
1. Introduction
Wildfires are natural phenomenon which both influence and are influenced by climate change (Grutzen & 
Andreae, 1990). They have been operating for millions of years driving the plant evolution (Archibald et al., 2018; 
Pausas & Keeley,  2009) influencing the distribution of biomes and plant community, the O2 contribution 
(Rogers et al., 2020) and remain necessary for the persistence of key terrestrial ecosystems on Earth (Pausas & 
Bond, 2019). However, the rapid change in fire regimes driven by extreme weather, land use change, vegetation 
distribution and climate change (Veraverbeke et al., 2017; Ward et al., 2012) result in more intense and frequent 
fires with increased sizes and altered seasonality and severity (Abatzoglou & Williams,  2016; McLauchlan 
et al., 2020; R. G. Miller et al., 2019) which affects negatively the ecosystem resilience, natural and cultural 
resources, infrastructure and harm human health (Ward et al., 2012).

A blend of factors as fire intensity, rate of spread, residence time, intensity, flame lengths and combustion 
phase (e.g., smoldering, flaming and associated temperature) characterize the way a fire reacts (fire behavior) 
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to the influences of fuel, weather and topography and can be linked with the ecological processes (McLauchlan 
et al., 2020).

Wildfire temperature retrieval (Kennard et  al.,  2005) is of great interest as it helps to characterize wildfires 
effects and their potential impact. For example, diverse temperatures of a fire are associated to diverse types of 
particles and gas emissions (Andreae, 2019; Andreae & Merlet, 2001; Boulet et al., 2011; Freeborn et al., 2008; 
Kohlenberg et al., 2018; Ross et al., 2013; Wooster et al., 2005) while studies have linked wildfires temperature 
to the degree of damage that fires cause to the landscape (severity) (Auld & O’Connell,  1991; Dickinson & 
Johnson, 2001).

In the last few decades Earth Observation (EO) satellite have been used to analyze many fire characteris-
tics, including: fire intensity (Johnston et  al.,  2017) fire temperature (Barducci et  al.,  2004; Dennison & 
Matheson, 2011; Matheson & Dennison, 2012; Waigl et al., 2019), fire radiative power (FRP) (Kaufman, 
Justice, et al., 1998; Matson & Dozier, 1981; Wooster et al., 2005), smoke composition (Kaufman, Hobbs, 
et  al.,  1998; Ross et  al.,  2013; van Leeuwen & van der Werf,  2011) and vegetation mortality (Bright 
et al., 2019; Key & Benson, 2006; J. D. Miller & Thode, 2007; Quintano et al., 2015; Roy et al., 2006; Zheng 
et al., 2016).

Detection and accurate monitoring of risk areas is becoming increasingly important to counteract severe and 
destructive wildfires. As reported in the survey paper (Barmpoutis et al., 2020), satellite-based optical remote 
sensing (RS) represents a cost-effective way to detect, map, and investigate wildfires. For instance, in Domenikiotis 
et al. (2002, 2003) the assessment of the burned areas was investigated using the National Oceanic and Atmos-
pheric Administration/Advanced Very High-Resolution Radiometer (NOAA/AVHRR) and Landsat (Chuvieco 
et al., 2019; Roy et al., 2019). Active fire localization from space traditionally makes use of sensors operating 
in the Middle Infrared (MIR) between 3 and 5 μm and Thermal Infrared (TIR) between (8–12 μm) as these two 
are not influenced (Kaufman et al., 1990) by reflectance component. For example, NASA is providing near real-
time global fire “hotspot” monitoring using MIR and TIR data from MODIS and VIIRS (Davies et al., 2020). 
The detection algorithms are based on the strong contrast between emission spectra of ambient not burning areas 
and areas of active fires (flaming temperature 1000 K and smoldering 600 K), with the availability of MIR and 
TIR bands enabling the development of subpixel fire detection (Wooster et al., 2013). However, because of the 
emitted spectral radiance in the MIR (3–5 μm) atmospheric window is about three order of magnitude higher that 
the ambient land surface, sensors need to implement specific strategy to minimize saturation effect. For example, 
MODIS has two bands centered 3.96 μm with different saturation temperature and the Land Surface Temperature 
Radiometer (SLSTR) on board of Sentinel 3 has two bands, F1 (3.74 μm) and F2 (10.85 μm) optimized for fire 
detection.

In this study we focus on active fires and techniques to retrieve temperatures by using the SWIR (Short Wave-
length InfraRed) spectral range. The use of SWIR spectral channels to detect wildfire has been researched by 
Morisette et al.  (2007) who developed a detection algorithm based on the bands 8 centered at 2,330 nm and 
band 3 centered at 820 nm available in the Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) sensor on board of Terra satellite; the algorithm was later applied to different ecosystems (Csiszar 
et al., 2006; Giglio et al., 2008; Morisette et al., 2007) with promising results.

Hyperspectral sensors mounted on airborne platforms such as NASA's AVIRIS have been used to derive daytime 
hyperspectral fire detection indices (Dennison, 2006; Dennison & Roberts, 2009; Vodacek et al., 2002). Still, two 
aspects in fire detection with hyperspectral technology need to be emphasized: (a) the detection of the emitted 
radiance must be separated from the reflected surface reflectance, (b) if the fire occupies a small percentage of 
the pixel, the result is a dilution effect of the measured strength of the radiance which can be difficult to sepa-
rate from the background. Later, other airborne sensors such as the SIMGA (Amici et al., 2011) have been used 
to test wildfires detection indexes on Mediterranean ecosystems. Temperature retrieval by using hyperspectral 
sensors have been initially investigated by Green et al. (1998) and Dennison and Roberts (2009) by using AVIRIS 
(Boardman & Green, 2000).

