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ABSTRACT

In this work we present a segmentation study of wildfire scenarios
using PRISMA hyperspectral data and a methodology based on con-
volutional neural networks and transfer learning. PRISMA (Precur-
sore IperSpettrale della Missione Applicativa, Hyperspectral Precur-
sor of the Application Mission) is the hyperspectral mission by ASI
(Agenzia Spaziale Italiana, Italian Space Agency) launched in 2019
providing images with a spectral range of 0.4–2.5 µm and an aver-
age spectral resolution less than 10 nm. We used the PRISMA hy-
percube acquired during the Australian bushfires of December 2019
in New South Wales to train a one-dimensional convolutional neural
network and perform a transfer learning in the Bootleg Fire of July
2021 in the Fremont-Winema National Forest in Oregon. The gen-
eralization ability of the network is discussed and potential future
applications are presented.

Index Terms— Wildfires, Convolutional Neural Networks,
Transfer Learning, PRISMA, Hyperspectral Imagery

1. INTRODUCTION

Remote sensing (RS) data can help significantly the management of
emergency and disaster events, such as wildfires, volcanic eruptions,
landslides. In this work, we focus on the analysis of wildfire scenar-
ios, studying the potentialities of the combined use of hyperspectral
(HS) data and machine learning (ML). Satellite-based optical RS is
a cost-effective way to detect, map, and investigate wildfires [1]. For
instance, the assessment of the burned areas was studied by using the
National Oceanic and Atmospheric Administration/Advanced Very
High Resolution Radiometer (NOAA/AVHRR) and Landsat TM [2],
while a near real-time global fire monitoring service is offered by
NASA using MODIS and VIIRS data [3].

HS imagery can offer many advantageous features in support
to fire detection [4] as it provides the required information in the
infrared wavelengths to detect active fires and burnt areas [5]. Pre-
vious results investigated EO-1 Hyperion data for fire detection and
temperature retrieval over selected Alaskan boreal forest fires [6]. In
literature, spectral analyses of wildfire and burning biomass based
on the potassium emission signatures have been already performed
by using laboratory, airborne and space-borne HS-RS [7], [8], and
plumes, clouds and fires have been characterized by using HS im-
ages [9].

In this work, HS images from the Italian satellite PRISMA
(PRecursore IperSpettrale della Missione Applicativa) will be used.
The detailed description of PRISMA starting from the initial design
phase to the operative service can be retrieved in literature [10]–
[13]. PRISMA is the first mission with a highly technological HS

camera in a series of planned similar missions [14]–[16], and is
proving its potentialities in many research fields such as crop map-
ping [17], aquatic ecosystem health monitoring [18], forest fire fuel
mapping [19], marine plastic litter detection [20], wildfire detection
and monitoring [21]. As demonstrated by this non-exhaustive list of
studies, PRISMA is offering to the research community new high-
quality data paving the way for new applications often based on
advanced analysis approaches, from deep learning [22] to quantum
ML Riyokaaz˙2022.

In this work, we analyse two wildfire scenarios, the first one lo-
cated in New South Wales, Australia, and happened in December
2019, the second one located in Fremont-Winema National Forest,
Oregon, US, and happened in July 2021. Starting from previous
promising results combining ML and HS data [17], [21], [23], [24],
this work aims to help the advancement of the research with the fol-
lowing contributions:

1. Presenting the potentialities of deep learning methodologies
based on 1D convolutional neural networks (CNNs) to catch
spectral dependencies in wildfire scenarios.

2. Evaluating the generalization ability of the proposed method-
ology, performing a transfer learning (TL) in Oregon using
a model trained in Australia, i.e., performing inferences in a
different ecosystem with respect to the one used for the train-
ing.

3. Discussing the possibility to effectively use ML-based method-
ologies to provide alerts in case of new wildfire.

The rest of the paper is organized as follows. Sec. 2 deals with
the description of the area of interest and the HL datacube. In Sec.
3 the classification approach based on CNNs and TL is explained,
while in Sec. 4 the results of the proposed analyses are reported. A
critical discussion of the output of this study is reported in Sec. 5
and conclusions are provided in Sec. 6.

