
1. Introduction
The journey of magma through the crust may be complex, with dykes following complex paths, getting trapped 
before erupting (Pedersen et al., 2007; Roult et al., 2012) or getting only temporarily arrested before resuming 
their propagation with the supply of additional magma (Sigmundsson et al., 2015). When a dyke reaches the 
surface, it may open fissures on the volcano flank or at unspecified locations in a volcanic field. The geometry, 
velocity, and trajectory followed by a magmatic intrusion can be tracked by the migration of volcano-tectonic 
earthquakes (Battaglia et al., 2005; Duputel et al., 2019; Lengliné et al., 2016, 2021) and geodetic observations 
including InSAR and GNSS data (e.g., Beauducel et al., 2020; Davis et al., 2021; Maccaferri et al., 2016; Peltier 
et al., 2005; Smittarello et al., 2019). In particular, the velocity of propagation has been shown to be unsteady 
(Peltier et al., 2007; Sigmundsson et al., 2015), usually lasting for a few hours to a few days, before potentially 
reaching the surface. Estimating where and when magma may reach the surface is crucial to assess the volcanic 
risk.

Abstract Dykes are magma-filled fractures propagating through the brittle crust. Understanding the physics 
of dyking process is essential to mitigate the volcanic hazard associated with the opening of new eruptive 
fissures at the surface. Often, physics-based models view either fracturing of the host rock or viscous flow of 
the magma as the dominating energy sink during dyke propagation. Here, we provide a numerical model that 
captures the coupling of fracturing at the crack tip and the transport of a viscous fluid. Built with the boundary 
element technique, our model allows for computation of the shape and velocity of a growing fluid-filled crack 
accounting for the viscosity of the fluid: the fluid flow induces a viscous pressure drop acting at the crack 
walls, and modifies the shape of the crack. The energy conservation equation provides the constraints to solve 
for the crack growth velocity, assuming that brittle fracturing and viscous flow are the main processes that 
dissipate energy. Using a parameter range that represents typical magmatic intrusions, we obtain crack shapes 
displaying some typical characteristics, including a tear-drop head and an open tail that depend on rock rigidity, 
magma viscosity, and buoyancy. We show that viscous forces significantly contribute to the energy dissipated 
during the propagation of magmatic dykes. Applied to the 1998 intrusion at Piton de la Fournaise (La Réunion 
Island), we provide ranges of dyke lengths and openings by adjusting the numerical velocity to the one deduced 
from the migration of volcano-tectonic events.

Plain Language Summary Magma is a viscous fluid that can propagate through the crust by 
fracturing rocks and flowing through them. These magma-filled fractures are called dykes. Magma pressure 
is the force ensuring the opening of the fracture and maintaining the flow of magma. Although physics-based 
models provide simplified but reliable representations of dykes, few consider both fracture creation and viscous 
flow simultaneously. Here, we present a new model for magmatic dyke propagation, implementing viscous flow 
equations into an existing model, such that the dyke shape, trajectory, and velocity are determined together. We 
show that the viscous dissipation within the magma is a major contribution to the energy balance for a range 
of viscosity and velocity values which are typical for magmatic intrusions. The dyke shapes obtained with our 
model compare well with the ones obtained with previous models. The velocity derived from the model has 
been compared with that derived from the spatio-temporal evolution of seismic events recorded before the 1998 
eruption at Piton de la Fournaise. Our new modeling scheme may represent a step forward in predicting the 
timing and location of future eruptions at monitored volcanoes.
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Magmatic dykes can be seen as a sub-set of the larger family of fluid-filled fractures. The physics describing 
fluid-filled fracture growth may be rather simple to describe, but is extremely challenging to implement in an 
analytical (Lister, 1990; Roper & Lister, 2007; Rubin, 1998; Spence & Turcotte, 1990), and even in a numerical 
modeling scheme (Detournay, 2016; Dontsov & Peirce, 2015; Lecampion et al., 2018). The fracturing process is 
described by equations for a crack embedded into a brittle-elastic medium, while the internal flow is described 
by fluid dynamics equations. The pressure profile within the fluid-filled crack, the crack shape, and the veloc-
ity of crack growth, result from the solution of a combined set of these equations. The solution of the coupled 
elastic and fluid-dynamic problem, even in 2D and under the most simplifying assumptions, is far from triv-
ial. In the past, two main schools have been established for modeling magmatic dykes: they have been named 
the “Weertman school” and the “lubrication theory school”, according to the fracture propagation regime that 
they target, fracture- or viscous-dominated, respectively (Rivalta et al., 2015). The “Weertman school”, after 
Weertman (1971), makes use of static crack theory and quasi-static approaches, disregarding the fluid motion. 
Such models may provide, at best, only indirect information about the crack propagation velocity, as recently 
shown by Pinel et al. (2022), and they can be used when the energy dissipated by viscous flow is negligible with 
respect to the total budget of the problem. The main advantage of this approach is that by using the Boundary 
Element (BE) technique they can describe complex crack shapes, account for the crack interaction with heteroge-
neous stress fields and crustal heterogeneities, and compute the direction of crack growth, which is not necessar-
ily planar (Dahm, 2000a; Davis et al., 2020; Heimisson et al., 2015; Maccaferri et al., 2010, 2011). These models 
are typically 2D, while some compelling new approaches also describe the 3D non-planar fracture-process 
(Davis et al., 2021).

On the other hand, the “lubrication theory school”, simplifies the crack geometry and the crustal stress and 
structures, but can account for the interaction between elastic forces acting at the crack walls and viscous forces 
due to the fluid motion (Lister, 1990; Spence & Turcotte, 1990). Hence those models cannot compute complex 
magma  trajectories, but they can quantify changes in crack propagation velocity due to dynamic changes in the 
magma source or variations of crust properties and stress (Mériaux & Jaupart,  1998; Pinel & Jaupart, 2000; 
Traversa et al., 2010). Such models may also be used to estimate the dyke velocity and shape along a prescribed 
trajectory, assuming that the propagation velocity is limited by the viscous flow, and that fluid-dynamic processes 
do not affect the propagation path of the intrusion (Pinel et al., 2017).

Merging these two approaches in a single modeling scheme would result in an understanding of the trajectory 
and velocity of a magmatic dyke, which is of central importance for the mitigation of volcanic hazards associated 
with the creation of new eruptive vents. A previous attempt of coupling the two approaches in a comprehensive 
(2D) modeling scheme has been done by Dahm (2000b), this scheme inspired the work we present here. Addi-
tionally, more recent 3D numerical approaches that couple fluid-flow equations and fracture mechanics, can 
now be used to simulate the propagation of buoyant magmatic intrusions (Detournay & Napier, 2019; Napier 
& Detournay, 2020; Zia & Lecampion, 2020). However, all these formulations remain limited to planar fracture 
propagation in a homogeneous elastic medium.

Here, we present a new modeling scheme, to compute the dynamic shape of a growing fluid-filled crack, built 
with a plane strain BE technique (2D, with infinite out-of-plane extent and no strain along the out-of-plane 
direction). The model computes the crack shape accounting for the fluid viscosity and the crack propagation 
velocity, and has been designed in order to account for heterogeneous crustal stress and complex crack paths as in 
Maccaferri et al. (2011). Depending on the modeling purpose, the crack velocity can be given as input parameter, 
or calculated as output, based on an energy conservation equation, and the assumption that the main sources of 
energy dissipation are the brittle fracturing and the laminar viscous flow.

We validate our model results against relevant analytical solutions available in literature for a vertical 
fluid-filled crack in a homogeneous infinite elastic medium, and show how some of the most important 
parameters characterizing magmatic intrusions determine the shape and propagation velocity. These analyses 
allow us to determine the parameter space within which our model is valid. We then show results in different 
settings, including the effect of an inclined - curved - dyke trajectory, the interaction with crustal layering, 
and the effect of the free surface. We discuss our model assumptions and approximations, and eventually 
show an application to the dyking event that fed the 1998 Piton de la Fournaise (PdF) eruption (La Réunion 
Island).
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2. Governing Equations
We consider an ascending finite volume of fluid flowing through a thin crack that grows in an isotropic, plane 
strain, brittle elastic medium, such that the governing equations use linear elasticity and the lubrication theory 
for the rock deformation and the fluid flow respectively. In the following s will be the curvilinear coordinate 
(positive upwards) along the fracture cross-section (i.e., along the intersection between a vertical plane and the 
crack surface, which in general can be inclined or bending), and r will indicate the coordinate perpendicular to 
the fracture walls (Figure 1). Please note that all the variables used through the manuscript are listed, along with 
their definitions, in the “List of Notation” at the end of the article.

