian territory, and centroids (red points) of the 0.1 ◦ × 0.1 ◦ grid lattice over which the OEF 
experiment is performed. 
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elected earthquakes as ‘target events’. The choice of weekly time
indows has been agreed upon with the Italian Civil Protection

or practical utility, but we stress that the system is able to provide
hor ter-ter m forecasts (e.g. daily). The flexibility of the OEF-Italy
ystem to deliver forecasts relative to different timescales is indeed
n important point to underline. In general, the proper length of the
orecasting window is related to the use those forecasts are intended
o. A short timescale could be appropriate for (quasi-)daily infor-

ation, or in case of emergency, when a precise decision-making
able is needed (e.g. during an ongoing seismic sequence). Longer
ime periods are instead crucial for the building code, for example in
he reconstruction process of damaged municipalities. In-between
orecasting windows may meet different requirements, mostly re-
ated to cases of no seismic emergency, but still when the forecast
s required for a near-future (e.g. when the state of emergency is
losed, but the restoration process is still ongoing). These stages
ay also overlap, and their duration depends on sev eral gov ern-
ental and socioeconomic factors, as well as on the full extent of

he disaster (Michael 2012 ). That said, the 1-week time window is
een used these past years by the Italian Civil Protection for reasons
f internal organization, therefore these are the forecasts we test in
his paper. The specific length of 7 d has implied a ‘practical use’ of
he delivered forecasts mostly during an emergency, or to monitor
he evolution of an ongoing seismic sequence; still, the discussion
mong the parties involved is continuous, such to ensure that the
ystem is prepared based on any different need. 

The OEF-Italy forecasts are computed from mathematical models
ell-known in statistical seismology (see Section 1 in the Supp �rting

nformation), and are released through time-dependent seismic
aps coloured according to the obtained expected probabilities

e.g. see the map in Fig. 2 ). In addition, the system produces and
tores the expected rates calculated from each model at each run. 

The graphical interface of OEF-Italy consists of an embedded
eaflet Map reflecting the current weekly probability of the target
vents inside a spatial window (circle or rectangle), directly selected
y the user from the interactive dashboard. An additional interac-
ive graph shows the temporal evolution of the weekly probabilities,
hich can be zoomed on any time interval of interest. The proba-
ility value of the last run produced by the system is also shown.
n example of the OEF interface is given in Fig. 2 , where we se-

ected M L 4.0 + target events within a small rectangle in Central
taly (black box in the map). 

art/ggad256_f1.eps
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Figure 2. Graphical interface of the OEF-Italy system, example for a small rectangular area in Central Italy (black box in the map). On the left: embedded 
Leaflet Map of the current weekly probability for the selected area, where we selected the events M L 4.0 + as target. On the right: timeline of the probability 
history from 2009 to 2021 January (bottom), together with two boxes (top right) showing the probability of the last run, and the probability computed at the 
date pointed by the cursor along the timeline. 
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To date, the OEF-Italy system is not open to the public and the 
time-dependent seismic information has been released in structured 
manner since 2015 only to the Major Risk Commission of the Italian 
Civil Protection in four-months reports and in daily reports during 
important seismic sequences, or upon specific request. Still, the 
system is running in real-time, and the possibility of continuously 
accessing the flow of information produced is being discussed, as 
well as the possibility of spreading results to the public, together 
with the best way to disseminate them (e.g. see Michael et al. 2020 ; 
Becker et al. 2020 , for reference). Major obstacles come out from 

a legal system which is unclear on roles and responsibilities of 
scientists involved in delivering this information. This issue has 
still easy-to-predict major consequences in Italy after the infamous 
L’Aquila earthquake trial (Marzocchi 2012 ). 

In this work, we gather and take stock of the results obtained 
for the first 10 yr of the OEF experiment in Italy, to the aim of 
assessing the reliability of the forecasts produced, in comparison 
with the real earthquake catalogue recorded in the same period. 
The analysis in this paper is performed by means of several sta- 
tistical tests, so as to give a clue on possible improvements in the 
OEF-Italy system and insights on Italian seismic activity. Since 
the single earthquake forecasting models are continuously under 
e v aluation in CSEP experiments (e.g. Taroni et al. 2018 ), here we 
provide an additional contribution analysing the time overlapping 
ensemble forecasts through different and complementary statistical 
approaches, that are widely used in different fields. 

We finally stress that only the OEF-Italy rate and probability 
forecasts are tested here, but a similar study can be done to test the 
Modified Mercally Intensities delivered by the system. In fact, as 
explained before, the system contains also the modelling of seismic- 
wave attenuation with distance from the source and of the site effects 
(Marzocchi et al. 2014 ). This will be object of a future study, more 
focused on testing the OEF-Italy performance in respect to the 
building code and the risk scenarios. 

2  T H E  F O R E C A S T I N G  S E T  U P  A N D  T H E  

E A RT H Q U  A K E  C A  TA L O G U E  

Although the earthquake forecasting experiments started in 2009, 
the OEF system became real-time operative in Italy on 2013 Jan- 
uary 1. This study is therefore carried out in the time window 

2010–2020, but only from 2013 January 01 until 2020 May 26 the 
tests are purely prospective; before 2013, the tests are carried out in 
a pseudo-prospective mode (all parameters have been set up using 
the data before 2010). The probabilistic forecasts are obtained from 

an ensemb le model, w hich is the weighted combination of three 
versions of three stochastic models typically used in statistical seis- 
mology: the Epidemic Type Aftershock Sequence (ETAS) proposed 
by Lombardi & Marzocchi ( 2010 ), the Epidemic Type Earthquake 
Sequence (ETES) by Falcone et al. ( 2010 ) and the Shor t-Ter m 

Earthquake Probability (STEP) by Woessner et al. ( 2010 ). For fur- 
ther details, see Section 1 in the Supporting Information. 