There have been few evaluations for the utility of hyperspectral (HS) data from satellite platforms, mostly 
limited by the availability of such sensors. Previous results based on NASA's EO-1 Hyperion have shown the 
HS potentialities for remote sensing applications (Waigl et  al.,  2019) for both fire detection and temperature 
retrieval over selected Alaskan boreal forest fires. Hyperspectral indices for fire detection and monitoring include 
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the continuum-interpolated band ratio (CIBR) that measures the depth of a carbon dioxide absorption line at 
2,010 nm, the potassium emission, and the Hyperspectral Fire Detection Index (HFDI).

The problem of temperature estimation using HS data has been covered in previous research, such as Barducci 
et  al.  (2004), Dennison  (2006), Dennison and Matheson  (2011), Matheson and Dennison  (2012). The wild-
fire temperature parameter is relevant to characterize wildfires and their potential impact on both natural and 
anthropic environments. Different temperatures of a fire are associated with diverse types of particles and gas 
emissions. The temperature of the fire is also vital to deriving the radiative power (FRP) which describes the rate 
of emitted thermal energy (Kaufman, Justice, et al., 1998; Matson & Dozier, 1981; Wooster et al., 2005).

In this paper, HS data from the Italian satellite PRISMA (PRecursore IperSpettrale della Missione Applicativa) 
will be used previous studies already focused on PRISMA for different land applications. For instance, PRISMA 
data have been used to perform a preliminary crop type mapping analysis, specifically a simple one-dimensional 
convolutional neural network has been proposed to solve a binary classification problem (Spiller, Ansalone, 
Carotenuto, & Mathieu, 2021). Moreover, wildfires in Australia have been studied using the same convolutional 
neural network as the previous study to carry out a multi-class semantic segmentation, and providing a prelimi-
nary temperature estimation analysis (Spiller, Ansalone, Amici, et al., 2021).

The area of interest of this study is located in Oregon (USA) over a large and rapidly expanding fire during July 
2021. Overall, fire activity in the US was similar to both the 5 and 10 year averages, though compared to the last 
10 years, some areas such as the Pacific Northwest experienced higher number of wildfires (+61%) and other 
areas such as Alaska were lower (−24%), as well as very different areas burned (Pacific Northwest +40%, Alaska 
−78%) (National Interagency Coordination Center, 2022).

The continuous spectral signature of PRISMA along with neural network analysis can open new unexplored 
research opportunities (Amici et al., 2011; Piscini & Amici, 2015). The main contributions of this work to the 
state-of-the-art are the following:

1.  Qualitative and quantitative analysis of the area of interest using PRISMA data and the HFDI index.
2.  Development of the algorithm for temperature retrieval, improving and adapting to PRISMA an existing 

approach discussed in literature (Waigl et al., 2019).
3.  Comparison of the obtained results with ECOSTRESS and LANDSAT 8 data.

The rest of the paper is organized as follows. Section 2 deals with the description of the satellite-based data used 
for this work. The methodologies are described in Section 3. The results of the proposed analyses are reported 
in Section 4, followed by a critical discussion of the outputs in Section 5. Finally, conclusions are provided in 
Section 6.

2. Data
In this section, the region of interest and the data used for this study are discussed. It is noteworthy that the choice 
of the study area is dictated by the opportunity of having good temporal overlap of different sensor data over the 
Bootleg Fire to perform a comparison analysis. Additionally, the hyperspectral data approach proposed in this 
study could be extended to other areas and applications.

2.1. Study Area

The Bootleg Fire started on 6 July 2021 in the Fremont-Winema National Forest in Oregon (approx. 42.616°N, 
−121.421°E), with the cause attributed to lightning. It gained immediate and widespread attention in the U.S. 
for two reasons. First, the Bootleg Fire was co-located with a high-voltage transmission line connecting hydro-
power from the Pacific Northwest to electricity demand centers in Los Angeles, California. Second, the fire's 
area expanded incredibly fast (Figure 1). The fire area was a mix of grass/shrub and open to dense timber stands, 
which previously experienced beetle kill, resulting in concentrations of dry forest fuels. On July 15, airborne data 
collections were not possible because the Bootleg Fire was generating pyrocumulus clouds and its own weather 
along its southeast extent. Nine days later, at the time of the satellite acquisitions on 17 July 2021, the Bootleg 
Fire was about 274,000 acres (1,008 km 2) (National Interagency Coordination Center, 2022), and would not be 
fully contained until 1 October 2021 with a final extent of 413,717 acres (1,674 km 2).
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2.2. Remote Sensing Satellite Data

In this section the data used for the analysis of wildfires in the areas of inter-
est is described. Even though the focus of this research is on the hyperspec-
tral data from PRISMA, ECOSTRESS and Landsat 8 data were also used to 
verify the results and add consistency to our PRISMA findings. The overall 
features of the three sensors are reported in Table 1.

2.2.1. PRISMA

PRISMA is the Italian hyperspectral mission launched on 27 March 2019 on 
board the VEGA (Vettore Europeo di Generazione Avanzata) rocket by ASI 
(Italian Space Agency). PRISMA represents the first mission with a dedi-
cated hyperspectral (HS) camera, though other similar missions have been 
recently launched (Guanter et al., 2015) or are planned in the future years 
(Carmona et al., 2017; Cawse-Nicholson et al., 2021; Nieke & Rast, 2018).