2.1. Elasticity

A dislocation surface Σ, surrounded by a dislocation line, defines a discontinuity in the displacement field 
that can be represented by the Burgers vector b, which indicates the magnitude and direction of the displace-
ment discontinuity over Σ. Combining the linear elastic equations for (a) the balance of linear momentum 
(Newton's second law), (b) the strain-displacement relations and (c) the linear constitutive equations (Hooke's 
law), it provides the following equation governing the boundary value problem (Chapter 5 from Jaeger 
et al., 2007):

1

1 − 2𝜈𝜈
∇(∇ ⋅ 𝒃𝒃) + ∇2

𝒃𝒃 + 𝑭𝑭 = 0 (1)

with ν the Poisson's ratio and F the body force per unit volume.

The BE approach consists in combining dislocation elements to solve the so called “crack problem”: that is 
computing the distributed fracture-opening and -shear, given the stress boundary conditions at the crack walls. 
Here, we describe the (2D) cross-section of a fracture by combining linear dislocation elements in plane strain 
approximation, with constant opening and shear on each of them. We used the vertical dislocation solutions for 
a layered elastic medium computed by Bonafede and Rivalta (1999) and by Rivalta et al. (2002), which has been 
generalized for inclined dislocations in Maccaferri et al. (2010).

Figure 1. Scheme of the boundary element crack model, at the current propagation step k and at the previous one k − 1. The 
crack is made of N + 1 dislocation elements of constant length l and variable opening hi.
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2.2. Fluid Flow

The motion of the fluid within the fracture can be described using the Navier-Stokes equation for the momentum 
conservation of the system. According to the lubrication theory, a fluid with viscosity η, moving through a thin 
fracture with opening h(s), in absence of turbulence, flows with velocity parallel to the fracture walls u = [0; 
us(r)], if the velocity changes are small enough for the inertial force to be neglected. Neglecting fluid body forces, 
the Navier-Stokes equation of motion simplifies to give the Reynolds equation for the viscous pressure gradient            

𝐴𝐴
𝜕𝜕𝜕𝜕

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝜕𝜕𝑣𝑣

 :

−
1

𝜂𝜂

𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝜕𝜕𝑣𝑣

=
𝑑𝑑
2
𝑢𝑢𝑣𝑣

𝑑𝑑𝑑𝑑
2

 (2)

Solving the Reynolds equation for a Poiseuille flow between two parallel walls provides the velocity us(r) of the 
fluid:

𝑢𝑢𝑠𝑠(𝑟𝑟) = −
𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣

𝜕𝜕𝑠𝑠

(𝑠𝑠𝑠 𝑠𝑠)
𝑟𝑟(ℎ − 𝑟𝑟)

2𝜂𝜂
 (3)

Note that here we introduced the fluid velocity between parallel walls because in Section 3.2 we will discretize 
the fracture cross-section with dislocation elements with constant opening, and the fluid velocity us(r) at the time 
t, within each dislocation element at s, will be represented by Equation 3.

Using Equation 3, in the definition for the fluid flow per unit length through h(s), at the time t: 𝐴𝐴 𝐴𝐴 (𝑠𝑠𝑠 𝑠𝑠) = ∫
ℎ

0
𝑢𝑢𝑠𝑠(𝑟𝑟)𝑑𝑑𝑟𝑟 , 

provides the equation for the flux f(s, t) in a laminar regime:

𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠) = −
1

12𝜂𝜂

𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣

𝜕𝜕𝑠𝑠

(𝑠𝑠𝑠 𝑠𝑠) ℎ
3 (4)

The flow of magma through the cross-section of the crack is related to its opening by the continuity equation that 
ensures the conservation of mass. In 2D, for a compressible fluid, it can be written as (Lecampion et al., 2018) 
follows:

𝜕𝜕(𝜌𝜌𝑚𝑚(𝑠𝑠𝑠 𝑠𝑠)ℎ(𝑠𝑠𝑠 𝑠𝑠))

𝜕𝜕𝑠𝑠

= −
𝜕𝜕(𝜌𝜌𝑚𝑚(𝑠𝑠𝑠 𝑠𝑠)𝑓𝑓 (𝑠𝑠𝑠 𝑠𝑠))

𝜕𝜕𝑠𝑠

 (5)

with ρm(s, t) the fluid density. Note that an assumption of the Poiseuille flow is that the density of the fluid is 
constant along the crack, that is, it does not vary spatially, whereas we allow the fluid density to vary in time as 
the continuity equation accounts for the compressibility.

2.3. Energy Conservation

The total energy budget for the propagation of a buoyant volume of compressible magma includes several terms:

1.  The potential strain- and gravitational-energy variations, that provide a “buoyancy” term;
2.  The friction dissipation due to the magma viscous flow;
3.  The fracture energy needed to extend the fracture surface;
4.  The kinetic energy variations due to any change in the velocity of the intrusion.

In a closed system, the total energy is conserved over time, so that the sum of all energy terms, differentiated 
through time, must be zero. As we will discuss later in Section 5, within the range of velocity and viscosity values 
that are significant for magmatic dyke propagation, the variation of kinetic energy is negligible with respect to the 
other terms. The rate of the potential strain energy variations 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

 represents the change in the work done against 
elastic forces during propagation (Section S1.1 in Supporting Information  S1), and the rate of gravitational 
energy variations 𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

 represents the work done to move the magma body within the gravitational field (Section 
S1.2 in Supporting Information S1). The surface fracture energy Ef (the energy per unit surface needed to fracture 
the rocks), is related to the fracture toughness Kc, the Poisson's ratio ν, and the shear modulus μ:

𝐸𝐸𝑓𝑓 = 𝐾𝐾
2
𝑐𝑐

1 − 𝜈𝜈

2𝜇𝜇
 (6)
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The rate at which mechanical energy is dissipated by viscosity per unit mass of fluid Φ, can be written as 
(Batchelor, 1967) follows:

Φ = −2𝜂𝜂𝜂𝜂𝑚𝑚𝑚𝑚𝜂𝜂𝑚𝑚𝑚𝑚 (7)

where emn is the strain rate tensor (in plane strain approximation), and emnemn is the Einstein summation notation, 
implying that Φ is a scalar quantity. In 2D, the total viscous dissipation rate 𝐴𝐴

𝜕𝜕𝜕𝜕
𝑣𝑣

𝜕𝜕𝜕𝜕

 is the integral of −Φ over the area 
of the magma body A:

𝜕𝜕𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕

=
∫
𝐴𝐴

Φ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (8)

Finally, we can express the conservation of energy as follows:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

−
𝜕𝜕

𝜕𝜕𝜕𝜕

(𝐸𝐸𝑓𝑓 ⋅ 𝑑𝑑𝑑𝑑 + 𝐸𝐸𝑣𝑣) = 0 (9)

Note that in plane strain configurations, the fracture extends infinitely in the out-of-plane direction, therefore the 
energy contributions that will be computed within the context of the BE scheme, will have the units of energies 
per unit length (in the out-of-plane direction). A 3D estimate for these quantities can be obtained by multiplying 
them for the out-of-plane extension of a 3D fracture (the dyke “width”).

3. Numerical Model Formulation
3.1. The Quasi-Static Approach for a BE Fluid-Filled Fracture Propagation Model

Fluid-filled fractures, from the small - centimeter - scale of laboratory experiments, up to kilometer scale magmatic 
dykes, can be modeled numerically by using a set of N contiguous and interacting dislocation elements (BE tech-
nique). Here, we consider the model implemented by Maccaferri et al. (2011), where the dislocation elements 
are plane strain (2D), and the model refers to a vertical cross-section of the fracture. The fracture is filled with a 
compressible fluid, trapped between the crack walls. If the fluid is less dense than the host solid, the fracture would 
tend to grow upwards, driven by the fluid buoyancy. In Maccaferri et al. (2011), the fracture growth and propa-
gation are modeled with a quasi-static approach, by adding a dislocation element at the shallower tip of the crack, 
and solving for the static shape of the fluid-filled crack. This approach neglects the effect of the fluid viscosity on 
the fluid pressure profile, and cannot account for the crack propagation velocity. The fluid-filled fracture may or 
may not grow based on an energy budget condition: if the fracture growth corresponds to a positive energy budget 
(i.e., a drop of the potential energy larger than the energy needed to create the new fracture), the propagation is 
allowed. An important feature of this model is to compute the trajectory followed by a propagating crack, by test-
ing different directions for the crack growth and choosing the one that maximizes the energy budget of the system.