As specified above, the weekly forecasts are provided by the 
OEF-Ital y model e very day at midnight and after each earthquake 
of magnitude 3.5 or larger, for each cell of the spatial grid covering 
the Italian territory with cells of 0.1 ◦ × 0.1 ◦ (see Fig. 1 ). 

art/ggad256_f2.eps
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Figure 3. Map of the seismic events recorded in Italy during the years 2010–2020. The size increases with the events’ magnitude, while the colour varies with 
the temporal occurrence (blue to yellow for less to more recent events). The map is masked by the CSEP polygon (see Fig. 1 ). 
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The target earthquakes we consider here are the shallow events
depth ≤30 km) with M L ≥ 4.0 that occurred in the grid within the
esting temporal interval previously defined. The number of total
EF-Italy time forecasts is N t = 3407. 
The earthquake catalogue recorded by the INGV Italian Seis-
ic Network during the forecasting window 2010–2020 inside the
SEP polygon (Fig. 1 ) consists of 11 272 events with M L ≥ 2.5.
hey are mapped in Fig. 3 , where the dots’ size increases with the
vents’ magnitude, and their colour changes from blue to yellow as
he occurrence time becomes more recent. A Lilliefors ( 1969 ) test
dentified the value of 2.7 for the completeness magnitude. We stress
hat this value is hands-down underestimated for different reasons
ust after the occurrence of a strong earthquake, thus introducing an
ncompleteness that protracts for a variable time window, usually
amed shor t-ter m aftershocks incompleteness (STAI, Kagan 2004 ;
ippiello et al. 2019 ). 
In the pure prospective experiment starting from 2013 January

1, the number of target events (depth ≤30 km, M L ≥ 4.0) is 182.
en of these events occurred at the border of the CSEP polygon, that
s in the sea or abroad, indeed outside the grid cells on which the
EF-Italy forecasts are computed. Then, they are not considered

n the analysis, leaving a total of 172 target events that are mapped
n Fig. 4 . They occurred in only 107 d of the tested time-window
onsidered, and inside 87 cells of the spatial grid, 19 of which having
ore than one target event. 
Fig. 4 shows that Central Italy experienced the largest number

f target earthquakes, and in fact this area has been interested by
 o  
 strong earthquake sequence started on 2016 August and charac-
erized b y se veral M L ≥ 5.0 e vents occurred till 2017 January. This
s the Amatrice-Norcia-Visso sequence, that began with the M L 6.0
 M w 6.0) event occurred on 2016 August 24, with epicentre between
he municipalities of Accumuli - Amatrice (Rieti Province, Lazio
egion) and Arquata del Tronto (Ascoli-Piceno Province, Marche
egion). Two strong shocks followed on 2016 October 26, with M L 

.4 and 5.9 ( M w 5.4 and 5.9) respecti vel y, near the municipalities
f Visso, Ussita and Castelsantangelo sul Nera (Macerata Province,
arche Region). The strongest event of the Central Italy sequence

ccurred on the next October 30, with M L 6.1 ( M w 6.5) and epicen-
re between Norcia and Preci (Perugia Province, Umbria Region).
bout two months later, and precisely on 2017 January 18, four

dditional shocks occurred with a moment magnitude higher than
. This is actually the strongest sequence registered in the spatio-
emporal tested window we selected for the analysis. 

 T E S T I N G  T H E  R E L I A B I L I T Y  O F  

E F - I TA LY  F O R E C A S T S  

ere, we implement a testing phase that complement the tests car-
ied out in the CSEP framework. In particular, we test heavily over-
apped forecasts of strongly clustered events. To minimize the effect
f strong clustering, we translate the observations in dichotomous
bservations, that is, we consider the occurrence or not of at least
ne target event (depth ≤30 km, M L ≥ 4.0) in each spatio-temporal

art/ggad256_f3.eps
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Figure 4. Map of the 172 target events (depth ≤30 km, M L ≥ 4.0) recorded in the Italian catalogue in the period 2013 January 01–2020 May 26. The size 
increases with the events’ magnitude, while the colour varies with the temporal occurrence (blue to yellow for less to more recent events). The map is masked 
by the CSEP polygon (see Fig. 1 ). 
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bin (Bayona et al. 2022 ): 

O i j : = 

{
1 , if 1 + target events in cell C j during week from run i 
0 , if 0 target events in cell C j during week from run i. 

(1

To handle the marked time overlap of the forecasts, we gather 
all the spatio-temporal bins together in a single, high-dimensional 
array with forecasts ×cells components. This means to flatten the 
multidimensions of space and time in a unique ‘spurious’ dimen- 
sion capturing the general features of the forecasts. More precisely, 
at time i we associate to the cell j only the ensemble forecast λij 

(rate), or P ij (probability); in other words, for every spatio-temporal 
bin we analyse each individual rate or probability, without consid- 
ering that it refers to overlapping weekly time windows. Keeping 
each individual forecast unav oidab ly inflates the number of target 
earthquakes (each individual target earthquake belongs to several 
time windows). Nonetheless, this approach allows us to optimize 
the computational costs, to e v aluate the OEF-Ital y forecasts in their 
whole, and to better reflect the true course of events when the system 

is run in real-time. 
The reliability of the OEF-Italy forecasts in about the first 7 yr 

of real-time operati vity (precisel y, from 2013 January 01 till 2020 
May 26) is then assessed through several statistical procedures, 
briefly summarized in Table S1 of the Supporting Information. 
As mentioned above, these tests complement the analyses made in 
CSEP and highlight some interesting and novel aspects of OEF-Italy 
forecasting reliability. 