The PRISMA sensor is a pushbroom instrument with a 30 km wide imag-
ing swath composed by two cameras: the optical spectrometer (hyperspectral 
camera) operates in the spectral range spanning between 400 and 2,500 nm 
with a spectral resolution ≤12 nm and at Ground Sampling Distance (GSD) 

of 30 m/pixel and a Panchromatic camera that acquires the same area at 5 m/pixel. PRISMA characteristics are 
listed in Table 1 (PRISMA User Manual - Issue 1.2, 2020) while extended description of instrument perfor-
mances and characteristics can be found in Ananasso et al. (2009), Candela et al. (2016), Coppo et al. (2020), 
Galeazzi et al. (2008), Guarini et al. (2018), Loizzo et al. (2016, 2018, 2019).

PRISMA is quite unique as it offers a free of cost on demand acquisition request system based on a priority list. 
This public request system was used to place a strip map over the likely Bootleg Fire's future extent. The PRISMA 
data are released in four levels:

1.  Level 1 (Hyperspectral/PAN) is radiometrically corrected and calibrated TOA (Top Of Atmosphere). In the 
specific the L1 TOA data have been used for the Hyperspectral Fire Detection Index.

2.  Level 2B Geolocated at Ground Spectral Radiance Product (Hyperspectral/PAN);
3.  Level 2C Geolocated at-surface Reflectance Product (Hyperspectral/PAN);
4.  Level 2D Geocoded version of the Level 2C product (Hyperspectral/PAN) [MicrosoftWord-PRISMAUser-

Manual_Is1_1.docx(asi.it)].

Table 1 
PRISMA, ECOSTRESS and Landsat 8 Sensors Characteristics

Feature PRISMA ECOSTRESS Landsat 8 Unit

Swath width 30 384 (at 400 km) 185 km

Spatial resolution 30 (VIS-SWIR) 70 30 (VIS-SWIR) m

100 (TIR)5 (PAN)
15 (PAN)

Spectral channels VNIR 66 channels, (0.4–1.010) SWIR 1 (1.66 not measured) VIS 5 channels (0.433–0.885) μm

SWIR (174 channels 0.920–2.5) TIR 5 channels (8.29, 8.78, 9.20, 
10.49–12.09) a

SWIR 3 channels (1.560–2.2)

PAN 1 channel (400–700) TIR 2 channels (10.9,12.0)

Spectral bandwidth VNIR (0.009–0.013) TIR (0.35, 0.31, 0.39, 0.41, 0.61) N/A μm

SWIR (0.009–0.0145)

Altitude 615 ∼400 705 km

Revisit time 29 days (nadir) and 7 days (off nadir) 4-5, daily over Contiguous US 16 Day

Radiometric accuracy Better than 5%, (absolute) Nominal 0.5 K Nominal 0.4 K at 300 K (for the thermal 
channels only)

 aOnly bands 8.29, 10.49 and 12.09 μm are currently being collected (https://ecostress.jpl.nasa.gov/instrument).

Figure 1. Bootleg fire, northeast flank. From INCIWEB—
Incident Information System—https://inciweb.nwcg.gov/incident/
photograph/7609/38/119119.
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In this study we are using the L2B Bottom of Atmosphere level data to derive the surface temperature.

2.2.2. Other Satellite Data: ECOSTRESS and LANDSAT 8

ECOSTRESS is a multispectral thermal camera Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) 
launched on July 2018 and operated from the International Space Station (ISS) from the Japanese Experiment 
Module-External Facility (JEM-EF). ECOSTRESS initially had 5 TIR channels, though some on-board memory 
failure early on resulted in 3 channels being operational after 15 May 2019 (Band 2: 8.78 μm, Band 4: 10.49 μm, 
and Band 5: 12.09 μm). We found that the closest coincident PRISMA and ECOSTRESS acquisitions over the 
Bootleg fire was 17 July 2021 at 10:23 UTC corresponding to 3:23 local US Pacific Time, about 9 hr in advance 
of PRISMA. ECOSTRESS data was accessed through the NASA AppEEARS system (LP DAAC - AppEEARS, 
2022). The land surface temperature (LST) is usually available from the AppEEARS system in 1–2 days after 
acquisition and uses the method of Hook and Hulley (2019). This LST product is released at 70 × 70 m spatial 
resolution and as a digital number. A multiplicative correction factor equal to 𝐴𝐴 0.02 transforms the digital number 
values into Kelvin (K).

Landsat 8 was launched on 11 February 2013. Landsat-8's Operational Land Imager (OLI) is a pushbroom sensor 
that operates in the visible (VNIR) and short-wave infrared (SWIR) spectral regions, and a TIRS sensor with 
two TIR bands. The Landsat temperature product is part of the Landsat Collection 2 U.S. Analysis Ready Data 
(ARD). It is calculated by applying the Single Channel algorithm on TIRS Band 10, and TM/ETM plus Band 6 
(Zanter, 2018). The Provisional Land Surface Temperature based on Landsat 4–8 mission's product is available 
within the boundary of the North American Regional Reanalysis (NARR) grid and is accessible through Earth-
Explorer USGS website (EarthExplorer, n.d.). The surface temperature (ST) values can be converted into Kelvin 
degrees by using the conversion formula

ST(𝐾𝐾) = STproduct × 0.00341802 + 149 (1)

as reported in Engebretson (2022).

2.2.3. Satellites Data Set

The programmed acquisition of PRISMA resulted in a PRISMA passage over the Bootleg Fire on 17 July 2021 at 
19:03 UTC (Table 2) corresponding to 12:03 p.m. local time. Due to the spatial extent of the fire, the mosaicking 
of two PRISMA images was implemented to cover the area of the fire (Figure 2). The false color composition is 
used to highlight unburned vegetation in red, burnt areas in black-brown and smoke released by active fires in 
blues.