From a numerical prospective, this modeling scheme requires solving for the elastic shape of the fluid-filled 
fracture (Equation 1) at each propagation step, and computing the energy release of the system along different test 
directions (cf. Figure 1 and Figure S1 in Supporting Information S1). In order to compute the fracture shape it is 
necessary to solve the so called “crack problem”, that is, computing the opening h and slip q of each dislocation 
element, given the overpressure ΔP (i.e., the fluid excess pressure with respect to the confining stress) and the 
shear tractions τ acting at the center of each dislocation element (stress boundary conditions). The problem is 
defined by a set of linear equations linking the openings of all dislocations to their stress boundary conditions, 
through the influence coefficients that define the mutual effect of the opening (T t, S t) - and slip (T s, S s) - of each 
dislocation element on the others. These influence coefficients provide at each dislocation element for the tensile 
(and shear) stress due to the opening (and slip) of the other elements, given their spatial position, their dip and 
length, and accounting for the effect of an elastic interface or free surface (Bonafede & Rivalta, 1999; Rivalta 
et al., 2002). At the equilibrium, the stress produced by the crack opening and slip has to balance the boundary 
conditions:

⎧⎪⎪⎨⎪⎪⎩

𝑁𝑁∑
𝑗𝑗=1

[
𝑇𝑇

𝑡𝑡

𝑖𝑖𝑖𝑗𝑗
ℎ𝑗𝑗 + 𝑇𝑇

𝑠𝑠

𝑖𝑖𝑖𝑗𝑗
𝑞𝑞𝑗𝑗

]
= −Δ𝑃𝑃 (𝑖𝑖)

𝑁𝑁∑
𝑗𝑗=1

[
𝑆𝑆

𝑡𝑡

𝑖𝑖𝑖𝑗𝑗
ℎ𝑗𝑗 + 𝑆𝑆

𝑠𝑠

𝑖𝑖𝑖𝑗𝑗
𝑞𝑞𝑗𝑗

]
= −𝜏𝜏(𝑖𝑖)

 (10)
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Actually, this formulation is still not the final one to be solved as the overpressure term (ΔP) also depends on the 
crack opening due to the fluid compressibility, which links any change in the fluid volume to a proportional pres-
sure change. However, due to its linearity, the overpressure term that depends on the crack opening can be moved 
to the left side of Equation 10, and grouped with the T t ⋅ h terms (cf. Dahm, 2000b; Maccaferri et al., 2011). Such 
rearrangement of the linear system will be simply indicated here by using the symbols 𝐴𝐴 Δ𝑃𝑃  and 𝐴𝐴 �̃�𝑇

𝑡𝑡 . Therefore we 
can represent Equation 10 in matrix notation:

⎡

⎢

⎢

⎣

�̃ � � �

�� ��

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

ℎ

�

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

Δ�̃

�

⎤

⎥

⎥

⎦

 (11)

where the matrix is 2N × 2N and can be inverted to solve for the unknowns h and q (with the additional constrain 
of positiveness for the openings h).

In this paper, we extend the formulation of Maccaferri et al. (2011) to a “dynamic” crack solution by introducing 
in the elastic problem defined by Equation 11 the effect of the fluid flow on the fluid pressure profile, such that 
ΔPdyn represents the dynamic overpressure:

⎡

⎢

⎢

⎣

� � � �

�� ��

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

ℎ

�

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

Δ����

�

⎤

⎥

⎥

⎦

 (12)

The system of equations represented by Equation 12 is not ready to be solved, in this form. ΔPdyn depends on 
the openings h, and in general Equation 12 does not even represent a linear system. The solution is not trivial: 
Dahm (2000b) presents a numerical solution for the vertical (straight) propagation of a fluid-filled crack growing 
at a constant velocity. We partially follow Dahm (2000b) approach, dropping the assumption of a constant crack 
growth velocity, and generalizing it to complex fracture trajectories. We derive an approximate formulation for 
ΔPdyn that allows us to write Equation 12 as a linear system, obtaining an approximate - fast - solution for the 
dynamic shape of a BE fluid-filled crack propagating at a certain velocity.

In the following section (Section 3.2), we will illustrate our procedure to compute ΔPdyn, along with the defi-
nitions of all the pressure terms and their mathematical formulation, that are also summarized in the “List of 
notations”.

3.2. Computing the Dynamic Shape of a Growing BE Fluid-Filled Crack

We define a coordinate system where x is the horizontal axis and z is the vertical axis (positive downwards). 
Within a growing fluid-filled crack, the fluid overpressure ΔPdyn, is defined as the difference between the fluid 
pressure Pfluid(z), and the confining pressure Pconf(z). Pconf(z) is the normal stress acting at the crack walls at 
depth z, and includes the lithostatic pressure and any other possible source of crustal stress (i.e., tectonic or topo-
graphic). Pfluid(z) can be split into three components:

1.  a linear, depth dependent, hydrostatic pressure profile: ρm ⋅ g ⋅ z, where g is the gravitational acceleration;
2.  a pressure term due to the fluid compressibility (K): 𝐴𝐴 Δ𝑃𝑃𝐾𝐾 = 𝐾𝐾

Δ𝑉𝑉

𝑉𝑉0

 , proportional to a fluid volume change (ΔV) 
with respect to a reference volume at vanishing lithostatic pressure (V0);

3.  a viscous pressure change: ΔPvisc, due to the flow of a viscous fluid through the crack walls (note that ΔPvisc 
is negative, leading to a reduction of the pressure gradient along the crack).

The fluid overpressure is written as follows:

Δ𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 ⋅ 𝑔𝑔 ⋅ 𝑧𝑧 + Δ𝑃𝑃𝐾𝐾 − 𝑃𝑃𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐 (𝑧𝑧) + Δ𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐 (13)

Note that when considering an incompressible fluid, the term ΔPK is zero.

We describe the fluid flow within the crack with similar assumptions as Dahm (2000b), that solved the steady 
problem of a buoyant fluid-filled crack (in plane strain condition) rising vertically at a constant velocity, within 
a homogeneous elastic crust (hence having a fixed shape during propagation). Similarly, we assume a constant 
crack growth velocity during a single propagation step of our BE scheme, however we allow for changes in the 
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velocity and direction of crack growth between consecutive propagation steps. At each propagation step, our 
model selects the direction for the fracture growth by testing a number nα of different directions of propagation, 
defined by an angle δα, such that the tested directions are α(j) = ±0.5(j − 1)δα, with j = 1, …, nα (Figure 1 and 
Figure S1 in Supporting Information S1). nα and δα are prescribed as input parameters, and they should not pose 
any contrived limit to the direction of fracture growth. Eventually, the selected direction is the one with the maxi-
mum energy release, that will also be used to constrain the crack propagation velocity. In doing so, we are able to 
account for complex propagation paths, changes in the crack shape, and the interaction with heterogeneous stress 
fields, and crustal heterogeneities.