2. DATA

2.1. Areas of Interest

This study focuses on two different areas, the first one in Australia
and the second one in Oregon, USA. The reference labelled pixels
used for training, validating, and testing the CNN have been manu-
ally identified by analysing the spectral signature of the pixels in the
images. With this regard, five classes have been introduced, specifi-
cally Fire, Smoke, Burned areas, Vegetation, and Bare soil.
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Fig. 1. RGB PRISMA composite image in the Australian AOI with
input labelled points.

2.1.1. New South Wales, Australia

The first study area of this paper is in Australia, in New South Wales,
about 250 km north of Sydney in the Ben Halls Gap National Park
(BHGNP), and it has been previously investigated in [21]. The park
is located at a comparatively high altitude that results in generally
cool temperatures and high rainfall. However, in late 2019, the si-
multaneous occurrence of high temperatures and wind speeds, and
low relative humidity, produced the conditions for the development
of a high-intensity wildfire behavior. The RGB composite of the
study area is reported in Fig. 1 along with the labelled points used
for training and testing the CNN. As can be seen, two major active
wildfires can be identified, a southern one around 151.2 ◦E, 31.59
◦S, and a northern one around 151.3 ◦E, 31.46 ◦S. A third smaller
active wildfire is located North-West around 151.18 ◦E, 31.39 ◦S.
The PRISMA image over this area of interest has been acquired on
December 27, 2019. The number of labelled pixels identified in the
Australia image is reported in the first three rows of Table 1.

2.1.2. Fremont-Winema National Forest, Oregon, USA

The second study area of this paper is located in the Fremont-
Winema National Forest in Oregon (approx. 42.616°N, 121.421°W).
Here, the Bootleg Fire started on July 6, 2021, with the cause at-
tributed to lightning. This event gained widespread attention na-
tionwide for two reasons: 1) the Bootleg Fire was co-located with
a high-voltage transmission line connecting hydropower from the
Pacific North-West to electricity demand centers in Los Angeles,
California, and 2) the fire’s area expanded incredibly fast. The fire
area is a mix of grass/shrub and open to dense timber stands, which
previously experienced beetle kill, resulting in concentrations of dry
forest fuels1. On July 15, airborne data collections were not possi-
ble because the Bootleg Fire was generating pyrocumulus along its

1More information can be found at
https://inciweb.nwcg.gov/incident/7609/ (visited on May 03, 2022).

Fig. 2. RGB PRISMA composite image in the Oregon AOI with
input labelled points.

South-East extent. By the time of the satellite acquisitions on July
17, 2021, the Bootleg Fire was about 1008 km2, and would not be
contained until October 1, 2021 with a final extent of 1,674 km2.
The RGB composite of the study area is reported in Fig. 2 along
with the labelled points using testing the TL approach. The number
of labelled pixels identified in the Oregon image is reported in the
last row of Table 1.

2.2. PRISMA Imagery

The PRISMA satellite was launched on 22 March 2019 and holds a
HS and panchromatic payload to acquire images with a worldwide
coverage. The HS camera works in the spectral range of 0.4–2.5 µm,
with 66 VNIR (Visible and Near InfraRed) channels and 173 SWIR
(Short-Wave InfraRed) channels. The average spectral resolution is
less than 10 nm on the entire range with an accuracy of ±0.1 nm,
while the ground sampling distance of PRISMA images is about 5
m and 30 m for panchromatic and HS camera, respectively.

The PRISMA data are made available for free for research pur-
poses by the Italian Space Agency (ASI) [11]. HS and panchromatic
data are delivered in HDF5 format in four levels (L):

1. L1, radiometrically corrected and calibrated at-sensor data;
2. L2B, geolocated at-ground spectral radiance product;
3. L2C, geolocated at-surface reflectance product; and
4. L2D, geocoded version of the Level 2C product.

In this work, we used Level 2D data, specifically the image
acquired on 2019-12-27, 00:08:27 UTC in Australia, coordinates
31.49°S, 151.30°E, and the image acquired on 2021-07-17, 19:03:35
UTC in Oregon, coordinates 42.63°N, 121.17°W.



Table 1. Number of labelled reference pixels, in Australia and Oregon, used for training and testing the CNN.