The closest to the PRISMA acquisition were ECOSTRESS on 17-07-2021 at 10:23 UTC corresponding to 
3:23 a.m. local time and Landsat 8 on 18-07-2021 (Table 2) at 18:50 UTC corresponding to 11:50 a.m. local 
time.

Table 2 
Satellite Scenes Features

Sensor Scene start time (UTC) Scene Latitude (N) Longitude (W)

ECOSTRESS 17-07-2021 ECO2LSTE.001_SDS_LST_doy2021198102331_aid0001 42° 37' 16" −121° 13' 24"

10:23:31

PRISMA 17-07-2021 PRS_L2B_STD_
OFFL_20210717190331_20210717190335_0001 a

42° 53' 18.96" −121° 5' 2.4"

19:03:31

17-07-2021 PRS_L2B_STD_
OFFL_20210717190335_20210717190340_0001 b

42° 37' 35.04" −121° 10' 8.4"

19:03:35

Landsat 8 18-07-2021 LC08_CU_003005_20210718_20210802_02_ST 42° 54' 14" −121 29' 24"

18:50:00

 aReferred as PRISMA North image.  bReferred as PRISMA South image.
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3. Methods
3.1. HFDI

HFDI (Dennison & Roberts, 2009) allows the identification of active fire locations using specific bands in the 
SWIR hyperspectral range. The algorithm was developed by Dennison using airborne AVIRIS hyperspectral data 
(Dennison & Roberts, 2009) to produce accurate results in detecting pixels with fire. The HFDI is defined as:

HFDI =
𝐿𝐿2430 − 𝐿𝐿2060

𝐿𝐿2430 + 𝐿𝐿2060
 (2)

where 𝐴𝐴 𝐴𝐴2430 and 𝐴𝐴 𝐴𝐴2060 are the spectral radiances at two specific SWIR bands around 2,430 and 2,060 nm expressed 
in Wm −2 sr −1 μm −1. These two bands were found to provide the best performance using AVIRIS spectral data 
(Dennison & Roberts, 2009; Matheson & Dennison, 2012). The HFDI was shown to be valuable as a detection 
index from space as well (Amici & Piscini, 2021; Waigl et al., 2019). In this study the PRISMA wavelengths 
2,061 and 2,428 nm were chosen as the closest to the Dennison's best choice. In order to identify the active fire 
front, a thresholding approach is applied. The selection of the threshold required assumptions to be made and are 
discussed in the following session.

3.1.1. Threshold Selection

The HFDI index was initially derived by Dennison and Roberts (2009) who performed a comprehensive sensi-
tivity analysis to identify the best bands combination and derive the threshold for separating burning from not 
burning pixels. They used airborne data from the AVIRIS sensor which covered a spectral range between 370 and 
2,510 nm with 10 nm bandwidth (Green et al., 1998). They tested the HFDI sensitivity to elevation, atmospheric 
gases, atmospheric pathlength, solar zenith angle and water vapor. They tested the sensitivity of HFDI between 

Figure 2. (a) ECOSTRESS temperature map acquired 9 hr before the PRISMA acquisition (b) PRISMA false colors two images North and South composition which 
includes both visible and infrared light captured a large portion of burn scar and active areas. The vegetation appears in shades of red and bare ground in shades of 
tan. The burned areas appear dark black and the smoke from the active fire front in blueish. (c) Landsat 8 daytime temperature map acquired 24 hr after the PRISMA 
acquisition.
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0 and 3 km (Dennison & Roberts, 2009) and the solar zenith angle between 0° and 75°. Because PRISMA's 
maximum angle is 20.7° (PRISMA User Manual - Issue 1.2, 2020), the dependency of HFDI from elevation may 
be assumed of second order. Because of HFDI utilizes bands which are subject to atmospheric contribution, this 
can influence the HFDI.

Diverse empirical approaches have been used in past studies to select the critical threshold to separate burning 
from not burning (Dennison & Roberts, 2009). In this study, the separation of burning and not burning is useful 
for the selection of the buffer zone for the temperature retrieval.

The first approach consistent with the literature considers the whole values in the image and through visual 
selection by sliding to adjust the value of the threshold upward until no pixels outside the apparent fire area are 
detected as burning. The second approach analyses the PRISMA HFDI values in correspondence with unburned, 
burned and mixed. The background study was conducted in the following way: eleven rectangular Region Of 
Interest (ROI) were selected in each of the two HFDI images within different categories such as vegetation, 
burned, bare soil, urban, cloud/smoke and water. For each ROI, the number of pixels (counts), minimum and 
maximum values, and the ROI's mean value and the standard deviation were retrieved.

3.2. Temperature Estimation

3.2.1. Description of the Methodology

Hyperspectral images can be used to estimate high temperatures of emitting sources. As reported in Dennison 
and Roberts (2009), at temperatures above 500 K, there is measurable emitted radiance in the shortwave infrared, 
that is, the spectral region from 1,400 to 2,500 nm which is detected by PRISMA. In this work, we employ an 
approach based on the technique presented by Dennison in Veraverbeke et al. (2018), even though some imple-
mentation differences have been introduced and they which will be explained later.