Following the scheme for the BE crack growth in Figure 1, we compute the fluid flux through each element i. For 
the sake of simplicity we initially write the flux crossing the upper boundary of each dislocation element 𝐴𝐴 𝐴𝐴

𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖
 , 

that is the volume of fluid that flows out of the ith dislocation element during the time Δt elapsing between the 
propagation step k − 1 and k. During the time Δt, the crack extends by one dislocation element of length l at its 
tip. Therefore, we define the propagation velocity of the crack as 𝐴𝐴 𝐴𝐴 =

𝑙𝑙

Δ𝑡𝑡
 , that is the velocity at which the crack tip 

is advancing along its propagation path. The volume variations (ΔVi) associated with each dislocation element of 
length l during a propagation step can be written as follows:

Δ𝑉𝑉𝑖𝑖 =
(
ℎ
𝑘𝑘

𝑖𝑖
− ℎ

𝑘𝑘−1
𝑖𝑖

)
⋅ 𝑙𝑙 (14)

with 𝐴𝐴 𝐴
𝑘𝑘

𝑖𝑖
 being the ith dislocation's opening at the propagation step k (i.e., the normal component of the Burger 

vector, h in Equation 12). Note that in our 2D model, the “volume” variations, are actually “cross-sectional area” 
variations, under the assumption that the crack is infinite in the out-of-plane direction. For an incompressible 
fluid, integrating the continuity equation (Equation 5) leads to:

� ���
� = − 1

Δ�

�
∑

�=1
Δ�� with � = 1,⋯, � (15)

(cf. Section S2 in Supporting Information S1 for a detailed description of the discretization of Equation 5 that 
led to Equation 15).

Our fluid-flow assumptions imply that the fluid density at a given time is homogeneous in space. However, the 
fluid density can evolve through time as the fluid-filled crack rises to shallower depths, and it is subjected to 
a lower confining stress, causing a fluid expansion proportional to the fluid compressibility, and a consequent 
density decrease (as mass is conserved). For a compressible fluid, we need to modify Equation 15 accounting for 
the volume variation between the propagation step k − 1 and k due to any changes in the confining stress. Assum-
ing that such volume change will be distributed along the crack in proportion to the opening of each dislocation 
element, we can write:

� ���
� = − 1

Δ�

�
∑

�=1

(

Δ�� −
� � − � �−1

� �−1
⋅ ℎ�−1

� ⋅ �
)

 (16)

where 𝐴𝐴 𝐴𝐴
𝑘𝑘 =

∑
𝑁𝑁

𝑖𝑖=1
ℎ
𝑘𝑘

𝑖𝑖
⋅ 𝑙𝑙 is the (2D) crack volume at the propagation step k. Substituting Equation 14 in Equa-

tion 16 and introducing v, we obtain:

𝑓𝑓
𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖
= −𝑣𝑣

𝑖𝑖∑
𝑗𝑗=1

(
ℎ
𝑘𝑘

𝑗𝑗
−

𝑉𝑉
𝑘𝑘

𝑉𝑉
𝑘𝑘−1

ℎ
𝑘𝑘−1
𝑗𝑗

)
 (17)

In order to make use of the flux condition in our BE scheme, we compute this at the middle point of each dislo-
cation element, since we will have to prescribe the stress boundary conditions at those points. Given Equation 17, 
we can write the flux at the middle point of the element i as follows:

�� =
1
2
(

� ���
�−1 + � ���

�

)

= � ���
� − 1

2
(

� ���
� − � ���

�−1

)

= −�
�
∑

�=1

(

ℎ�
� −

� �

� �−1
ℎ�−1
�

)

+ 1
2
�
(

ℎ�
� −

� �

� �−1
ℎ�−1
�

)

= −� ⋅Ψ�

 (18)
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with 𝐴𝐴 Ψ𝑖𝑖 =
∑

𝑖𝑖

𝑗𝑗=1

(
ℎ
𝑘𝑘

𝑗𝑗
−

𝑉𝑉
𝑘𝑘

𝑉𝑉
𝑘𝑘−1

ℎ
𝑘𝑘−1
𝑗𝑗

)
−

1

2

(
ℎ
𝑘𝑘

𝑖𝑖
−

𝑉𝑉
𝑘𝑘

𝑉𝑉
𝑘𝑘−1

ℎ
𝑘𝑘−1
𝑖𝑖

)
 . Note that combining Equation 18 with the equations for 

the fluid flow (Equations 3 and 4, Section 2.2) provides the relation between the crack propagation velocity v 
and the fluid flow velocity u. The next step will be to write the flux as a function of the viscous pressure gradient 
acting within each dislocation element, and finally solve for ΔPvisc(z).

We assume a Hagen-Poiseuille flow within piece-wise parallel fracture walls, which results in a constant viscous 
pressure gradient 𝐴𝐴 Γ𝑖𝑖 =

𝜕𝜕𝜕𝜕
𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣

(𝑣𝑣𝑠𝑠𝑠)

𝜕𝜕𝑣𝑣

|||𝑖𝑖 , and a parabolic fluid velocity profile ui within each dislocation element i 
(Figure 1). Equation 4 leads to:

𝑓𝑓𝑖𝑖 = −Γ𝑖𝑖 ⋅

(
ℎ
𝑘𝑘−1
𝑖𝑖

)3
12𝜂𝜂

, (19)

Note that here we use the dislocation opening 𝐴𝐴 𝐴
𝑘𝑘−1
𝑖𝑖

 to compute the flux between k − 1 and k, this approximation 
is fundamental to simplify our set of equations (as it will be clear in the following), and we expect it to work if 
the crack shape does not change significantly during a single propagation step (hence the time resolution is high 
enough).

The viscous pressure change due to the ith element of length l is 𝐴𝐴 Δ𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣

= 𝑙𝑙 ⋅ Γ𝑣𝑣 . The viscous pressure change at 
the bottom of the ith element is the sum of the pressure drops of all the elements underneath, and therefore the 
viscous pressure change at the middle point of the ith dislocation element will be:

Δ� ����
� =

�
∑

�=1
Δ������ − 1

2
Δ������

= � ⋅
( �
∑

�=1
Γ� − 1

2
Γ�

) (20)

We can now use Equation 19 to substitute Γ in Equation 20, and then use Equation 18 to substitute fi. In this way 
we obtain an expression for 𝐴𝐴 Δ𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣
 that depends on our model parameters and unknowns:

Δ� ����
� =

�
∑

�=1

12���
(

ℎ�−1
�

)3

�
∑

�=1

(

ℎ�
� −

� �

� �−1
ℎ�−1
�

)

−1
2

�
∑

�=1

12���
(

ℎ�−1
�

)3

(

ℎ�
� − � �

� �−1
ℎ�−1
�

)

−1
2

12���
(

ℎ�−1
�

)3

�
∑

�=1

(

ℎ�
� − � �

� �−1
ℎ�−1
�

)

+1
4

12���
(

ℎ�−1
�

)3

(

ℎ�
� −

� �

� �−1
ℎ�−1
�

)

 (21)

It is important to note that Equation 21 is valid for i = (1, …, N − 1), when i = N Equation 19 cannot be used to 
constrain Γi, because at the propagation step k − 1 the dislocation element N has not been opened yet. We will 
consider the case i = N separately.

The most important feature of Equation 21 is that it is linear with respect to h k, which are the unknowns of the 
problem at the propagation step k, since h k−1 is known from the previous propagation step. Using Equation 21 
for ΔPdyn in Equation 12, we will still have a linear system of equations. Rearranging Equation 21 allows us to 
bring all the terms that are linearly dependent on h k to the left side of Equation 12. Finally we group them, and 
incorporate their coefficients with the influence coefficients of the matrix in Equation 12. The dynamic shape 
of the crack at the propagation step k, given the fluid viscosity and the propagation velocity, will then be simply 
obtained by solving a linear system. Note that when the velocity is zero, 𝐴𝐴 Δ𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣
 is null all along the crack and we 

have the static case.

We now need to find an expression for 𝐴𝐴 Δ𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑁𝑁
 . Equation 20 and Equation 18, for i = N provide conditions for the 

viscous pressure change and the flux in N:

Δ𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑁𝑁
= Δ𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑁𝑁−1
+

𝑙𝑙

2
Γ𝑁𝑁 and 𝑓𝑓𝑁𝑁 =

1

2
𝑣𝑣𝑣

𝑘𝑘

𝑁𝑁
 (22)
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and we need an expression similar to Equation 19 that links ΓN and fN. 𝐴𝐴 𝐴
𝑘𝑘−1

𝑁𝑁
 is not defined, and we cannot use 𝐴𝐴 𝐴

𝑘𝑘

𝑁𝑁
 

otherwise Equation 12 would no longer be linear. Therefore, we provide an estimate of the flux ΓN approximating 
the opening of the tip element at the propagation step k 𝐴𝐴

(
ℎ
𝑘𝑘

𝑁𝑁

)
 with the opening of the tip element at the previous 

propagation step 𝐴𝐴

(
ℎ
𝑘𝑘−1

𝑁𝑁−1

)
 , and complement Equation 22 with:

Γ𝑁𝑁 = −
12𝜂𝜂(
ℎ
𝑘𝑘−1

𝑁𝑁−1

)3 𝑓𝑓𝑁𝑁 (23)

In this way, we preserve the linearity of Equation 12 and we do not disregard the contribution of the Nth element 
of the BE crack on the viscous pressure profile. The approximations that we introduced have the advantage 
that the problem is simple to solve from a mathematical and computational prospective, while this resolves the 
viscous pressure profile accurately within the crack tail and head (as we will show in the result section). Never-
theless, our approximations underestimate the viscous pressure drop at the upper tip of the crack, and this will be 
critical when trying to simulate the propagation for vanishing values of rock fracture toughness.