4  A  R E V I S E D  N - T E S T  F O R  

OV E R L A P P I N G  T I M E  W I N D OW S  

In this section, we test if the number of target earthquakes is compat- 
ible with the forecasts. We produce 10 000 synthetic binary matrices 
of elements 

ˆ O i j : = 

{
1 , if r i j < P i j 

0 , if r i j ≥ P i j , 

where ( i , j ) ∈ N t × N c and r ij ∼ Unifor m(0,1). Each binar y ma- 
trix is then compared to the binary matrix O = { O i , j } of observed 
target events, whose elements are defined in eq. ( 1 ). This approach 
assumes independency among bins, which are actually heavily over- 
lapped. To overcome this issue, we rescale the simulations in the 
whole temporal window covered by all the 3407 runs by a factor 

F = 

D T, all 

D T 
, where D T , all is the number of days in the total number 

of individual forecasts, about 7 ×3407 (this is a lower bound due 
to the intensification of the forecasts during a crisis), and D T is the 
temporal length (in days) between the first and the last runs dates. 
This factorization allows us to consider the weekly forecasts as if 
they were actually non-overlapped. 

art/ggad256_f4.eps
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Figure 5. Histog ram (g rey bars) and CDF (red step line) of the number 
of spatio-temporal OEF bins with at least one target event, among 10 000 
synthetic catalogues. The dashed black line represents the sum of the overall 
ensemb le probabilities, w hile the dotted b lack one represents the number of 
spatio-temporal bins containing at least one observed target event. 
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Figure 6. The same as Fig. 5 , but removing from the analysis 1 d after each 
M L 5.4 + event (6 events in total). 
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In our case, we find F = 8.826. We divide each component of
he simulation array S = ( Sim 

(1) ,...., Sim 

(10000) ) by this factor, where
im 

( i ) corresponds to the total number of ones obtained over all the
uns in the i th simulation. Finally, we compute the histogram and
he cumulative number of S , and we compare them to the number of
nes in the binary matrix O of observed target events. In the whole
407 ×8993 bins, we count 151 ones . We stress that multiple events
ithin a week are discarded, and that is the reason why we get 151

nstead of 172 target events. 
The procedure just described is actually a way of adapting to the

ase of overlapped forecasts the classical N -statistical test (Zechar
010 ; Zechar et al. 2010 ; Taroni et al. 2018 ). Indeed, we can e v aluate
he consistency between the number of forecasted earthquakes in
ll space–time–magnitude bins, and the number of observed target
vents in a testing spatio-temporal window of interest. 

Results are shown in Fig. 5 , where we plot the histogram (grey
ars) and the cumulative distribution function (CDF, red step line)
f the synthetic observations obtained for all the spatio-temporal
EF bins, after the rescaling procedure described above. The results
ighlight the underestimation of the number of bins with at least
ne observed target earthquake (black dotted line), which falls in
he right tail of the histogram distribution. This is what expected, as
he high incompleteness entailed after the strongest shocks of the
entral Italy sequence naturally induces an underestimation of the

orecasts. Helmstetter et al. ( 2006 ) have shown that STAI should
ast, in general, less than 1 d. Ho wever , to be conserv ati ve, we
emoved here 1 d after each M L 5.4 + event (6 events in total) from
he analysis, thus strongly reducing this effect, as shown in Fig. 6 .

e also repeated the analysis by excluding only 6 and 12 hr, and
e obtained very similar results. 
To further investigate this point, in Fig. 7 we separately deal

ith time (left-hand column) and space (right-hand column). Top
ine panels confirm the consistency between simulations and OEF
ata, both in time and space, while the bottom panels highlight that
he real seismicity differs from synthetic data mainly in correspon-
ence of the Central Italy sequence. The forecasts for which the
ifference is statistically significative, that is, number of observed
vents that is outside the 99 per cent confidence interval (CI) ob-
ained from simulations, are represented in the bottom left panel by
ircles coloured in grey scale from black to white as the difference
ncreases. Although this is not clearly visible from the figure, due
o the superimposition of the circles corresponding to outliers very
lose in time, they are 63 (we discard 7 additional outliers ascribed
o Etna volcano, see Introduction), and are listed in Table S2 of the
uppor ting Infor mation. The cells they are associated to are given
s circles in the bottom right panel of Fig. 7 , and are also mapped in
ig. 8 . We further note that, when removing 1 d after each M L 5.4 +
vent, the outliers reduce to 41. 

We finally focus on two cells involved in the 2016–2017 Central
taly sequence, that is, the ones containing the municipalities of
matrice and Norcia, respecti vel y in top and bottom line panels
f Fig. 9 . By looking at the left-hand plots, we note that the bins
ith at least one observed target event are underestimated only in

he case of Norcia (black dotted line outside the histogram bars).
ndeed, Amatrice was not preceeded by a strong earthquake activity
ike in Norcia, where the incompleteness induced b y pre vious seis-
icity caused the visible underestimation. When we remove from

he analysis 1 d after the two events with M L 5.4 + occurring in
he cell with the municipality of Norcia, simulated and observed
eismicity become again consistent (see Fig. 10 ). For both the two
ells we also compute the 99th percentile of the ‘frequency of at
east one target event among the 10 000 simulations’. We find that,
9 per cent of times, this frequency is below the value of 15 per cent
or the cell with Amatrice, increasing to about 35 per cent for the
ell with Norcia. This is shown in the right-hand panels of Fig. 9 .
nterestingly, these percentages are much higher than those obtained
or low-seismicity areas. For example, in the case of the cell with
he munucipality of Balsorano (L’Aquila Province, Abruzzo Re-
ion), where the strongest event occurred on 2019 November 7
ith magnitude M L 4.4 ( M w 4.4), we found that the frequency is
elow 0.2 per cent. 