Temperature estimation can be attained by using the PRISMA level 2B images, that is, the bottom of atmos-
phere (BOA) radiance requested on the online portal and directly processed by ASI, and a linear mixture model. 
The pixel signal is expressed as a function of the wavelength 𝐴𝐴 𝐴𝐴 and can be approximated by the linear mixture 
(LM) signal 𝐴𝐴 𝐴𝐴LM . This approximation is a weighted combination of 𝐴𝐴 𝐴𝐴 background signals 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗bkg and 𝐴𝐴 𝐴𝐴 sources 

𝐴𝐴 𝐴𝐴fire(𝑇𝑇𝑖𝑖), 𝑖𝑖 = 1, 2,… , 𝑛𝑛 , modeled as Planck gray body at temperature 𝐴𝐴 𝐴𝐴𝑖𝑖 ,

𝐿𝐿fire(𝑇𝑇𝑖𝑖) =
2𝜀𝜀𝜀𝜀𝜀2

𝜆𝜆5(𝑒𝑒(𝜀𝜀𝜀∕𝑘𝑘𝜆𝜆𝑇𝑇𝑖𝑖) − 1)
 (3)

where 𝐴𝐴 𝐴𝐴 ∈ (0, 1) is the emissivity, 𝐴𝐴 𝐴𝐴 = 2.99792458 ⋅ 10
8 m/s is the speed of light, 𝐴𝐴 𝐴 = 6.62607015 ⋅ 10

−34 Js is 

Planck's constant, and 𝐴𝐴 𝐴𝐴 = 1.380649 ⋅ 10
−23 J⋅K −1 is Boltzmann's constant. The linear mixture signal 𝐴𝐴 𝐴𝐴LM is thus 

given as

𝐿𝐿LM =

𝑛𝑛
∑

𝑖𝑖=1

𝑝𝑝𝑖𝑖𝑖fire𝐿𝐿fire(𝑇𝑇𝑖𝑖) +

𝑚𝑚
∑

𝑗𝑗=1

𝑝𝑝𝑗𝑗𝑖bkg𝐿𝐿𝑗𝑗𝑖bkg𝑖 (4)

where the weight parameters 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖fire and 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗bkg are defined such that 𝐴𝐴
∑𝑛𝑛

𝑖𝑖=1
𝑝𝑝𝑖𝑖𝑖fire +

∑𝑚𝑚

𝑗𝑗=1
𝑝𝑝𝑗𝑗𝑖bkg = 1 . A least square 

method is used to estimate the parameters 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖fire , 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗bkg and the temperatures 𝐴𝐴 𝐴𝐴𝑖𝑖 .

3.2.2. Introduced Novelties

The differences with respect to the original method proposed in Waigl et al. (2019) are:

1.  The background signals 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗bkg are selected directly from the image, not from an external spectral library
2.  The BOA radiance is used instead of the top of atmosphere (TOA) radiance.

The selection of the 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗bkg signals should be done carefully, as they must not contain “hot pixels,” that is, signals 
associated to hot temperatures. Indeed, in this case the background signal would absorb the contribution of the 
emitting source 𝐴𝐴 𝐴𝐴𝜆𝜆(𝑇𝑇𝑖𝑖) , thus leading to an invalid and wrong estimation. Our selection is based on the preliminary 
analysis based on the HFDI, as discussed in Section 3.1. Accordingly, the background signals are chosen within 
the pixels having HFDI less than a user-defined threshold, with those choices discussed in Sections 4.1 and 4.2. 
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To perform a temperature estimation, we solve Equation 4 𝐴𝐴 𝐴𝐴 times, selecting each time 𝐴𝐴 𝐴𝐴 random background 
points within those having the proper HFDI. This approach is robust against the uncertainty in the knowledge of 
the true signal mixture as the temperature value is provided by averaging the 𝐴𝐴 𝐴𝐴 estimations. Moreover, it allows 
us to provide an a-posteriori confidence interval of the result. It is also noteworthy that choosing the background 
signal directly from the image maximizes the correlation between the analyzed spectrum with the ones used as 
background. Indeed, according to the first law of geography, stated by Waldo Tobler as “everything is related to 
everything else, but near things are more related than distant things” (Tobler, 1970), we expect to properly esti-
mate the background signal of the pixel of interest by looking at nearby pixels.

Regarding the differences between using TOA or BOA signal, PRISMA allows the users to download both TOA 
and BOA radiance products (see Section 2.2.1 for further details). Since the BOA radiance is already processed 
by ASI using MODTRAN (PRISMA Documentation Area, 2020), this choice simplifies the overall approach as 
the Planck curve does not need to be processed to take care of the atmosphere, as was done in Waigl et al. (2019). 
The only processing required for the Planck curve is to set to zero the signal in correspondence of the SWIR 
atmospheric water absorption bands.

Finally, it is worth mentioning that in all the previous studies concerning temperature estimation from hyperspec-
tral data, the reference emission model was the Planck black body was 𝐴𝐴 𝐴𝐴 = 1 . Consistent with the literature, and 
given that it is not easy to provide a proper emissivity to each pixel of the PRISMA image, in this work we will 
use 𝐴𝐴 𝐴𝐴 = 1 , and possible investigations for the case of the gray body hypothesis will be addressed in future works.