Wildfire Location Usage 0 - Fire 1 - Smoke 2 - Burned areas 3 - Vegetation 4 - Bare soil Total

Australia, North-East Train & Val 58 10 30 50 40 188
Australia, South Test 11 11 9 10 10 51
Australia, North-West Test 5 0 5 5 5 20
Oregon, North-Wast Test 72 9 47 50 40 218
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Fig. 3. Architecture of the CNN model for the segmentation analy-
sis.

3. METHODS

3.1. Architecture of 1D Convolutional Neural Network

The CNN model used in this work is inspired by the one described
in [25], it has been already used in [21] and is represented in Fig. 3.
The input is the pixel spectral signature, e.g., an array with C = 230
elements comprising SWIR and VNIR PRISMA channels (after re-
moval of empty and overlapping channels). The first hidden layer
is a one-dimensional (1D) convolutional layer with kernel equal to
3, n1 =112 filters, same padding, relu activation function, and l2
kernel regularizer. It is followed by a max pooling layer with pool
size of 2 and stride of 2. After a flattening layer, the result is passed
to a fully connected layer of 128 units with ReLU activation. The
last layer is a dense unit for the multi-class classification with soft-
max activation function. Note that the values of C1 and C2 in Fig.
3 depend on the architecture of the network and can be easily eval-
uated. The model is trained using the Adam optimizer and the cat-
egorical crossentropy loss function. The whole network has been
implemented using Python and Keras. The segmentation analysis is
performed by running the model for each pixel in the image.

3.2. Transfer Learning Approach

To test the generalization ability of the proposed classification
methodology, the CNN model is trained in the Australian image
and then it is tested over the image in Oregon. The challenging
operation consists in the fact that the ecosystems captured in the
two images are different, and there is no a-priori guarantee that the
model can generalize effectively. In this work, we only propose a TL
without fine-tuning, which means that the network is not re-trained
with some reference pixels from the AOI in Oregon. More detailed
analysis considering different TL approaches will be carried out in
the future.

 

Fig. 4. Segmentation results in the entire Australian AOI and over
three zoomed areas around active wildfires.

4. RESULTS

The results are reported separately for the Australian case, where the
model has been trained using the dataset over the North-East area,
and for the Oregon case.

4.1. Model Training

The results of the model training and testing over the Australian area
are shown in Fig. 4. Here, one can appreciate the segmentation re-
sults over the entire PRISMA image and in the three selected areas,
where it can be seen how smooth and low-noisy is the result. Pre-
cision, recall and F1 scores are reported in the first three rows of
Table 2. It is worthy to note that the performances over the training
area (North-East wildfire) and over the test areas (North-West and
South areas) are almost the same, thus proving a perfect generaliza-
tion ability over near areas.

4.2. Transfer Learning Analysis

The CNN model trained over the North-East wildfire in Australia has
been tested over the Oregon labelled points previouly shown in Table
1. As can be seen from Table 2, an overall F1 score of 79% has been
reached which, even though lower than the F1 values in Australia,
represents a really good performance considering that the Oregon



Table 2. Precision, Recall, and F1 scores in the four identified
area. The Australia, North-East dataset has been used for training,
whereas the others are used as test.

Wildfire Location Precision Recall F1

Australia, North-East 0.98 0.98 0.98
Australia, South 0.98 0.98 0.98
Australia, North-West 1.00 0.95 0.97
Oregon, North-East 0.85 0.79 0.79

 

Fig. 5. Segmentation results in the entire Oregon AOI and over one
zoomed area around active wildfires.

Fig. 6. Confusion matrix for the Oregon transfer learning test case.

ecosystem is completely different from the Australian one2. From
the confusion matrix in Fig. 6, we can highlight that active fires and
smoke classes are perfectly recognized, whereas higher confusion is
noted among the other classes. The segmentation results are shown
in Fig. 5.

2Note that, using all the labelled Australian points as training data, the F1
score only improves to 80%.