 E VA LU  A  T I N G  O E F - I TA LY  T H RO U G H  

O N T I N G E N C Y  VA R I A B L E S  

ere we translate forecasts in predictions defining a threshold for the
robabilities, p ∗, such that the bins with a higher value of OEF-Italy
robability are translated in alarms. The setup of the thresholds p ∗

utomatically induces the identification of four classes of variables
n the forecasting experiment: 

art/ggad256_f5.eps
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Figure 7. Top panels, left (right): in red, temporal (spatial) trend of the number of OEF forecasts (OEF cells) interested by at least one target event, among the 
10 000 synthetic catalogues; in dashed black, sum over the relative ensemble probabilities. Bottom panels, left (right): same simulations of the top panels, but 
compared to the target events observed in time (space); the circles represent the OEF forecasts (relative OEF cells) corresponding to the forecasts outside the 
99 per cent CI obtained from simulations; their colour scales from black to white as the difference between real and synthetic data increases. They are a total of 
63 (see Table S2 of the Suppor ting Infor mation), despite this is not clearly visible from the figure, due to the superimposition of circles corresponding to the 
outliers that are very close in time, or that occur in the same cell. 
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(i) True Positives (TP): alarmed spatio-temporal bins (i.e. with P ij 

> p ∗), where at least one target event has been observed; SUCCESS. 
(ii) False Positives (FP): alarmed spatio-temporal bins (i.e. with 

P ij > p ∗), where no target event has been observed; FAILURE. 
(iii) True Ne gativ es (TN): non-alarmed spatio-temporal bins (i.e. 

with P ij ≤ p ∗), where no target event has been observed; SUCCESS. 
(iv) False Ne gativ es (FN): non-alarmed spatio-temporal bins (i.e. 

with P ij ≤ p ∗), where at least one target event has been observed; 
FAILURE. 

These classes are naturally represented by the contingency Ta- 
ble S3 in the Supporting Information, that is the starting point of an 
analysis based on collected real data. In fact, the four classes can 
be dif ferentl y combined to obtain sev eral v erification indices, each 
focusing on a different aspect of the model’s forecasting skill. 

The four classes can be combined in various ways to build dif- 
ferent variables and indices, each one focusing on a different aspect 
of the experiment. Common denominator is the fact that we are 
analysing here model’s rate values and recorded real earthquakes. 

The results are e v aluated as a function of the threshold p ∗, and 
this could help the authorities responsible for acti v ating state of alert 
procedures (Jordan et al. 2014 ). In Fig. 11, we show the percentages 
of observed target events and spatio-temporal alarmed bins, as well 
as the latters’ rates, for varying p ∗. The figure shows that for a 
threshold p ∗ = 10 −4 , about 5 per cent of the spatio-temporal bins 
are alarmed, and their rates sum up to the 60 per cent of the total; 
in correspondence, about 80 per cent of target events has been 
observed in those alarmed bins. We stress that the value of p ∗ = 

10 −4 is just used here to explain the plot, and it is not a ‘decisional’ 
threshold. We wish to clarify that the selection of such a threshold 
cannot be a scientists’ task; it is strongly related to several external 
factors, linked for example to socioeconomic and political aspects, 
which go beyond scientists’ knowledge and authority. 

The four classes of contingency variables obtained from the data 
collected b y OEF-Ital y as a function of p ∗ are represented in Fig. 12 . 
The True Ne gativ es giv e the highest proportion of observations, 
and in fact the earthquake phenomenon is characterized by a very 
low frequency of high seismicity, which indeed is ascribed to the 
extreme (rare) events probability theory. In the OEF-Italy system, 
the minimum p ∗ for having at least one target event is 3.43e −6, to 
which correspond 1791 True Positives, 71 84 120 True Ne gativ es, 
234 53 239 False Positives (and 1 False Ne gativ e). 
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Figure 8. Map of the OEF cells for which the number of forecasts with at least one target event is significantly higher (outside the 99 per cent CI) than expected 
from the 10 000 simulations. Real seismicity is also shown with size and colour varying with magnitude and temporal occurrence, respectively. 
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In the following subsections, we will consider the Molchan dia-
ram and the Verification measures to test the OEF-Italy reliability
y means of the contingency variables (see Table S1 in the Support-
ng Information). 

.1 Molchan diagram 

he Molchan diagram is used to compare an alarm-based model
ith a reference model of seismicity defined on the same spatial grid

Molchan 1991 ; Molchan & Kagan 1992 ). It is closely related to
he Relative Operating Characteristic (ROC) curve (Fawcett 2006 ),
ut it has the big advantage of accounting for spatial clustering (e.g.
ee Zechar & Jordan 2008 ; Chan et al. 2010 ; Zechar 2010 ; She-
alin et al. 2014 ). For most space–time predictions, the appropriate
eference model is based on previous seismicity, so as to reflect the
ypothesis that future earthquakes will occur most likely where they
ccurred in the past. 