3.2.3. Practical Implementation and Limitation

Even though PRISMA has been demonstrated to provide users with a quality image which is not comparable 
with previous similar mission EO1.Hyperion (e.g., PRISMA signal-to-noise ratio reaches 200:1 in the VNIR 
channels and 100:1 in the SWIR channels, see PRISMA Documentation Area, (2020) for further information), 
PRISMA was not specifically designed to detect hot events. As a consequence, when detecting a signal from a 
wildfire, what happens most of the time is that the signal saturates after about 1,900 nm. To show this issue, the 
PRISMA radiance and reflectance spectral behavior are reported in Figure 3 in correspondence of four pixel 
categories: fire, vegetation, smoke, and freshly burned. The spectral signatures of vegetation, smoke, and freshly 
burned classes behave in an expected way, whereas a typical saturation problem can be appreciated from the 
radiance of the fire pixel (blue dots). Indeed, the fire signal behaves in an unexpected way as it goes almost flat, 
instead of increasing, after the atmospheric absorption interval around 1,900 nm. In a similar fashion, the reflec-
tance saturates at its maximum value, which is 1, indicating that overall sensed signal is higher that the nominal 
one received by the Earth from the Sun. As a consequence, the proposed algorithm cannot use all bands in the 
SWIR wavelengths, and the interval 1,400–1,800 nm has been recognized as the most promising one by analyz-
ing several spectra of active fire pixels. It is noteworthy that this is only a limitation of the current technology 
implemented on PRISMA and other future sensors could increase the saturation range of applicable wavelengths.

Regarding the overall computational effort, even though the single estimation is not time consuming (see results 
in Section 4.2) the averaging procedure increases the computational effort (even though a CPU parallelization has 

Figure 3. PRISMA Level 1 Spectral radiance of Fire, Vegetation (Veg), Smoke and freshly burned (Burned fresh) (a), and corresponding reflectance spectra (b).
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been used to optimize the entire process). As a consequence, to reduce the time to get the temperature maps, we 
turned our attention into four sub-regions of interest, which are shown in Figure 4.

3.3. Verification Analysis

Although the hyperspectral PRISMA data provide valuable information due to characteristics of its spectra, 
the 30 m horizontal resolution unavoidably includes mixes in land cover (i.e., fire over a fraction of the pixel) 
Enhancing the spatial resolution would help to support data interpretation and provide an indirect validation. 
For example, super-hot pixels associated with active wildfire covering most of the pixel would potentially glow 
and be seen in the VNIR at much higher spatial resolution. Because of a panchromatic image is acquired at 5 m 
spatial resolution, the application of a pansharpening algorithm has been utilized. Among the different algorithms 
available, the Gram Schimth has been selected as the one which perform better (Ghosh et al., 2014; Sabat-Tomala 
et al., 2020; Xiang et al., 2020) in terms of spectral characteristics preservation when operating at the (almost 
same) spectral range. The pansharpened image will be used against temperature map to verify hot spots at flam-
ing temperature.

4. Results
4.1. Fire Detection Based on HFDI

The HFDI map was derived for the two PRISMA images (North and South) acquired over the Bootleg Fire.

Figure 5 shows the HFDI map and the 11 Region Of Interest (ROI) representative of different categories. Due 
to the characteristics of the mapped scene some of them have been chosen to be relatively homogeneous (i.e., 
Burned 1, Burned 2, Water) and some mixed comprising diverse categories. A polyline rather than a square was 
used to select the water category because of its angular shape.

Table 3 summarizes the counts and the HFDI values resulting from basic statistics (minimum, maximum mean 
and standard deviation) applied to the eleven ROI associated to different categories.

In the North image the mean values of HFDI background spans between −0.4700 (water) and −0.250-(mixed 
area type Burned Smoke Vegetation). We noticed that the values are consistent with values found in the literature 
for AVIRIS (Dennison & Roberts, 2009).

Dennison and Roberts (2009) found −0.179 as the ash-background threshold (for AVIRIS 4–16 m resolution) 
which appears similar to the values found in maximum values for Burnd 1 and Burned 2 in Table 3 (North image). 

Figure 4. Four areas of interest for running the temperature estimation algorithm. The image is displayed in false colors, 
where Red is 1646.97 nm, Green is 855.18 nm and Blue is 579.35 nm.
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In addition, Dennison and Roberts (2009) suggested −0.1 as threshold for likely active fire pixels. However in this 
image the values of HFDI for the water body in the image span between min −1.00 and max −0.1 suggesting a 
commission error would be introduced if the Dennison threshold would be applied to discriminate burning from 
not burning pixels.

Figure 6 shows the HFDI map and the 11 Region Of Interest (ROI) representative of different categories for the 
South Image.

Table 4 are the summarized counts and HFDI values resulting by applying the same statistic used previously but 
to a different area (South Image).

Following the comparative analysis of the background values of the two images (North and South) the −0.2 value 
for the HFDI threshold has been selected as up limit for no fire within the image.

However, this value is not to be considered the critical threshold to be used to separate not burning pixels from 
pixels likely to contain active fire (Dennison & Roberts, 2009) which is evaluated empirically and can likely be 
around the −0.1 value indicated by Dennison and Roberts (2009) using different parameters, sensors characteris-
tics (i.e., spatial and spectral resolution), and atmospheric conditions.

Table 3 
PRISMA North Image

Area type Count Min Max Mean Stdev

Burned 1 918 −0.457 −0.169 −0.327 0.034

Burned 2 1178 −0.439 −0.212 −0.335 0.031

Burned–Veg 4,134 −0.676 0.263 −0.309 0.051

Veg–Smoke–Soil 21,460 −0.742 −0.236 −0.428 0.044

Veg–Urban 43,798 −0.953 −0.175 −0.440 0.005

Veg Cloud Bare Soil 26,316 −1.00 0.360 −0.454 0.057

Veg Bare soil Smoke 2 218,999 −0.703 −0.222 −0.392 0.038

Veg Bare Soil Smoke–Swamp 73,164 −1.000 −0.042 −0.392 0.047

Water 161 −1.00 −0.109 −0.4700 0.185

Burned smoke 2173 −0.476 −0.033 −0.269 0.029

Burned Smoke Veg 2064 −0.444 −0.122 −0.250 0.004

Figure 5. North HFDI image: region of interest (ROIs) selected for 11 different categories.
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4.2. Temperature Retrieval

The experimental results of the procedure described in Section 3.2 are reported here. For the practical implemen-
tation of the algorithm, the user-defined parameters have been set as 𝐴𝐴 𝐴𝐴 = 1, 𝑚𝑚 = 20 , with a number of estimations 

𝐴𝐴 𝐴𝐴 = 15 for each pixel. The HFDI threshold to choose for the background pixels has been set equal to 𝐴𝐴 − 0.2 . This 
value comes from the previous analysis and considers an additional margin to make the analysis more conserv-
ative and consistent.