In this section, we have shown that Equation 12 can be written as a linear system if we write ΔPvisc according to 
Equation 21, provided that we know the fluid-filled crack shape at the previous propagation step and its propa-
gation velocity. In the next two sections, we will explain how we initiate the fluid-filled crack propagation, for 
example, how we compute the shape of the crack at the first propagation step, and how we can solve for the crack 
propagation velocity, assuming that the velocity is limited by the viscous fluid flow.

3.3. Initialization of the Model

In order to be able to compute the crack shape at a given propagation step, our modeling scheme requires the crack 
shape and velocity at the previous one. To initiate a simulation we use the method described in Dahm (2000b), 
which computed the shape of a fluid-filled BE crack growing at a constant velocity. Following Dahm (2000b) 
approach, we assume that the initial shape of the crack is stationary, that is the crack is already propagating with 
constant shape and velocity at the time the dynamic simulation starts. This stationary shape is computed follow-
ing the iterative procedure in Dahm (2000b), starting with a static shape, estimating a viscous pressure drop asso-
ciated with it, and use it to update the crack shape, and so forth. This scheme requires a few numerical iterations to 
reach a stable stationary solution. After computing the stationary shape, the procedure for the dynamic simulation 
is initiated, the crack starts growing in length, and develops a thin open tail region.

3.4. Computing the Fluid-Filled Crack Propagation Velocity Based on an Energy Budget Equation

We have shown how to solve Equation 12 given the crack propagation velocity v. In order to solve for v, we 
need to introduce an additional equation to the system of Equation 12, without introducing new unknowns to the 
problem. We set this additional condition using the energy budget associated with the fluid-filled crack growth.

As we already mentioned in Section 3.1, in the quasi-static model the crack propagation is allowed when the 
energy release associated with the crack elongation is larger than the energy needed to create the additional frac-
ture surface. Between two consecutive propagation steps, we define the energy release (ΔE) as the sum of the 
strain (ΔW) and gravitational (ΔG) energy contributions (Maccaferri et al., 2010, 2011), so that ΔE = ΔW + ΔG. 
The energy needed to extend the fracture of an element of length l is Ef ⋅ l (which is an energy per unit length, cf. 
Equation 6 and Section 2.3). In the quasi-static model, the crack propagation is allowed when ΔE ≥ Ef ⋅ l, which 
represents the energetic criterion for fluid-filled fracture propagation (cf. Dahm, 2000b), and is equivalent to the 
condition of stress intensity factor larger or equal to the fracture toughness (cf. Rubin, 1998).

Such propagation condition implies that the excess energy release with respect to the fracture energy 
(ΔE − Ef ⋅ l ≥ 0) is somehow spent, or dissipated, by the dynamic processes that are neglected in the quasi-static 
modeling scheme, such as kinetic energy variations, not-elastic processes at the crack tip, and the internal friction 
due to the viscous fluid flow. In the assumption that the viscous flow is the dominating force limiting the crack 
propagation velocity, we can write a new energy balance equation by integrating Equation 9 over time (from t to 
t + Δt):

Δ𝐸𝐸 = 𝐸𝐸𝑓𝑓 ⋅ 𝑙𝑙 + Δ𝐸𝐸𝑣𝑣 (24)
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where ΔEv is the energy dissipated by viscous flow during Δt and Ef ⋅ l results from the time-integral of Ef ⋅ ds 
in Equation 9 (Ef does not depend on time, and the integral of ds over Δt is the amount of fracture growth, l). 
Equation 24 will depend on the crack propagation velocity v, since the fluid flow can be expressed as a function 
of v (cf. Equation 18), and therefore represents a condition which allows us to constrain the crack propagation 
velocity.

In the following, we will write a formula for ΔEv, while for the calculation of ΔE we refer to Maccaferri 
et al. (2011).

For the Hagen-Poiseuille flow, the fluid velocity field, within each dislocation element i, is in the form u = [0; 
us(r)] and Equation 7 simplifies to:

Φ = −�
(���
��

)2
with � = 1,⋯, � (25)

For our BE crack, we can write the total viscous dissipation 𝐴𝐴 Δ𝐸𝐸𝑣𝑣 =
𝜕𝜕𝐸𝐸

𝑣𝑣

𝜕𝜕𝜕𝜕

⋅ Δ𝜕𝜕 introducing Equations 3 and 25 in 
Equation 8. It follows that:

Δ𝐸𝐸𝑣𝑣 =
𝑙𝑙

12𝜂𝜂𝑣𝑣

𝑁𝑁∑
𝑖𝑖=1

(
ℎ̄𝑖𝑖

)3
(Γ𝑖𝑖)

2 (26)

Note that the fracture opening at each dislocation element (hi) actually varies during a propagation step. Here, we 
choose to use the average values 𝐴𝐴 ℎ̄𝑖𝑖 =

(
ℎ
𝑘𝑘

𝑖𝑖
+ ℎ

𝑘𝑘−1
𝑖𝑖

)
∕2 between the opening before and at the end of the kth prop-

agation step (𝐴𝐴 𝐴
𝑘𝑘−1
𝑖𝑖

 and 𝐴𝐴 𝐴
𝑘𝑘

𝑖𝑖
 , respectively). By grouping v in the equation for Γi (Equations 18 and 19), the viscous 

dissipation ΔEv at propagation step k can be written as follows:

Δ𝐸𝐸𝑣𝑣 = 𝑣𝑣 ⋅𝐷𝐷 (27)

with 𝐴𝐴 𝐴𝐴 = 12𝜂𝜂𝜂𝜂
∑

𝑁𝑁

𝑖𝑖=1
(ℎ𝑖𝑖)

3

(
Ψ
𝑖𝑖

ℎ
𝑘𝑘−1
𝑖𝑖−1

)2

 . Using Equation 24, we can make explicit the velocity condition at each prop-

agation step:

𝑣𝑣 =
Δ𝐸𝐸 − 𝐸𝐸𝑓𝑓 ⋅ 𝑙𝑙

𝐷𝐷

 (28)

However, both ΔE and D depend on v (through the crack openings hi and the viscous pressure gradient Γi, which 
are velocity-dependent quantities), therefore Equation 28 must be evaluated iteratively at each propagation step 
by updating the right side of the equation, until convergence is eventually reached.

4. Results
The model allows us to simulate the propagation of a given mass of compressible buoyant fluid filling a fracture 
of a given initial length. In this section, we first validate our numerical scheme against existing solutions for the 
shape, velocity, and overpressure profile of a vertical fluid-filled fracture propagating with constant volume in a 
homogeneous infinite elastic medium. We then present results from numerical simulations with different model 
settings, showing the effect of varying several parameters characterizing magma and rocks, including the effect 
of the free surface, crustal layers, and an inclined - bending - trajectory followed by the intrusion when crossing 
the interface between two crustal layers. Finally, we perform a parametric analysis to constrain the domain of 
applicability of the numerical scheme.

4.1. Validation Against Previous Models

In order to validate our numerical results, we use analytical, numerical, and asymptotic solutions for the veloc-
ity and the shape of a vertical fluid-filled fracture, containing a finite volume of buoyant, viscous fluid. These 
solutions have been obtained by previous authors in the context of the so called “lubrication theory school” (as 
defined in Rivalta et al., 2015).