5. DISCUSSIONS

The results reported in this paper prove a very important fact. To cor-
rectly detect wildfires with a CNN-based approach using PRISMA
data, we do not need neither very deep models nor big quantity of
data. With a relatively small network and few very good quality in-
put data, our methodology successfully passed our TL challenge in
Oregon. Indeed, several comments are in order. First, the F1 value in
Oregon is in line with many previous segmentation studies. Second,
looking at the reported confusion matrix, one can note that active
fires and smoke classes are detected with an accuracy of 100%. As
the correct detection of wildfires is of preeminent importance in case
of emergency and disaster management, this result clearly suggest
that our approach can be successfully used in future applications.
Third, it is noteworthy that our successful result is mainly due to the
very high quality of the PRISMA data, in terms of signal-to-noise
ratio, spectral resolution, spectral interval, etc. The very precise and
unique spectral response of wildfires captured by PRISMA allows
us to properly recognize active fires in different areas of the world,
even in images that were never seen by the network. Finally, it is
relevant to note that we demonstrated that very good segmentation
results can be achieved with a small network and a small amount of
training data. Dealing with complex HS data does not mean that the
model must be very deep to reach good perfomances, as well as it
does not imply that a very big training dataset is to be used. On the
contrary, dealing with good HS data, as the PRISMA ones, enables
the usage of relatively small networks and relatively small training
dataset.

There are still some research points to be addressed in the fu-
ture. For instance, a more detailed analysis of the TL methodology
is required. In this study, we only reported the results having used as
training dataset only a portion of the available labelled pixels in the
Australian image (for consistency and for brevity). Even though we
already tested that using all the available Australian labelled pixel
for the training does not improve consistently the performances in
Oregon, we will investigate other research opportunities related to
the way the TL is applied. For instance, a comparison between the
approach described in this paper with a fine-tuning approach, where
the network is re-trained for few epochs using labelled pixels from
the new Oregon area, would highlight how much the results can be
improved when using a model with a bit of direct knowledge of the
inference area.

6. CONCLUSION

In this paper, we have use PRISMA hyperspectral data to perform
a segmentation analysis over wildfire scenarios. First, we trained
a convolutional neural network in an image acquired in Australia,
in 2019, over the bushfires in New South Wales. The training and
testing over the Australian region performed successfully, reaching
precision, recall, and F1 scores close to one. Second, we performed
a transfer learning study by studying the results of the model infer-
ences over an image acquired in Oregon, in 2021, over the Boot-
leg Fire. Here, the precision of our model is 85%, whereas recall
and precision are around 80%. These results demonstrate the fea-
sibility of our approach, especially because in the Oregon test case
the classes active fire and smoke are recognized with an accuracy of
100%.



7. REFERENCES

[1] P. Barmpoutis, P. Papaioannou, K. Dimitropoulos, et al., “A
review on early forest fire detection systems using optical
remote sensing,” Sensors, vol. 20, no. 22, 2020. DOI: 10.
3390/s20226442.

[2] C. Domenikiotis, A. Loukas, and N. R. Dalezios, “The use
of NOAA/AVHRR satellite data for monitoring and assess-
ment of forest fires and floods,” Natural Hazards and Earth
System Sciences, vol. 3, no. 1/2, pp. 115–128, 2003. DOI:
10.5194/nhess-3-115-2003.

[3] D. Davies, G. Ederer, O. Olsina, et al., “NASA’s Fire In-
formation for Resource Management System (FIRMS):
Near Real-Time Global Fire Monitoring Using Data from
MODIS and VIIRS,” NASA Technical Reports GSFC-E-
DAA-TN73770, 2020.

[4] S. Veraverbeke, P. Dennison, I. Gitas, et al., Hyperspectral
remote sensing of fire: State-of-the-art and future perspec-
tives, 2018. DOI: 10.1016/j.rse.2018.06.020.

[5] A. Barducci, D. Guzzi, P. Marcoionni, et al., “Comparison of
fire temperature retrieved from SWIR and TIR hyperspectral
data,” Infrared Physics Technology, vol. 46, no. 1, pp. 1–
9, 2004, Workshop on Advanced Infrared Technology and
Application. DOI: 10.1016/j.infrared.2004.03.
001.