First, the temperature estimations for the four areas identified in Figure 4 are reported in Figure 7. Here, one 
can appreciate how the peak temperature values are consistent with the expected results. All temperatures below 
about 600 K don't have any physical meaning, and are simply mathematical results from the optimization proce-
dure obtained when the fire signal is too low compared to other signal sources. Most of the active fire pixels are 
detected in the region 4, where many locations above 1000 K are identified. For this Region 4, we also show 
more  detailed results in Figures 8a and 8b. Here, one can appreciate the quantity and distribution of the most 
reliable estimations, that is, those pixels having a temperature estimate greater than 600  K. As can be seen, 

only a few pixels are above this threshold, and this result is consistent with 
the fact that PRISMA only measures infrared signal up to 2,400 nm,  thus 
being limited to measuring only very hot sources (where the saturation also 
reduces the useful signal up to about 1,800 nm). Another interesting result is 
represented by the values of the 𝐴𝐴 𝐴𝐴fire coefficients (Figure 8c), where one can 
see that the mixture coefficients of the active fire pixels are quite high and 
close to one. Finally, in Figure 8d we report the ratio of temperature standard 
deviation over mean value (these values are retrieved from the 15 temperature 
evaluations performed for each pixel) which is an indicator of the precision of 
the generic estimation. In this case, values are generally low the temperature 
is very high.

The average computational time for the temperature estimation algorithm is 
𝐴𝐴 1.57 × 10

−2 seconds on a Windows 11 PC x64, Intel(R) Core (TM) i7-9750H 
CPU @ 2.60 GHz, 2592 Mhz, 6 core, 12 processori logici, 16 GB RAM.

4.3. Comparative Analysis

A qualitative comparative analysis of the thermal maps produced by 
PRISMA, ECOSTRESS and Landsat 8 shows the fire's change through time. 
Figure 9 shows the thermal behavior of the fire front in ROI number 4.

Figure 6. South HFDI image: region of interest (ROIs) selected for 11 different categories.

Table 4 
PRISMA South Image

Area type Count Min Max Mean Stdev

Vegetation 3,696 −0.662 −0.315 −0.425 0.037

Burned 1 11,178 −0.419 −0.206 −0.296 0.002

Bare soil 5,146 −0.429 −0.285 −0.361 0.016

Burned and Veg– 22,110 −0.561 −0.173 −0.313 0.036

Veg.–Bare soil–Smoke 17,784 −0.578 −0.278 0.0379 0.032

Burned–Veg.–Smoke 53,523 −0.599 −0.129 −0.297 0.031

Burned–Bare soil 18,081 −0.580 −0.169 −0.333 0.047

Veg–Soil 8,646 −0.722 −0.267 −0.413 0.043

Burned Veg;–Bare Soil 27,840 −0.540 −0.113 −0.331 0.0517

Burned–Veg 12,314 −0.448 −0.197 −0.298 0.028

Veg–Bare Soil 9,765 −0.908 −0.165 −0.412 0.049

Note. The average of maximum values in the South image is −0.21.
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The ECOSTRESS hot spots (Figure 9a) corresponding to active likely flaming pixels (blue color) are located in 
the north part of the image while 9 hr later the hot spots detected by PRISMA (blue color) appear to be located 
in the center part of ROI number 4 suggesting that the burning areas previously mapped by ECOSTRESS have 
are now smaller.

The PRISMA high-resolution pansharpened image (Figure 9c) is shown as a false color composite NIR-SWIR 
(972, 876, 770 nm). It has been used to locate areas where the predominant fire component in some pixels reach 
temperatures greater than 1000 K. The black arrows in Figure 9c point to 4 glowing pixels corresponding to 
biomass flaming and consisted with the high temperatures in Figure 9b. This comparison, allows us to provide an 
indirect qualitative validation of the temperature retrieval model we have used. Finally the Landsat 8 temperature 
map (Figure 9d) shows how the fire front has continued to change, showing a fragmented fire front with hot spots 
in different areas of the image.

5. Discussion
This work demonstrates the usefulness of using hyperspectral images, specifically PRISMA data, to provide 
detailed analysis of wildfire scenarios.

The Hyperspectral Fire Index was derived by using comparative PRISMA wavelengths to those in Dennison and 
Roberts (2009). Although, the discussion of performance of HFDI is beyond the purpose of this paper, the results 

Figure 7. Temperature maps for the 4 region of interest (ROIs).
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demonstrated that the HFDI map allows the location of the active fire front (soft classification). The range varia-
tion of the HFDI values was found in agreement with the values obtained by Dennison and Roberts (2009) using 
AVIRIS (resolution spanning between 5 and 20 m depending on flight altitude). This can potentially be related 
to different reasons including (but not limited to) the good PRISMA performance in terms of radiance signal to 
noise, the PRISMA bands for the HFDI are almost identical to the AVIRIS ones, and the 30 m spatial resolution 
of PRISMA is relatively close to the 20 m coarser resolution of AVIRIS.