The velocity of crack propagation (and its time evolution) can be obtained from Spence and Turcotte  (1990) 
by differentiating with respect to time their Equation 22 that links the time for the magma to reach the surface 

 21699356, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025697 by Ingv, W
iley O

nline L
ibrary on [17/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

FURST ET AL.

10.1029/2022JB025697

11 of 24

to the intrusion's parameters. According to Spence and Turcotte  (1990) formulation, the velocity 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡 is valid 

for non-dimensional times t* ≫ 1 (with 𝐴𝐴 𝐴𝐴
∗ =

𝐴𝐴
2
0
𝑔𝑔Δ𝜌𝜌𝐴𝐴

𝜋𝜋
2(𝐿𝐿∕2)3𝜂𝜂

 , Δρ being the density contrast between the fluid and the 
surrounding medium, L the initial crack length and A0 the initial cross-sectional area of the magma body) and 
decays as t −2/3 (cf. Davis et al., 2023):

𝑣𝑣𝑡𝑡𝑡 =

(
𝐴𝐴

2

0
Δ𝜌𝜌𝜌𝜌

48𝜂𝜂𝑡𝑡2

)1∕3

 (29)

Note that the velocity is independent from the rock fracture toughness Kc, because this solution applies to the 
limit of low fracture toughness.

Here, we use typical magma and rock properties for basaltic intrusions at mid-crustal depth, considering 
a finite batch of magma with a viscosity η  =  100  Pa⋅s, a buoyancy Δρ  =  300  kg/m 3, and a cross-sectional 
area A0 = 0.009 km 2, propagating within a homogeneous crust with Poisson's ratio ν = 0.25, and shear modu-
lus μ = 20 GPa. Note that in our simulations we use a rather low compressibility for magma (bulk modulus 
K = 20 GPa), in order to compare our results with the theoretical velocity from Equation 29, which is for an 
incompressible fluid.

We run several simulations progressively lowering the rock fracture toughness (i.e., decreasing the fracture 
energy Ef from 20 to 8, 7, 6, and 5 MPa⋅m, pink - green - blue - purple - and black lines on Figure 2a, respec-
tively), to compare our results in the limit of low fracture toughness. Figure 2a shows that the numerical solutions 
(solid lines) tend to the analytical formula (dashed line) as t* grows. We calculated that the relative difference 
between the numerical solution for Ef = 5 MPa and the analytical one is 29.6% at t* = 10, but goes down to 
17.4% at t* = 20, and 7.1% at t* = 40. For the same numerical velocity profile, we computed the exponent of the 
best fitting power low, which can be directly compared with the analytical exponent, −2/3: we obtain −0.50 for  
t* >20, but for t* >40 it reaches −0.55. The fact that the numerical solution differs from the analytical one for the 
first part of propagation, may partially be due to the different initial conditions (Spence & Turcotte, 1990, start 
with an elliptical crack, our initial shape accounts for the magma buoyancy), but may also be due to the fact that 
our simulations cannot be computed for vanishing fracture toughness. The latter implies that at the beginning of 
our simulations, when the fluid-filled crack is still developing a tail region, the resistance to fracture at the crack 
tip still affects the crack velocity. As the crack tail grows, viscous forces progressively become the limiting factor 
for the crack propagation velocity, and the numerical model converges toward the analytical solution for Kc = 0.

Another important observation from our numerical simulations is that they become less and less stable as we lower 
the rock fracture toughness. In fact when lowering the fracture toughness below the values used in Figure 2a, 
during the first part of propagation, the velocity and crack opening start to display some oscillations, that can even 
prevent the simulation to continue—if they grow large enough (Figure S2 in Supporting Information S1). This 
limitation is very likely due to the approximation done for the viscous pressure drop at the crack tip (Equation 23), 
and we will discuss it further in the next section. However, it is important to notice that even though we cannot 
arbitrarily lower the fracture toughness, our simulations can reach a fracture propagation regime with the velocity 
dominated by viscous forces, as our velocity profiles are independent from the fracture toughness—for the lower 
values we used—and very close to the analytical velocity (cf. Figure 2a).

In general, the shape of a propagating fluid-filled fracture is characterized by a tear-drop head region (where the 
buoyancy forces dominate), and a thinner tail region (where the viscous forces dominate). Equation 25 in Spence 
and Turcotte (1990) provides an analytical formula for the shape of the fluid-filled crack below the crack head. 
This formula can be used for a comparison with the thickness of the tail region from our numerical simulation. 
In Figure 2b, we show the dyke opening from our numerical simulations (plain lines) and the analytical formula 
(dashed lines) for dimensionless time t* = 14 and 43 (this formula from Spence & Turcotte, 1990, also works 
in the limit of t* ≫ 1). The fit between the numerical and analytical shape of the crack tail is remarkably good, 
especially for large t*, when the numerical and analytical viscous dominated crack velocities begin to converge.

Rubin (1998) extended the work done by Spence and Turcotte (1990), providing the shape of the entire fluid-filled 
crack within the same set of assumptions from the lubrication theory, and introducing the elasticity and the resist-
ance to fracturing at the tip. Rubin (1998) provided a set of equations that he solved numerically to display the 
full crack shape and the fluid overpressure profile for a given set of parameters (Figure 3 in Rubin, 1998). We 
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use Rubin (1998) results for a direct comparison with our numerical simulations: the shape and overpressure 
profiles that we obtained using the same set of parameters as Rubin (1998), are plotted as red-dotted lines on top 
of Rubin (1998) results in Figures 2c and 2d. The solutions for the crack shapes are remarkably similar, and the 
overpressure profiles along the crack display a very good fit, except for the overpressure drop at the tip of the 
crack, which is underestimated by our numerical simulation. This effect has been anticipated in Section 3.2, when 
introducing the approximation on the viscous pressure drop at the crack tip (Equation 23). We also notice that, 
as for the comparison with Spence and Turcotte (1990), our initial conditions are not the same as Rubin (1998), 
which—similarly to Spence and Turcotte (1990)—starts with an elliptical crack. This is reflected in the different 
overpressure profiles at the crack bottom at the beginning of our simulation (cf. Figure 2c, first red-dotted curve).

The previous comparisons were performed in the viscous dominated regime, next we compare our simulations 
with the asymptotic solutions for the crack tip shape in both fracture- and viscous-dominated regimes. We used 
the Equations 2.6a and 2.6c in Dontsov and Peirce (2015), which are: h = βk χ 1/2 for the fracture dominated, and 
h = βv χ 2/3 for the viscous dominated regime (where χ is the distance from the crack tip and βk and βv are coeffi-
cients that depend on the intrusion parameters, as defined in Dontsov & Peirce, 2015). Using the same parameters 
as in Figures 2a and 2b, we plotted on Figure 2e the asymptotic solutions as black dashed line (βk = 0.0618), and 
the pink dashed line (βv = 0.0161). The dyke tips from our simulations are plotted as black and pink dots for the 

Figure 2. (a) Evolution of the propagation velocity for simulations with various Ef (plain lines), as function of dimensionless time t* given by Equation 4 in Spence 
and Turcotte (1990). The black dashed line shows the evolution of theoretical velocity from Equation 29 inferred from Spence and Turcotte (1990). The velocities can 
be compared for t* >10, that is, after the gray hashed area. Note that for dimensionless time t* >32 (black arrow) the difference between numerical velocities and the 
theoretical value from Spence and Turcotte (1990) is less than 10%. (b) Crack opening represented at two different dimensionless times (pink arrows on (a)) according 
to Equation 25 from Spence and Turcotte (1990) (dashed lines) and results from the numerical simulations (plain pink lines) for the crack propagating in a viscous 
dominated regime (Ef = 5 MPa⋅m, pink curve in (a). In panels (c) and (d), we modified Figure 3 from Rubin (1998) and plot our results (red dotted curves) along the 
dimensionless dyke length z/Lw (normalized by the Weertman length scale) of dimensionless overpressure ΔP/P (normalized by the pressure scale) (c) and dyke half 
thickness w/W (normalized by the thickness scale) (d) from the numerical simulations using the boundary scheme set with the parameters described by Rubin (1998). 
Plain black curves and dashed curves represent the data from Rubin (1998), respectively the overpressure and dyke half thickness at selected times during ascent of a 
buoyant dyke of fixed volume, and the pressure and half thickness of static Weertman crack. (e) Asymptotic solutions for crack tip shape estimated using Dontsov and 
Peirce (2015) for a viscous-dominated crack (pink dashed line) and for a fracture-dominated crack (black dashed line) of 7 and 7.75 km length respectively. The pink 
circles are the results of the numerical simulation for a crack propagating within low fracture toughness medium (Ef = 5 MPa⋅m, Kc = 516 MPa⋅m 1/2) and the black 
circles are results for high fracture toughness regime (Ef = 20 MPa⋅m, Kc = 1,033 MPa⋅m 1/2).
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fracture- and viscous-dominated regimes: Ef = 20 and 5 MPa, respectively. We enhanced the tip shapes by zoom-
ing in the uppermost 0.25 km of these two cracks, that are 7.0 and 7.75 km long, respectively. Figure 2e shows a 
good agreement for the dyke tip shape in the fracture dominated regime (which is not surprising since for large 
fracture toughness the dyke shape gets closer to the static Weertman shape, which is well modeled by the static 
version of our BE code), and is reasonably close to the viscous dominated asymptotic, considering also that we 
used a positive fracture toughness, corresponding to Ef = 5 MPa.

