
TYPE Brief Research Report

PUBLISHED 05 July 2023

DOI 10.3389/fams.2023.1152476

OPEN ACCESS

EDITED BY

Jisheng Kou,

Shaoxing University, China

REVIEWED BY

Peter Shebalin,

Institute of Earthquake Prediction Theory and

Mathematical Geophysics (RAS), Russia

Piyang Liu,

Qingdao University of Technology, China

*CORRESPONDENCE

Matteo Taroni

matteo.taroni@ingv.it

RECEIVED 27 January 2023

ACCEPTED 14 June 2023

PUBLISHED 05 July 2023

CITATION

Taroni M, Spassiani I, Laskin N and Barani S

(2023) How many strong earthquakes will there

be tomorrow?

Front. Appl. Math. Stat. 9:1152476.

doi: 10.3389/fams.2023.1152476

COPYRIGHT

© 2023 Taroni, Spassiani, Laskin and Barani.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

How many strong earthquakes
will there be tomorrow?
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In this note, we study the distribution of earthquake numbers in both worldwide

and regional catalogs: in the Global Centroid Moment Tensor catalog, from

1980 to 2019 for magnitudes Mw 5. 5+ and 6.5+ in the first case, and in the

Italian instrumental catalog from 1960 to 2021 for magnitudes Mw 4.0+ and

5.5+ in the second case. A subset of the global catalog is also used to study

the Japanese region. We will focus our attention on short-term time windows

of 1, 7, and 30 days, which have been poorly explored in previous studies. We

model the earthquake numbers using two discrete probability distributions, i.e.,

Poisson and Negative Binomial. Using the classical chi-squared statistical test,

we found that the Poisson distribution, widely used in seismological studies, is

always rejected when tested against observations, while the Negative Binomial

distribution cannot be disproved for magnitudes Mw 6.5+ in all time windows of

the global catalog. However, if we consider the Japanese or the Italian regions,

it cannot be proven that the Negative Binomial distribution performs better than

the Poisson distribution using the chi-squared test. When instead we compared

the performances of the two distributions using the Akaike Information Criterion,

we found that the Negative Binomial distribution always performs better than

the Poisson one. The results of this study suggest that the Negative Binomial

distribution, largely ignored in seismological studies, should replace the Poisson

distribution in modeling the number of earthquakes.

KEYWORDS

earthquake forecast, Poisson distribution, Negative Binomial (NB) distribution,

chi-squared test, seismic catalog

Introduction

One of the goals of statistical seismology is to forecast the number of events in a future

space-time window. To properly determine the probability of the number of events in the

selected space-time window, seismologists use discrete probability distributions, such as the

Poisson distribution and (seldom) the Negative Binomial (NB) distribution [1]. In particular,

besides long-term forecasting applications (usually known as probabilistic seismic hazard

analyses (e.g., Meletti et al. [2], Danciu et al. [3]), the Poisson distribution is also widely

used in short-term forecasting (time windows from 1 day to 1 month), both for making

earthquake forecasts and for testing models based on independent observations [4–6]. In

these cases, the time variations of the seismic rates are described by the Omori-Utsu law

[7, 8], but the number of events in a selected future time window is modeled by a Poisson

distribution [4, 5]. Another approach involves the epidemic space-time models (e.g., the

ETAS model, Ogata [9]); in this case, the number of events in a selected future time window

is modeled by computing a large number of simulations [10].
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The use of Poisson distribution in short-term forecasting

is criticized, since the clustering of seismicity leads to an

overdispersed distribution of the number of events [11]. This

conclusion is also consistent with recent studies showing that

the temporal distribution of seismicity is governed by long-term

correlation [12–14], a property of earthquake clustering.

The key to the success of the Poisson model for earthquake

occurrence mostly relies on its simplicity. However, on the one

hand, a Poisson distribution with only one parameter is too simple

to capture the variability of the number of seismic events. On the

other hand, a distribution based on seismic sequences modeling

(e.g., using the ETAS model, [9]), albeit more suitable, is difficult

to apply in real-time due to the large number of simulations

needed [15]. The NB distribution can be a good compromise: it

is more flexible than the Poisson distribution, since it uses two

parameters instead of one, and is less complicated than an ETAS-

based simulation approach.

In this paper, we aim to test whether the NB distribution,

which has already been successfully used for modelingthe number

of earthquakes on a global scale (worldwide catalog with a time

window of 1 year, [16]), can be used for shorter time windows, and

whether this distribution has better characteristics compared to the

Poisson distribution.