This diagram essentially plots the miss rate ν, that is the propor-
ion of target events outside the alarmed area, versus the fraction τ
f space–time volume occupied by alarm. More precisely, for each
hreshold p ∗, the pair ( τ ( p ∗), ν( p ∗)) is given by: 

( p ∗) = 

{
spatio-temporal bins with P i j > p ∗

} = 

TP + FP 
TP + FP + TN + FN , 

a 

ν( p ∗) = 

{
spatio-temporal bins with P i j ≤ p ∗ but O i j = 1 

} = 

FN 
TP + FN . 

he plot of all these pairs as a function of the threshold p ∗ results
n the Molchan trajectory, which varies between the two estremal
 h  
alues: ( τ = 1 and ν = 0), that corresponds to p ∗ < min P ij , when all
he spatio-temporal bins are alarmed and no target event is missed;
 τ = 0 and ν = 1), that corresponds to p ∗ > max P ij , when no spatio-
emporal bin is alarmed and every target event is missed. When
he diagram shows a diagonal line, no correlation exists between
orecasts and observed seismicity: the alarm function (here, the OEF
robabilities) does not reflect the distribution of target events and
herefore has no predictive skill. An upward/downward arc suggests
nstead a ne gativ e/positiv e correlation. The ideal result is given by
he lowest pair ( τ , ν). 

For our case of study, the Molchan diagram is shown in Fig. 13 .
he curve is well below the bisector, highlighting a positive correla-

ion between OEF-Italy forecasts and observed seismicity. Almost
ll the forecasted earthquakes have location within 75 per cent of the
tudy area with the highest seismicity rate. More in detail, 5 per cent
f False Ne gativ es (miss rates, i.e. 95 per cent of True Positives) is
ocated within about the 24 per cent of the alarmed spatio-temporal
ins, in correspondence of the threshold p ∗ = 2.8e −5. The con-
ingency table at this threshold value gives 1702 True Positives,
32 40 234 True Ne gativ es, 73 97 125 False Positives and 90 False
e gativ es. The ev ents that caused these False Ne gativ es are 15, they
ccurred in 13 different cells, and are situated mostly at the boarders
f the Italian territory or off-shore, as can be seen in Fig. 14 . The
robability gain with respect to the random case can also be appre-
iated. This represents a good result for the OEF-Italy performance.

We finally compute the Area Skill Score ( ASS ) to understand
ow well the alarm function is able to estimate the distribution of
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Figure 9. Synthetic analysis focused on two OEF cells, containing the municipalities of Amatrice and Norcia (top and bottom line panels, respecti vel y). The 
left-hand column contains the histog rams (g rey bars) and the CDFs (red step lines) of the number of temporal OEF bins with at least one target event, among 
10 000 synthetic catalogues. The dashed black lines represent the sum of the overall ensemble probabilities within the specific cell, while the dotted black ones 
represent the number of temporal bins with at least one observed target event. The right-hand column contains the temporal trend of the number of positive 
observations among the 10 000 simulations (in red) and the 99th percentile (horizontal dashed black line). 
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target earthquakes (Zechar & Jordan 2008 , 2010 ). This measure of 
performance is obtained as the integral of the success rate function, 
normalized to the space–time volume occupied by alarm: 

AS S ( τ ) = 

1 

τ

∫ τ

0 
[1 − ν( t )] dt ; 

the larger the statistic, the better the performance. The ASS for the 
OEF-Italy system is given in Fig. 15 . For the largest τ , we obtain 
ASS ∼ 0.7. 

5.2 Verification measures 

The verification measures (Jolliffe & Stephenson 2011 ) represent 
a family of indices obtained as a function of the forecasts, the 
observations and/or their relationship. They could be very use- 
ful to understand and e v aluate the forecasting skill of any bi- 
nary system, like the OEF-Italy one, that in fact can be formal- 
ized in terms of the dichotomous variables ‘0’ or ‘ ≥1’ expected 
VS obser ved target ear thquakes. They are typically adopted in 
weather forecasting applications but, since they are robust gen- 
eral methodologies able to diagnose the performance when fore- 
casts and observations are both available on the same spatial 
grid (Casati et al. 2008 ; Gilleland et al. 2009 , 2010 , see also 
https://www.cawcr.gov.au/projects/v erification/ ), we believ e the y 
can conform to our case, as well. Some authors have already used 
some verification methods for earthquake forecasting (Holliday 
et al. 2005 ; Chen et al. 2006 ; Murru et al. 2009 ), but we stress 
that much attention has to be paid on the proper choice of indices, 
since earthquakes cluster in space and time. For example, the ROC 

method very often used for dichotomous forecasts assumes that the 
e vents are equall y likel y to occur an ywhere in space, therefore it rep- 
resents a weak tool when e v aluating earthquake forecasts (Zechar 
2010 ). 

The proper choice has to be done by considering the specific con- 
text of analysis, which in our case consists in dichotomous variables 
and rare events forecasting. 
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Figure 10. The same as the bottom left panel in Fig. 9 , but removing from 

the analysis 1 d after each M L 5.4 + event (2 events in total). 
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In what follows, we will consider two main subfamilies: the
escriptive and the performance measures. The first allows us to
ake statistical inference on the system inv olved, w hile the second

re ef fecti vel y used to e v aluate the performance of its forecasting
kill. 

.2.1 Descriptive measures 

he descriptive measures are obtained as a function of forecasts
nd observations, but not of their correspondence. They cannot be
sed to e v aluate the performance of the system, but these variables
re basic descriptive statistics that can help to infer underlying
roperties of the system itself. 