The comparison with the thermal maps acquired temporally close to the PRISMA acquisition (ECOSTRESS and 
Landsat 8) show the potential for virtual constellations to characterize the wildfire thermal behavior. For example, 

Figure 8. Considering the region of interest (ROI) number 4 from Figure 7, (a) temperature map, (b) temperature map with 600 K mask, (c) p coefficients, and (d) ratio 
between standard deviation and mean temperature.
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the PRISMA and ECOSTRESS images showed clear movement of the fire front, highlighted by change in the hot 
spots. The Landsat 8 image taken 1 day later shows continued temporal evolution of the fire front as well as new 
hot spots and areas burned. While during the Bootleg Fire ECOSTRESS data proved to be useful for operational 
decision-making and incorporated in the New Wildfire Response Tool delivered by NASA (ECOSTRESS Data 
Incorporated Into New Wildfire Response Tool NASA, n.d.), we suggest that the synergetic use of ECOSTRESS, 

Figure 9. (a) ECOSTRESS LST temperature map in Kelvin, with high temperature hot spots (light blue, black arrows) located in the North and South/East part of 
the scene; (b) PRISMA temperature map for locations >500 K. Black arrows point at the pixels with temperature greater than 1000 K; (c) RGB false color composite 
in NIR-SWIR bands respectively at: 972, 876, 770 nm of pansharpened PRISMA imagery at 5 m resolution; the black arrows point at the same pixels highlighted in 
(b) and appear glowing as characterized by flaming fires; (d) Landsat 8 thermal map shows the wildfire front highly fragmented with hot spots (light blue color, clack 
arrow) sparsed the image.
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PRISMA, LANDSAT and other hyperspectral sensors (i.e., EnMAP) has the potential for enhancing the available 
information for operational activities in terms of identifying hot flaming and smouldering areas for the response 
team deployment, airborne and ground fire suppression strategies, and evaluating the fire damage to infrastruc-
ture, buildings and ecosystems.

The results reported in this work are particularly relevant if we think to the limitations of the input data. Indeed, 
even though PRISMA is a very innovative and unique sensor, the hyperspectral instrument was not designed for 
temperature estimation. As a consequence, the infrared wavelengths in the SWIR channels are limited to about 
2,400 nm, which is not enough to estimate room temperature or low temperatures in general.

On the other hand, the saturation effect could be hopefully minimized in next generations of hyperspectral sensors 
which could have an increased dynamic range by using for example, a tunable integration time. Nonetheless, 
this work demonstrates that temperature estimation of extreme hot events as wildfires is a feasible application, 
with reliable results and little computational effort. Hence, there is a possibility to provide a spatially bounded, 
high-spatial and spectral resolution information about high temperature wildfire events which is complementary 
to worldwide-coverage of low/medium resolutions temperature maps offered by other thermal instruments.

An ideal validation would involve coincident in situ and/or airborne-satellite collections with a PRISMA acqui-
sition. However, this kind of experiments still remains rare due to numerous challenges linked to their realization 
(Wooster et al., 2021). In our case, because of a lack of independent thermal data contemporaneous to PRISMA, 
a consistent qualitative validation of the temperature estimation results has been presented. Results of the qual-
itative analysis are in line with the ECOSTRESS and Landsat products. The high-resolution image analysis of 
the PRISMA pan-sharpened scene proves that the sharpened high temperature pixels remain identifiable. The 
temperature estimations are also in line with expectations, and illustrate the ability to discriminate active fires 
from the background signal. As such, the technique proposed in this paper can be used as a complementary 
tool along with other established methodologies. To note that the use of virtual constellation of different satel-
lites (which would include new hyperspectral missions such as the recently launched EnMap) likely enables 
approaches to increase both the spatial and temporal resolution of detection and temperature products.

6. Conclusion
This paper analyzed wildfire scenarios as captured from the hyperspectral camera on board the PRISMA mission. 
This work investigated the application of the Hyperspectral Fire Index to the PRISMA data, and the evaluation 
of the active fire temperature by using a linear mixture analysis. In both cases, we demonstrated that Hyperspec-
tral Fire Index derived for the Bootleg Fire in Oregon (USA) provides results consistent with historical AVIRIS 
results in the literature (Dennison & Matheson, 2011; Dennison & Roberts, 2009), and allow the mapping of the 
active fire areas. Both near to zero and positive values of HFDI (>−0.1 ) corresponds to pixels likely to contain 
active fire (Dennison & Roberts, 2009) and high temperature values corresponding to flaming active (>1000 K) 
have been identified. Pansharpening was also used for verification of very-hot pixels. Qualitative comparison 
of PRISMA temperature versus ECOSTRESS and Landsat 8 acquired near to PRISMA acquisition showed the 
potential offered by utilizing multiple satellites over the same area. Specifically, they describe the fire behavior 
by improved the temporal revisit time with a potential positive impact in term of wildfire monitoring as well as 
monitoring critical infrastructure or sensitive environments.

Data Availability Statement
The PRISMA data used for this study cannot be distributed according to the Italian Space Agency policy. 
However, readers interested in reproducing the results can download the images on their own by registering at the 
ASI-PRISMA portal https://prisma.asi.it.

•  The python software used in this work as well as the results of the temperature analysis of the study produced 
with both python and ENVI© are available at Zenodo DOI: https//doi.org/10.5281/zenodo.7273879

•  The data set related to the ENVI© processing can be found under Zenodo DOI: https//doi.org/10.5281/
zenodo.7271523

•  The ECOSTRESS data can be accessed at https://ecostress.jpl.nasa.gov/data.
•  The Landsat 8 data can be accessed at https://earthexplorer.usgs.gov/.
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