[6] C. F. Waigl, A. Prakash, M. Stuefer, et al., “Fire detection and
temperature retrieval using eo-1 hyperion data over selected
alaskan boreal forest fires,” International Journal of Applied
Earth Observation and Geoinformation, vol. 81, pp. 72–84,
2019. DOI: 10.1016/j.jag.2019.03.004.

[7] S. Amici, M. J. Wooster, and A. Piscini, “Multi-resolution
spectral analysis of wildfire potassium emission signatures
using laboratory, airborne and spaceborne remote sensing,”
Remote Sensing of Environment, 2011. DOI: 10.1016/j.
rse.2011.02.022.

[8] A. Vodacek, R. L. Kremens, A. J. Fordham, et al., “Re-
mote optical detection of biomass burning using a potassium
emission signature,” International Journal of Remote Sens-
ing, vol. 23, no. 13, pp. 2721–2726, 2002. DOI: 10.1080/
01431160110109633.

[9] M. K. Griffin, S. M. Hsu, H. h. K. Burke, et al., “Charac-
terization and delineation of plumes, clouds and fires in hy-
perspectral images,” in International Geoscience and Remote
Sensing Symposium (IGARSS), 2000. DOI: 10.1117/12.
410349.

[10] L. Candela, R. Formaro, R. Guarini, et al., “The PRISMA
mission,” in International Geoscience and Remote Sensing
Symposium (IGARSS), 2016. DOI: 10.1109/IGARSS.
2016.7729057.

[11] R. Guarini, R. Loizzo, C. Facchinetti, et al., “PRISMA hy-
perspectral mission products,” in International Geoscience
and Remote Sensing Symposium (IGARSS), 2018. DOI: 10.
1109/IGARSS.2018.8517785.

[12] R. Loizzo, R. Guarini, F. Longo, et al., “PRISMA: The Italian
hyperspectral mission,” in International Geoscience and Re-
mote Sensing Symposium (IGARSS), 2018. DOI: 10.1109/
IGARSS.2018.8518512.

[13] R. Loizzo, M. Daraio, R. Guarini, et al., “PRISMA Mission
Status and Perspective,” in International Geoscience and Re-
mote Sensing Symposium (IGARSS), 2019. DOI: 10.1109/
IGARSS.2019.8899272.

[14] E. Carmona, J. Avbelj, K. Alonso, et al., “Data processing
for the space-based DESIS hyperspectral sensor,” in Interna-
tional Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences - ISPRS Archives, 2017. DOI:
10.5194/isprs-archives-XLII-1-W1-271-
2017.

[15] L. Guanter, H. Kaufmann, K. Segl, et al., The EnMAP space-
borne imaging spectroscopy mission for earth observation,
2015. DOI: 10.3390/rs70708830.

[16] J. Nieke and M. Rast, “Towards the copernicus hyper-
spectral imaging mission for the environment (CHIME),”
in International Geoscience and Remote Sensing Sympo-
sium (IGARSS), 2018. DOI: 10.1109/IGARSS.2018.
8518384.

[17] D. Spiller, L. Ansalone, F. Carotenuto, et al., “Crop Type
Mapping Using PRISMA Hyperspectral Images and One-
Dimensional Convolutional Neural Network,” in 2021 IEEE
International Geoscience and Remote Sensing Sympo-
sium IGARSS, 2021, pp. 8166–8169. DOI: 10 . 1109 /
IGARSS47720.2021.9554175.

[18] M. Bresciani, C. Giardino, A. Fabbretto, et al., “Applica-
tion of New Hyperspectral Sensors in the Remote Sensing
of Aquatic Ecosystem Health: Exploiting PRISMA and DE-
SIS for Four Italian Lakes,” Resources, vol. 11, no. 2, 2022.
DOI: 10.3390/resources11020008.

[19] R. U. Shaik, G. Laneve, and L. Fusilli, “An Automatic Pro-
cedure for Forest Fire Fuel Mapping Using Hyperspectral
(PRISMA) Imagery: A Semi-Supervised Classification Ap-
proach,” Remote Sensing, vol. 14, no. 5, 2022. DOI: 10 .
3390/rs14051264.