The Base Rate (BR) is the percentage of positive observations,
hat is, a sample estimate of the unconditional marginal occurrence
robability of the observed events. Although it is not a characteristic
f forecasting skill, many performance measures are related to it,
nd therefore are sensitive to variations due to the natural variabil-
ty of the observed data (Jolliffe & Stephenson 2011 ). The Rate of
larms (RA) is instead a sample estimate of the marginal proba-
ility of a forecast of occurrence. It is indeed the τ variable in the
olchan diagram. The ratio between the two descriptive measures

ust described gives the frequency bias, or Index of Distorsion (ID).
ince it is computed as the number of forecasts of occurrence over

he number of actual occurrences, an index ID = 1 results in the
nbiased forecasts: the skill is perfect when BR = RA, that is, no
alse outcome. Instead, ID > 1 (ID < 1) indicates an overestimation
underestimation) of the positive observations. The explicit formu-
ations of the three above verification measures are given in eq. ( 2 ),
 hile F ig. 16 shows the relative trends obtained in the case of the
EF-Ital y system, for v arying p ∗. The plot points out that the perfect

kill is obtained for p ∗ = 0.0386. Finall y, the BR v alue constantl y
qual to 5.85e −5 is compatible to the fact that we are forecasting
extreme) rare events. 

BR = 

TP + FN 
TP + FP + TN + FN , 

A = 

TP + FP 
TP + FP + TN + FN = τ, 

TP + FP RA 
ID = TP + FN = BR . (2) F  
.2.2 Performance measures 

he performance measures constitute a subset of the verification
easures that focuses on the correspondence between forecasts and

bservations. They are a very powerful tool to e v aluate the reliability
f a binary-based forecasting system such as OEF-Italy. 

The first performance measure that we discuss is the Probability
f Detection (POD), that is, the proportion of occurrences correctly
orecasted. It is a sample estimate of the probability of the event
o be forecasted, conditional to the fact that this event has been
bserved: 

OD = 

TP 

TP + FN 

. 

his measure is also know as the hit rate, in fact it is the comple-
entary of the miss rate ν in the Molchan diagram. A threshold

robability of 0 (of 1) means that the occurrence is al wa ys (never)
orecasted and then POD = 1 (POD = 0). 

Since the forecasting skill depends on the best trade-off between
aximizing the number of hits and minimizing the number of false

larms, the POD alone is not sufficient for measuring the forecasting
erformance of the system. We therefore introduce the False Alarm
atio (FAR): a sample estimate of the probability of a false alarm,
onditional to the fact that the occurrence has been forecasted: 

AR = 

FP 

TP + FP 

. 

he reliability of this performance measure is strictly connected to
ts dependence on both the Base Rate and the optimal threshold p ∗:
t equals 0 when the skill is perfect, while for zero skill it is FAR =
 − BR. We stress also that ID = 

POD 
1 −FAR , therefore when POD > 1

FAR (POD < 1 − FAR), the binary system of forecasts tends to
verestimate (underestimate) the positive observations. 

An additional measure very often quoted with POD and FAR and
sed in the literature (e.g. see Golian et al. 2011 ) is the Critical
uccess Index (CSI). It still can be calculated without using the
requency of correct rejections, property which makes the CSI a
ery useful measure for e v aluating the forecasts of rare events (as
n OEF). It is defined as 

SI = 

TP 

TP + FP + FN 

, 

nd it can be regarded as a sample estimate of the probability of a hit,
onditional to the fact that this event has been either forecasted, or
bserved, or both. In case of a perfect skill, max CSI = 1; instead, the
inimum value min CSI = 0 is got when there are no True Positives.
he values of CSI corresponding to zero skill could be obtained at
ny point of the interval [0, BR], depending on the proportion
f forecasts of occurrence to non-occurrence in the sample. This
erformance measure strongly depends on the probability threshold
 

∗, whose optimal value is obtained for p ∗ = 

CSI 
1 + CSI . 

Since POD, FAR, ID and CSI are key quality measures of a di-
hotomous system forecast, they are often represented in a single
verification diagram’ (Roebber 2009 ), which allows us to give an
mmediate visualization of the performance skill. The idea follows
rom Taylor ( 2001 ) and Lambert & Boer ( 2001 ), both exploiting
 way to represent the geometric relationship between the three
easures: ‘correlation’, ‘normalized root-mean-square difference

RMSd)’ and ‘variance’ of model performance. More precisely,
 good model is such that forecast and observation simultane-
usly have high correlation, small RMSd and similar variances.
imilarly, the performance skill of a dichotomous system is good
hen POD and CSI are high ( ∼1), FAR is small ( ∼0, or SR = 1-

AR ∼1) and BR is similar to RA (i.e. the percentage of positive
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Figure 11. Percentage of alarmed spatio-temporal bins with respect to the threshold probabilities p ∗. The red line represents the percentage number of alarmed 
bins, while the blue one is the percentage sum of their rates. The percentage of observed target events is also shown as a black line. 

Figure 12. Four classes of variables of the contingency table (see Table S3 in the Supporting Information), obtained from the data collected b y OEF-Ital y, as a 
function of the threshold p ∗. 
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observation approaches the rate of alarms: ID ∼1). These are in- 
deed the quantities represented in the verification diagram which, 
in the case of the OEF-Italy system, is given in Fig. 17 . To ob- 
tain this diagram we used the R Verification Package available at 
https://CR AN.R -project.org/package=verif ication , and we consid- 
ered a subset of probability thresholds to reduce computational cost. 
Sampling uncertainty is automatically computed by the software, 
and is represented in the plot as crosshairs. Moving along the bisec- 
tor towards the upper right of the diagram indicates an increase in 
absolute accuracy. As expected, in our case we observe again that 
the best trade-off (highest POD, SR and CSI, ID ∼1) is obtained for 
p ∗ ∼ 0.038, indicated with a red circle in the figure. Still, several 
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Figure 13. Molchan diagram obtained from the data collected b y OEF-Ital y. The red dashed line corresponds to unskilled forecasts; the blue dotted line 

identifies the 5 per cent of Miss rate (False Ne gativ es); the grey dashed lines indicate the probability gain G = 

1 − ν

τ
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uthors claim that the ideal level of statistical performance is ob-
ained in the area delimited by a CSI higher than 0.6 (e.g. Roberts
t al. 2012 ), and this highlights a large room for improvement that
he OEF-Italy system might ha ve. Finally, w e stress that if we ex-
lude 1 d after the 6 strongest M L 5.4 + events, we obtain a diagram
ho wing a w orse accurac y: this is what e xpected, as in this wa y w e
emove True Positives cases. 