4.2. Numerical Model Results

Here, we present results from our numerical simulations considering some configurations that could not be 
addressed with previous models. We set magma and rock parameters according to the values reported in Figure 3 
and Table S1 in Supporting Information  S1, first row. All simulations start with the initial stationary shape 
described in Section 3.3, dark blue in Figure 3. For comparison we also show the corresponding static crack 
shapes as dashed orange lines. We represent the temporal evolution of the crack shape—sampled at regular 
intervals—and the velocity profiles, for six different simulations.

We first look at the effect of the elastic free-surface, Figure 3a. For comparison, here we also plot the velocity 
profile corresponding to the infinite elastic medium, red solid line in Figure 3a. The free surface causes an accel-
eration of the intrusion that starts to be appreciable when the dyke reaches a depth of ∼0.5L (where L is the crack 
initial length). The dyke accelerates, reaching velocities of about an order of magnitude larger than the corre-
sponding values without any free surface, but only in the very last part of propagation (≤0.1L). An acceleration 
of fluid-filled fractures close to the surface has also been observed in previous analog experiments (i.e., Rivalta 
et al., 2005; Rivalta & Dahm, 2006), and explained in terms of strain energy release rate by Pinel et al. (2022). In 
Figure 3b, we use the same set of parameters as in Figure 3a, except for the magma viscosity which is reduced by 
a factor two. We obtain a very similar solution, but with a velocity that is twice as much as the one in Figure 3a. 
Note that the maximum opening of the dyke and the thickness of its tail at the same depth are the same for these 
two simulations. A very relevant parameter for magmatic intrusions is the magma compressibility, which directly 
affects the buoyancy of magma, as the lithostatic pressure decreases when an intrusion rises to the surface. 
In Figure 3c, we decrease the magma bulk modulus by a factor two, with respect to Figure 3a: we notice that 
the velocity is initially slower, due to a lower magma buoyancy, with respect to the low compressibility case. 
However, as the magma rises, the buoyancy increases, and the velocity starts to increase. It is remarkable, how 
the velocity profile obtained for a compressible magma is fundamentally different with respect to the one for an 
incompressible fluid, that decays as t −2/3, rather than increasing. In Figure 3d, we reduce the rigidity of the crust 
by a factor two with respect to Figure 3a. Here, we also reduce the rock fracture toughness such that the value 
of Ef does not change (Equation 6). A lower rigidity produces a larger propagation velocity, which is due to a 
higher rate of energy release (ΔE in Equation 28), and a thicker tail (a more compliant rock deforms more easily), 
allowing for a faster magma flow.

In the last two simulations, we consider a layered crust. We set the interface between two layers with different 
rigidities and fracture toughness values at a depth of 15 km. Here, we do not consider the effect of the free 
surface, and stop the simulation at 5 km depth, after the dyke propagated through 10 km of crust. This is because 
the model allows only one analytical discontinuity in the elastic parameters, which is either a free surface or 
an interface between two layers. In Figures 3e and 3f, the rigidity and fracture energy decrease of a factor two 
across the layers (so that also the fracture toughness is reduced by the same factor, cf. Equation 6). In Figure 3e, 
the dyke starts vertically (dipping 90°), while in Figure 3f the initial dip angle is 60°. In both simulations, the 
dyke accelerates while approaching the interface with the softer layer (similarly to the free surface effects), and 
reaches a peak in the propagation velocity when the tip crosses the layers' interface. A peak in the energy release 
across such interfaces has been also described in Maccaferri et al. (2010). Once the dyke tip enters the upper 
layer the velocity starts decreasing but remains larger than the minimum velocity in the lower layer. In Figure 3f, 
the initial lower dip angle results in a lower velocity (an inclined dyke has a reduced vertical extension, and 
therefore buoyancy). When crossing the layers' interface, the dip angle of the dyke tip changes (red dotted line in 
Figure 3f), and the final dip—after the dyke head crossed the interface - is 65°. The deflection of a dyke cross-
ing two layers' interface was already shown in Maccaferri et al. (2010), using a quasi-static BE dyke-code (i.e., 
neglecting the effect of magma flow). We also found that with this set of parameters, the deflection obtained with 
the quasi-static BE dyke-code is the same as the one obtained with the current modeling scheme, indicating that 
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Figure 3. Temporal evolution of crack shapes (left panels) and velocity v (right panels) of simulations for (a) the propagation of a finite volume at a variable velocity 
within a rigid medium under free surface condition (reference configuration) and without the free surface effect (red line on the right panel), (b) for a less viscous 
magma, (c) for a more compressible magma, (d) for a less rigid medium, (e) for crustal layering with the interface represented by the dashed line at 10 km depth and (f) 
for an inclined dyke where the evolution of dip is shown in red dots. Initial stationary crack shape (dark blue shape, t = 0 s) compared with static crack shape (dashed 
orange shape). Representations of dynamic crack shapes are sampled at constant space intervals. The color code indicates the time. Time scale is normalized by the total 
duration of propagation for a more compressible magma (c). The maximum crack opening and the tail opening at 13 km depth are indicated for subfigure (a–d).
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for this magma viscosity (and generally this set of parameters), the dyke trajectory is not significantly affected by 
the magma flow. However, more tests and simulations are needed, as exploring a wider range of parameters may 
reveal some different effects.

4.3. Parametric Analysis and the Energy Budget

The energy balance equation (Equation 24) constrains the crack propagation velocity, and provides a measure of 
the relative contribution to the total energy release (ΔE) of the viscous energy dissipation (ΔEv), and the fracture 
energy (Ef ⋅ l). Here, we show the relative contribution of ΔEv to ΔE, and how it changes as a function of magma 
and rock parameters.

As we anticipated, our algorithm fails for low values of Ef, which is when ΔEv tends to ΔE. This parametric 
analysis, aims at quantifying the limit of ΔEv to ΔE for which our model provides stable solutions, and shows 
how some model parameters affect the relative contribution of ΔEv to ΔE, possibly bringing our model close to 
its limit of applicability.

In Figure 4a, we use the set of parameters in the first row of Table S1 in Supporting Information S1 varying Ef, 
and we plot the relative contribution of ΔEv to ΔE. For large values of Ef, our model provides stable solutions, 
and the crack propagation velocity v progressively approaches zero, when the contribution of ΔEv to ΔE tends 
to zero (Ef tends to the critical value that allows propagation with this set of parameters). We find that the lowest 
value of Ef for which the model provides stable solutions, corresponds to a contribution of ΔEv to ΔE of about 
75%. For lower values of Ef the contribution of ΔEv to ΔE should further increase (reaching 100% for Ef = 0), but 
our model starts to display numerical instabilities (Figure S2 in Supporting Information S1) causing oscillations 
in the propagation velocity and eventually resulting in a null opening at the propagating tip (ending the crack 
propagation procedure).

In Figure 4b, we show that, for a given value of fracture energy (Ef = 12 MPa⋅m), varying the magma viscosity 
over several order of magnitude only affects the dyke propagation velocity without affecting the relative contri-
bution of ΔEv to ΔE.