Data

In this study, we use both global and regional catalogs. The

first catalog we consider is the Global Centroid Moment Tensor

(GCMT) [17, 18], from 1980 to 2019 (Figure 1A), which has already

been used in some important studies on earthquake statistics (e.g.,

19, 20). We selected events with a maximum depth of 50 km

and a moment magnitude (Mw) above 5.5 [19]. Other studies

FIGURE 1

(A) Earthquake epicenters from the GCMT catalog from 1980 to 2019, Mw 5.5+, maximum depth 50 km; the red polygon bounds the Japanese zone

considered in this study. (B) Earthquake epicenters according to the HORUS catalog from 1960 to 2021, Mw 4.0+, maximum depth 30 km; the red

polygon bounds the Italian zone considered in this study.

suggest that Mw 5.5 may be too optimistic in the first years of

the catalog [20] or just after the strongest events [21]. Thus, we

also assume Mw 6.5 as a second lower threshold to be used:

from this value on, the catalog can be considered complete. These

two thresholds are also associated with earthquake and tsunami

risk, since events with Mw 5.5+ can cause significant damage to

buildings [22], and events with Mw 6.5+ can generate a tsunami

wave that cannot be neglected [23]. We also consider a subset of

the GCMT catalog, focused on the Japan region (see Figure 1A),

to better investigate the characteristics of the Poisson and NB

distributions in this very active seismic region. The second catalog

we consider is the Italian instrumental catalog with homogenized

magnitudes (HORUS catalog, [24]), from 1960 to 2021. Here we

have removed the offshore events to achieve reliable completeness

(Figure 1B). We started our tests from a magnitude Mw 4.0, as

suggested by the authors of the catalog [24], but also used Mw 5.5

as the second threshold because these two values are used in the

Italian operational earthquake forecasting model [5].

Methods

As suggested in the Introduction, to model the number of

earthquakes we consider here two discrete probability distributions:

Poisson and Negative Binomial.

According to the Poisson distribution, events occur

independently of each other with a known constant rate λ.

The corresponding probability density function (PDF) is given by:

pλ(x) =
λx

x!
e−λ, x = 0, 1, ...,∞. (1)

This distribution is widely used in probabilistic seismic

hazard analysis [25], but it does not take into account the well-
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TABLE 1 Goodness-of-fit test and AIC results for the Poisson and the Negative Binomial distributions on global data.

Magnitude Time window (days) Distribution Chi-squared test (p-value) AIC

5.5+ 1 Poisson 2.6x10∧(−118) 35168

5.5+ 1 Negative Binomial 1.6x10∧(−7) 34695

6.5+ 1 Poisson 2.9x10∧(−20) 7855.5

6.5+ 1 Negative Binomial 0.40 7762.2

5.5+ 7 Poisson 1.5x10∧(−105) 1079.7

5.5+ 7 Negative Binomial 1.5x10∧(−4) 1032.2

6.5+ 7 Poisson 7.8x10∧(−9) 4082.5

6.5+ 7 Negative Binomial 0.01 4016.1

5.5+ 30 Poisson 4.2x10∧(−44) 3619.9

5.5+ 30 Negative Binomial 0.05 3318.9

6.5+ 30 Poisson 1.9x10∧(−5) 1859.1

6.5+ 30 Negative Binomial 0.31 1818.8

N.A. corresponds to a Not Available p-value due to the low degrees of freedom of the chi-squared test (influenced by the number of bins and the number of parameters).

TABLE 2 Goodness-of-fit test and AIC results for the Poisson and the Negative Binomial distributions on Japanese data.

Magnitude Time window (days) Distribution Chi-squared test (p-value) AIC

5.5+ 1 Poisson 2.8x10∧(−52) 7207.6

5.5+ 1 Negative Binomial 1.9x10∧(−5) 6717.4

6.5+ 1 Poisson N. A. 1217.9

6.5+ 1 Negative Binomial N. A. 1195.4

5.5+ 7 Poisson 5.1x10∧(−38) 4176.7

5.5+ 7 Negative Binomial 1.4x10∧(−4) 3617.2

6.5+ 7 Poisson N. A. 839.5

6.5+ 7 Negative Binomial N. A. 805.5

5.5+ 30 Poisson 2.6x10∧(−37) 2231.2

5.5+ 30 Negative Binomial 0.02 1809.1

6.5+ 30 Poisson 4.5x10∧(−8) 563.8

6.5+ 30 Negative Binomial N. A. 537.2

N.A. corresponds to a Not Available p-value, due to low degrees of freedom of the chi-squared test (influenced by the number of bins and the number of parameters).

known property of earthquakes to cluster in space and time.