It is important to say that 2 × 2 contingency tables, like in Table S3
f the Supporting Information, have three degrees of freedoms,
nd can be completely expressed by the three verification mea-

ures POD, ID and POFD = 

FP 

FP + TN 

(Stephenson 2000 ), where

he latter index is the so-called false alarms rate, also known as
robability of False Detection, and it indicates the proportion of
on-occurrences that were incorrectly forecasted. In this sense, the
iagram of Fig. 17 is incomplete as it neglects the number of times
hen a null event is forecasted but no observation is recorded (True
e gativ es). Howev er, in rare event forecasting like our case, ne-
lecting this term can be even useful, as the verification of plenty
ri vial non-e vents can inflate the skill (Roebber 2009 ). 

The last score we discuss is the Extremal Dependence Index
EDI, Ferro & Stephenson 2011 ). This is independent of BR, and
recisely a function of only POD and POFD: 

DI = 

ln POFD −ln POD 
ln POFD + ln POD , 

It is specific to measure the correlation between forecasts and ob-
ervations in case of rare events, and ranges in [ − 1, 1]: the value
DI = 1 indicates a perfect positive correlation, and is obtained
hen the False Ne gativ es are 0 (the other contingency variables
eing non-zero). Therefore, EDI can be optimized for biased fore-
asts. The trend of this measure for the OEF-Italy system is given in
ig. 18 as a function of p ∗. We observe that it is almost completely
ncluded in the range [0.6, 1], thus indicating a weak-to-strong pos-
tive correlation between forecasts and observations. This confirms
he results obtained by the Molchan diagram. 

.3 Reliability diagram 

he final analysis we consider to assess the forecasting skill of the
EF-Italy system is the reliability diagram (Jolliffe & Stephenson
011 ; Br öcker & Smith 2007 ). It is a diagnostic check for the
onsistency of probability forecasts of dichotomous events with
espect to the relative observed frequencies. More precisely, it is the
lot of the e xpected cumulativ e distribution of forecast values, and
he observ ed cumulativ e propor tion of obser vations, which shows
ow much the frequency of any dichotomous event is consistent
ith the relative probability forecast. 
The procedure requires the forecasts to be grouped in a count-

ble number of representative bins, whose definition is completely
rbitrary. In our case, in order to avert any loss of information about
he forecasting model’s performance, we use exactly the spatio-
emporal bins produced by OEF. Given the ensemble probabilities
 ij , for ( i , j ) ∈ N t × N c , expected and observed CDFs are therefore
btained as: 

F for ( p 
∗) = 

∑ 

( i, j) ∈ I p ∗ P i j ∑ 

( i, j) ∈ N t ×N c P i j 
, F obs ( p ∗) = 

∑ 

( i, j) ∈ I p ∗ O i j ∑ 

( i, j) ∈ N t ×N c O i j 
, 

here I p ∗ = { ( i, j) ∈ N t × N c | P i j ≤ p ∗} . 
Fig. 19 shows the reliability diagrams obtained for the OEF-Italy

ystem considering all the data (top panel), removing 1 d after the
 events with M L 5.4 + (middle panel), and excluding the forecasts
elative to the entire temporal interval of the Central Italy sequence
bottom panel). The cumulative proportion of earthquakes (blue
ines) fit well the expected CDFs (red lines) only in the period
receeding the Central Italy sequence, or excluding that data. The

art/ggad256_f13.eps


2514 Spassiani et al . 

Figure 14. Seismic map of the 15 earthquakes (occurred in 13 different cells) that caused the 90 False Ne gativ es identified in the Molchan diagram with a 
threshold p ∗ = 2.8e −5, to which corresponds about the 24 per cent of the alarmed spatio-temporal bins (see also Fig. 13 ). 

Figure 15. ASS diagram obtained from the data collected by OEF-Italy. The red dashed line corresponds to unskilled forecasts. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/3/2502/7207398 by IN

G
V user on 20 July 2023

art/ggad256_f14.eps
art/ggad256_f15.eps


OEF Italy 2515 

Figure 16. BR, RA and ID obtained for the OEF-Italy system, for varying p ∗. 

Figure 17. Verification diagram obtained for the OEF-Italy system, for a subset of probability thresholds p ∗. As specified in the plot, contour (dotted) lines 
indicate CSI (ID). Crosshairs represent sampling uncertainty . Finally , the red circle encloses the probability threshold which gives the highest POD, SR and 
CSI (best absolute accuracy of the system). 
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EF-Italy model is shown to overestimate the observed cumulative
roportion of earthquakes from the threshold 10 −4 on, and this is
ue again to the Central Italy sequence. In fact, the discrepancy is
arely reduced when removing the 6 d after the strongest events, and
lmost disappears by excluding the entire sequence, case in which
 good agreement between the two CDFs is obtained. We finally
bserve that the increasing velocity of the observed seismicity is
lower than that of the expected seismicity in the range p ∗ ∈ [10 −4 ,
0 −2 ], while it is faster thereafter. 
J  
 C O N C LU S I O N S  

he main aim of this work was to e v aluate the reliability of the short-
erm seismic forecasts produced by the OEF-Italy system during
ts first years of real-time operativity, in comparison with the real
arthquake catalogue recorded in the same period. We consider as
arget all the events with depth ≤30 km and local magnitude M L 

4.0, occurred in the grid covering the whole Italian territory
epresented in Fig. 1 , within the testing temporal interval 2013
anuary 01–2020 May 26. The probabilistic forecasts were delivered
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Figure 18. EDI obtained for the OEF-Italy system, for varying p ∗. 
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by the OEF-Italy system at the midnight of each day and after the 
occurrence of any M L ≥ 3.5 earthquake, and they consist in the 
weekly forecasts of the target events from the ensemble model, that 
is a weighted combination of three versions of the models ETAS, 
ETES and STEP, largely used in statistical seismology. 