[20] M. Kremezi, V. Kristollari, V. Karathanassi, et al., “Pan-
sharpening PRISMA Data for Marine Plastic Litter Detec-
tion Using Plastic Indexes,” IEEE Access, vol. 9, pp. 61 955–
61 971, 2021. DOI: 10.1109/ACCESS.2021.3073903.

[21] D. Spiller, L. Ansalone, S. Amici, et al., “Analysis and detec-
tion of wildfires by using prisma hyperspectral imagery,” The
International Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, vol. XLIII-B3-2021,
pp. 215–222, 2021. DOI: 10.5194/isprs-archives-
XLIII-B3-2021-215-2021.

[22] S. T. Seydi, M. Hasanlou, and J. Chanussot, “DSMNN-Net:
A Deep Siamese Morphological Neural Network Model for
Burned Area Mapping Using Multispectral Sentinel-2 and
Hyperspectral PRISMA Images,” Remote Sensing, vol. 13,
no. 24, 2021. DOI: 10.3390/rs13245138.

[23] A. Piscini and S. Amici, “Fire detection from hyperspectral
data using neural network approach,” in Remote Sensing for
Agriculture, Ecosystems, and Hydrology XVII, 2015. DOI:
10.1117/12.2194911.

[24] S. Amici and A. Piscini, “Exploring PRISMA Scene for Fire
Detection: Case Study of 2019 Bushfires in Ben Halls Gap
National Park, NSW, Australia,” Remote Sensing, vol. 13,
no. 8, 2021. DOI: 10.3390/rs13081410.

[25] W. Hu, Y. Huang, L. Wei, et al., “Deep convolutional neural
networks for hyperspectral image classification,” Journal of
Sensors, 2015. DOI: 10.1155/2015/258619.

https://doi.org/10.3390/s20226442
https://doi.org/10.3390/s20226442
https://doi.org/10.5194/nhess-3-115-2003
https://doi.org/10.1016/j.rse.2018.06.020
https://doi.org/10.1016/j.infrared.2004.03.001
https://doi.org/10.1016/j.infrared.2004.03.001
https://doi.org/10.1016/j.jag.2019.03.004
https://doi.org/10.1016/j.rse.2011.02.022
https://doi.org/10.1016/j.rse.2011.02.022
https://doi.org/10.1080/01431160110109633
https://doi.org/10.1080/01431160110109633
https://doi.org/10.1117/12.410349
https://doi.org/10.1117/12.410349
https://doi.org/10.1109/IGARSS.2016.7729057
https://doi.org/10.1109/IGARSS.2016.7729057
https://doi.org/10.1109/IGARSS.2018.8517785
https://doi.org/10.1109/IGARSS.2018.8517785
https://doi.org/10.1109/IGARSS.2018.8518512
https://doi.org/10.1109/IGARSS.2018.8518512
https://doi.org/10.1109/IGARSS.2019.8899272
https://doi.org/10.1109/IGARSS.2019.8899272
https://doi.org/10.5194/isprs-archives-XLII-1-W1-271-2017
https://doi.org/10.5194/isprs-archives-XLII-1-W1-271-2017
https://doi.org/10.3390/rs70708830
https://doi.org/10.1109/IGARSS.2018.8518384
https://doi.org/10.1109/IGARSS.2018.8518384
https://doi.org/10.1109/IGARSS47720.2021.9554175
https://doi.org/10.1109/IGARSS47720.2021.9554175
https://doi.org/10.3390/resources11020008
https://doi.org/10.3390/rs14051264
https://doi.org/10.3390/rs14051264
https://doi.org/10.1109/ACCESS.2021.3073903
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-215-2021
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-215-2021
https://doi.org/10.3390/rs13245138
https://doi.org/10.1117/12.2194911
https://doi.org/10.3390/rs13081410
https://doi.org/10.1155/2015/258619

	 Introduction
	 Data
	 Areas of Interest
	 New South Wales, Australia
	 Fremont-Winema National Forest, Oregon, USA

	 PRISMA Imagery

	 Methods
	 Architecture of 1D Convolutional Neural Network
	 Transfer Learning Approach

	 Results
	 Model Training
	 Transfer Learning Analysis

	 Discussions
	 Conclusion
	 References