Indeed, the Poisson variance is too small to reflect the actual

distribution of the number of earthquakes [11]. An overdispersed

discrete distribution that better reflects the branching nature

of the seismic events is the Negative Binomial distribution.

The branching nature of earthquakes reflects their triggering

property: when an earthquake occurs, the probability of a

repeated earthquake in a close space-time window increases

[11]. Therefore, the branching nature of earthquakes leads

to the observed spatiotemporal clustering of seismicity. Kagan

[11] provides some theoretical arguments relating seismicity

clustering to NB distribution. Due to its simple formulation,

NB is also the preferred choice for practical applications over

other overdispersed distributions, such as the generalized Poisson

distribution [26, 27]. The PDF of the NB distribution is

given by:

pr,p(x) =
Ŵ(r + x)

Ŵ(r)Ŵ(x+ 1)
pr (1− p)x, x = 0, 1, ... ,∞. (2)

Unlike the Poisson distribution, which is just based on the rate

parameter (λ), the NB distribution depends on two parameters (r,

p), the second of which can be used to characterize overdispersion

in the seismic process (i.e., earthquake clustering). In this paper,

we estimate the value of the parameters of the two distributions

under study using the classical Maximum-Likelihood Estimation

(MLE) technique:

LL (X | θ) =
∑N

i=1
log

[

pθ (xi)
]

(3)

where X = {x1, . . . xi, . . . xN} is the set of observations, i.e., the

number of events in the i-th time window, N is the number of time
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TABLE 3 Goodness-of-fit test and AIC results for the Poisson and the Negative Binomial distributions on Italian data.

Magnitude Time window (days) Distribution Chi-squared test (p-value) AIC

4.0+ 1 Poisson 1.6x10∧(−120) 10877

4.0+ 1 Negative Binomial 6.9x10∧(−18) 9070.8

5.5+ 1 Poisson N. A. 479.7

5.5+ 1 Negative Binomial N. A. 435.9

4.0+ 7 Poisson 2.4x10∧(−82) 6695.0

4.0+ 7 Negative Binomial 6.1x10∧(−20) 5027.6

5.5+ 7 Poisson N. A. 365.5

5.5+ 7 Negative Binomial N. A. 312.9

4.0+ 30 Poisson 2.9x10∧(−84) 3851.3

4.0+ 30 Negative Binomial 1.4x10∧(−10) 2655.8

5.5+ 30 Poisson N. A. 280.1

5.5+ 30 Negative Binomial N. A. 229.9

N.A. corresponds to a Not Available p-value, due to low degrees of freedom of the chi-squared test (influenced by the number of bins and the number of parameters).

FIGURE 2

Global catalog; empirical (blue bars) vs. theoretical distributions (red line for Poisson, black dashed line for Negative Binomial) for magnitudes Mw

5.5+ and 6.5+ and for time windows of 1, 7, and 30 days.

windows considered, θ is the vector of parameters (one for Poisson

and two for NB), and pθ is the PDF of the selected distribution

[Equation (1) for Poisson and Equation (2) for NB].

Goodness-of-fit test and Akaike
Information Criterion

To test the theoretical distributions against observations (from

the seismic catalog), we use the well-known chi-squared goodness

of fit test [28, 29]. This test is suitable for comparing observations

with discrete probability distributions (as in our case for the

number of seismic events in a selected time window), whose

parameters are estimated from the same dataset of observations

[30]. A classic p-value threshold used to reject a hypothesis

is 0.05; since here we performed) 6 tests for each model

and for each of the three datasets (world, Japan, Italy, we

must use a correction to avoid the “multiple testing problem”

[31]. Therefore, using the Bonferroni correction we consider

p-value 0.05/6 = 0.0083 as the lower limit of the threshold

0.05/6= 0.0083 [32].

The Akaike Information Criterion (AIC, [33]) is a classical

method used to compare the performances of two or more models
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FIGURE 3

Japanese zone empirical (blue bars) vs. theoretical distributions (red line for Poisson, black dashed line for Negative Binomial) for magnitudes Mw

5.5+ and 6.5+ and for time windows of 1, 7, and 30 days.