For a proper interpretation of the OEF forecasts, it is worth to 
specify that the models included in the system need to be quickly up- 
dated to integrate the effect of any earthquake occurring during any 
sequence. This may be challenging immediately after a large shock, 
which indeed may produce an abundance of triggered earthquakes 
that are largely incomplete in real-time earthquake catalogues. Un- 
av oidab ly, this leads to the underestimation of the earthquake activ- 
ity in the aftermath of a large event. 

To assess the reliability of such probabilistic forecasts, in this 
paper we accounted for both synthetic and real dichotomous ob- 
servations in each of the N t × N c spatio-temporal bins consid- 
ered in the analysis, where N t is the number of forecasts produced 
b y the OEF-Ital y system in the testing time window, and N c is 
the number of the spatial grid’s cells over which the analysis is 
performed. 

All the statistical methodologies applied for evaluating the per- 
formance of the OEF-Italy system show an overall good agreement 
between expected and observed seismicity, with one exception re- 
lated to the Central Italy sequence. The discrepancy in this case 
is mainly due to the strong incompleteness introduced by the se- 
quence, as well as to the nature of the probabilistic models currently 
involved in OEF, which feed on pro gressi vel y occurring events and 
need time to grasp how much productive is going to be any starting 
aftershock sequence. Another important aspect to specify is that, 
during rele v ant sequences, the minimum reporting threshold to be 
recorded in real-time in the INGV Seismic Monitoring room in 
Rome is raised to M L 4.0. Only a revision at a later stage will in- 
clude smaller events in the database. Therefore, it could happen that 
an event with M L in [3.5, 4) occurs, is not recorded at a first stage 
and therefore the system does not produce the run, but this event 
is included in the catalogue after a certain period of revision. This 
may influence any retrospective analysis of the forecasting skill of 
the system. 

The results we obtained highlight the potential of the OEF 

probabilistic forecasting experiment for the shor t-ter m ear thquake 
prediction in Italy. At the same time, they show some rooms for 
improvement on two major fronts. First, the OEF-Italy system still 
needs some hand corrections during the first hours of an energetic 
seismic sequence to take into account the strong catalogue incom- 
pleteness, which causes a severe underestimation of the expected 
seismicity. Second, the inclusion of additional models, preferably 
based on different assumptions, could give a relevant additional con- 
tribution with respect to the clustering models used so far. Besides 
that, it is necessary to overcome the technical problems related to 
the computational time. To date, the system checks the earthquake 
catalogue to identify M L 3.5 + events every 15 min. This means 
that if the last check occurred at 00:00 and a strong event occurs 
at 00:01, it will be recorded at 00:15, thus introducing a temporal 
delay that could entail underestimation. 

We are no w w orking to make several adjustments to the system 

in the near future. In order to account for STAI, the RESTORE 

algorithm by Stallone & Falcone ( 2021 ) will be included in OEF- 
Italy: it implements a stochastic gap-filling method that detects STAI 
gaps and reconstructs the missing events in a space–time–magnitude 
domain, thus extending the work by Zhuang et al. ( 2017 , 2020 ), that 
replenish the portions of an incomplete seismic catalogue through 
empirical functions describing only the time–magnitude range of 
missing data. 

The possibility to estimate in OEF-Italy the model’s parame- 
ters by means of a Bayesian procedure, as proposed in Omi et al. 
( 2014 ), is also being discussed to reduce uncertainty in the fore- 
casts (Michael et al. 2020 ; van der Elst et al. 2022 ). During the 
sequences of L’Aquila 2009 (Chiaraluce et al. 2011 ) and Pianura 
Padana Emiliana 2012 (Scognamiglio et al. 2012 ), we made a first 
attempt of a daily calibration of the OEF-Italy models. Ho wever , 
in both those cases, we observed an overestimation of the events’ 
number in the tails of the sequences. This is likely due to the fact 
that the parameters were estimated over a considerably large amount 
of data, thus making the estimation so firmly stable that the model’s 
temporal decay was lower than the ef fecti ve course of the sequence. 
A region-specific parameter estimation could be a first step in the 
OEF-Italy system parameters’ updating. A particular attention is 
needed to address the issue of calibrating the OEF-Italy models 
in real-time, also because this would imply a remarkable compu- 
tational cost. Because of these reasons, we are willing to open a 
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Figure 19. Reliability diagrams comparing the CDFs of OEF-expected (red) and observed (blue) seismicity. Top, middle and bottom panels are respecti vel y 
obtained from all the data, removing 1 d after the 6 events with M L 5.4 + , and excluding the forecasts relative to the temporal interval of the Central Italy 
sequence. 
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iscussion with experts in the field, to try to find the best solution
or the Italian system. 

Eventually, we are also planning to include different models in
he OEF-Italy system, both explicitly accounting for incomplete-
ess as in Mizrahi et al. ( 2021 ), and more physics-based models
Mancini et al. 2019 ). We strongl y belie ve that all these improve-
ents will help to increase the OEF-Italy reliability and reveal how

his experiment for shor t-ter m seismic prediction in Italy is even
ore useful, useable and has a greater potential than it is already

elieved to have. 
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