FIGURE 4

Italian zone empirical (blue bars) vs. theoretical distributions (red line for Poisson, black dashed line for Negative Binomial) for magnitudes Mw 4.0+

and 5.5+ and for time windows of 1, 7, and 30 days.
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with different number of parameters:

AIC = 2k− 2 log
(

L̂
)

(4)

where k is the number of model parameters, and L̂ is the maximum

value of the likelihood. The smaller the AIC, the better the model.

Here we use AIC to compare the performances of the Poisson and

the Negative Binomial distributions.

Result and discussion

Our results are presented in Tables 1–3. Table 1 shows that,

in the short-term, the Negative Binomial distribution fits well for

events with Mw 6.5+ in all considered time windows of 1, 7,

and 30 days in the case of the GCMT catalog. In fact, the p-

values of the chi-squared test (Table 1) here increasingly exceed

0.05/6 = 0.0083 (two out of three are very large, i.e., >0.3), which

demonstrates the best performance of the NB distribution for Mw

6.5+ events. This good fit can also be seen in the AIC values,

which are always lower for the NB distribution than for the Poisson

distribution. The results just discussed are valid forMw 5.5+ events

and the time window of 1 month in the global catalog: the Poisson

distribution should be rejected, while the NB distribution is not. As

for the chi-squared test for the 1 and 7 days cases and Mw 5.5+

GCMT events, the p-values associated with the NB distribution

are significantly greater than or the Poisson distribution (several

orders of magnitudes higher); however, both distributions fail the

goodness-of-fit test (small absolute p-values). However, the results

of the AIC speak in favor of the NB distribution for all the

considered time windows (1, 7, and 30 days).

Now let’s look at the results for the Italian and Japanese catalogs.

Due to the low degrees of freedom, the chi-squared test applied

to these spatial shorter-scale catalogs provides no explanation for

almost any of the considered time intervals. We get multiple Not

Available p-values, as shown in Tables 2, 3. However, the cases in

which the p-value is calculated are in complete agreement with the

results referring to the global catalog. In particular, we observe that

for Japanese events Mw 5.5+ within 1 month, the results of the chi-

squared test favor the NB distribution. Also, similarly to the global

catalog and despite the fruitless chi-squared test, the AIC values for

the Poisson distribution are always higher than for NB. This allows

us to vote again in favor of the NB distribution.

In general, we can conclude that, in the short term, the NB

distribution should be preferred over the Poisson distribution,

especially when considering significant seismicity on a global scale.

This is consistent with Kagan [11] study, which states that the NB

distribution “is clearly a better approximation” to the distribution

of the number of annual earthquakes. In Figures 2–4 we show the

empirical distribution of the observations (i.e., histograms) along

with the estimated Poisson and Negative Binomial distributions for

all the time windows. Looking at these figures, we can appreciate

the differences between the two distributions (e.g., Figure 2 Mw

5.5+ 30 days, or Figure 4 Mw 4.0+ 30 days); in some cases, the

distributions seem very similar because in the linear scale of these

figures is not possible to appreciate the differences in bins with a

low number of events (e.g., Figure 2 Mw 5.5+ 7 days, for more

than 15 events).

Conclusion

In this study, we tested two different probability distributions

for the number of earthquakes in short-time windows (1 day,

7 days, 30 days) using worldwide seismic data (Mw 5.5+ and

6.5+ from 1980 to 2019), data from the same catalog but with a

focus on Japan, and regional seismic data from Italy (Mw 4.0+

and 5.5+ from 1960 to 2021). As already shown in previous

studies, we found that the Poisson distribution cannot properly

describe the number of events. Conversely, the Negative Binomial

distribution performed better, especially for large magnitude events

(Mw 6.5+) of the global catalog, for all considered time windows.

However, in the Japanese and Italian regional catalogs, the Negative

Binomial distribution fails to describe the number of events,

especially in Italy for magnitudes Mw 4.0+ and 5.5+, although

with better performances compared to the Poisson distribution.

These new results demonstrate the power of the Negative Binomial

distribution in forecasting the number of earthquakes in short-time

windows, in particular if we compare its performance with that

of the Poisson distribution. Our findings for time windows of 1

and 7 days could be especially useful for short-term earthquake

forecasting. Both models based on the Omori-Utsu law and

epidemic models (like ETAS) are widely used for short-term

earthquake forecasting, along with the Poisson distribution to

model the number of events in a future time window; our results

suggest also considering the Negative Binomial distribution to

model the number of events.
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