In Figure 4c, we show the effect of varying the rock rigidity with constant fracture energy, which implies a 
variation of the fracture toughness according to Equation 6. We observe that lowering the rigidity produces an 
increased contribution of ΔEv to ΔE, also increasing the crack propagation velocity. As a consequence, given a 
set of parameters, our model will progressively approaches its limit of applicability when lowering the rock shear 
modulus.

Similarly, in Figure 4d, we show that increasing the cross-sectional area of the dyke A0 (equivalent to the magma 
volume for our 2D model) increases the contribution of ΔEv to ΔE and the corresponding propagation velocity, 
moving toward the boundary of our model applicability.

5. Discussion About the Domain of Applicability and Model Simplifications
The “viscous dominated” and the “fracture dominated” regimes capture two end-members of magmatic dyke 
propagation processes. The numerical scheme that we proposed here, can access the configurations between 
these end-members: we have shown that our model is able to handle configurations where the contribution of 
viscous energy dissipation with respect to the total energy balance remains below 75%. Our numerical simula-
tions become unstable as Kc becomes small (Ef ≲ 0.25 ⋅ΔE), and this seems to be related to the underestimation 
of the viscous pressure drop at the crack tip (cf. Figure 2c), due to the approximation introduced in Equation 23. 
This directly leads to an underestimate of the viscous energy dissipation, which impacts our velocity calcula-
tion through the energy balance equation, introducing a critical source of numerical instability (Figure S2 in 
Supporting Information S1). These numerical instabilities rise in the initial part of the dyke propagation path, 
when the underestimation of the viscous pressure drop at the crack tip is larger. We noticed that a finer discreti-
zation of the BE crack actually helps delaying the rise of the instabilities (allowing for lower fracture toughness 
values), but does not eliminate the problem.

Dropping the assumption in Equation 23 is not trivial and would require major modifications in the modeling 
scheme, but may represent an important future development in order to overcome the current limitation and 
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Figure 4. Evolution of viscous dissipation contribution with respect to the total energy produced by the system, for 
magmatic intrusions ascending below the surface. z* is the depth of the crack tip normalized by the initial depth for numerical 
simulations. Influence of (a) the fracture energy (i.e., fracture toughness) for a given set of parameters (first row in Table 
S1 in Supporting Information S1). Fixing the fracture energy Ef = 12 MPa⋅m, we also vary (b) the viscosity of the magma 
(second row in Table S1 in Supporting Information S1), (c) the rigidity of the medium (fourth row in Table S1 in Supporting 
Information S1) and (d) the initial volume of dyke (fifth row in Table S1 in Supporting Information S1). Some values of Kc 
are indicated at the bottom of the curves, along with the mean velocity of propagation estimated along the “constant part” of 
the propagation (defined by the gray domain).
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achieve stable solutions also for vanishing fracture toughness. A possible strategy may be to use asymptotic 
solutions for the crack tip, such as the ones provided in Dontsov and Peirce (2015). Such approach may possibly 
be coupled with non-uniform crack discretization (with higher resolution at the propagating tip), and/or using 
“linear” fracture elements (which are characterized by a linear opening, rather than constant), in order to improve 
the BE crack shape at the propagating tip.

Another numerical parameter that affects the stability of the numerical calculation is the “input velocity”, which 
represents an initial velocity guess (given as input), and is used to initiate the propagation and find a stable solu-
tion for the first propagation step. However, not all values of input velocity allow our algorithm to successfully 
compute the initial crack shape and velocity: we found that, when Ef > 0.25 ⋅ΔE, the initial velocity guess should 
be within a range of about one order of magnitude with the actual—but yet unknown—velocity. In this case, it is 
relatively easy to find a good velocity guess with a simple trial-and-error approach. However, when Ef approaches 
0.25 ⋅ΔE, the acceptable interval of input velocities become progressively narrower. Finally, we verified that 
stable solutions obtained with different input velocities are consistent with each other, and fully overlapping 
velocity profiles are found after a very few initial propagation steps (Figure S4 in Supporting Information S1).

The energy balance equation is also affected by other model approximations: the 2D (plane-strain assumption) 
consists in an infinite dyke width (out-of-plane extension). Obviously, a 3D crack has a finite width and the 
effect of its lateral boundaries on the viscous dissipation are neglected here. In addition, the 3D shape of a 
hydro-fracture is typically rounded at the upper tip (Dahm, 2000a; Watanabe et al., 2002), such that the actual 
width decreases toward the upper tip of the crack. Therefore, the 2D assumption may underestimate the fluid flux 
at the upper tip of the crack, and consequently the viscous energy dissipation. Even though we cannot provide 
an estimate of how the 2D assumption affects the viscous energy dissipation, we expect that the range of viscous 
dissipation energies that our model is able to solve may actually extend beyond the threshold of 75% of the total 
energy, if 3D effects would be taken into account. We plan to investigate this aspect in the next future with the 
help of analog laboratory experiments, which are 3D.

Our energy budget equation (Equation  24) assumes a purely brittle-elastic fracturing process, disregarding 
non-elastic effects at the crack tip. Those effects may be particularly important as the size of the dyke (and its 
propagation velocity) increases, as suggested by previous studies that showed scale-dependent fracture toughness 
(cf. Rivalta et al., 2015, and reference therein). Also this point may be addressed in the future by comparing 
numerical simulations with laboratory experiments.

One of the main advantage of our modeling scheme is that the calculation of the fluid-filled crack shape results 
from the inversion of a linear system. The linearity of the system is obtained assuming that we know the initial 
crack shape and propagation velocity, and that the fluid flow is laminar and stationary during a single propaga-
tion step. However, at the next propagation step, we allow the crack (and fluid) velocity to “jump” to a different 
“stationary” value. Clearly, this assumption may become more critical if the velocity (and shape) variations 
between consecutive propagation steps grow large.

Other important model simplifications that we have made consist in considering magma as a homogeneous, 
Newtonian, single phase fluid and whose propagation within the dyke is laminar and unidirectional with no 
inertia. This may not be the case for complex dyke trajectories implying changes in the flow direction. Magma is 
rarely homogeneous and may be composed of different phases including crystals and gases. The process of gas 
exsolution can indeed lead to the formation of a gas-filled region at the crack tip, that would complicate the prop-
agation dynamic, and would have implications on the energy release, trajectory, and velocity. Such process may 
be particularly effective at relatively shallow depths (2–3 km from the surface). Dealing with a two-phase fluid 
implies that the density, viscosity, compressibility, and volume of the fluid vary within the crack and will there-
fore depend on the depth, that is, on the confining stress. In addition, we do not account for temperature related 
processes, including heat conduction and convection, which may also affect the energy balance and therefore the 
velocity and trajectory of the dyke.

Our energy budget equation disregards the contribution of kinetic energy variations associated with accel-
eration or deceleration in the magma motion and rock displacements (Sections S1.3 and S1.4 in Supporting 
Information  S1). Kinetic energy variations due to the magma motions can be estimated by computing the 
velocity variations of the center of mass of the intrusion. The kinetic energy variations associated with the rock 
displacements can be estimated considering the velocity at which the crack walls move during a propagation 
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step. We computed kinetic energy variations associated with the simulation 
of a magmatic intrusion (using the parameters in the first row of Table 
S1 in Supporting Information S1), and display our results in Figure S5 in 
Supporting Information S1. The larger contribution to the kinetic energy 
variations is provided by the magma motion rather than the fracture walls 
(Figure S5a in Supporting Information  S1), and focuses when the dyke 
approaches the free surface, and the propagation velocity increases. Over-
all, the kinetic energy remains largely lower than the total energy release 
of the system ΔE (Figure S5b in Supporting Information S1), and is effec-
tively negligible.

Despite all these simplifications, our approach allows us to describe the 
complex interaction between rock fracturing and magma flow within a dyke, 
over a wide range of model parameters which are relevant for magmatic 
intrusions in different volcanic contexts. Importantly, our approach—based 
on the BE technique—allows to simultaneously solve for the crack trajectory 
and its propagation velocity (Figure 3f).

6. Velocity of Dyke Propagation Preceding the 1998 PdF 
Eruption
6.1. Context and Seismic Data From the Magmatic Intrusion

PdF volcano has been built on the flank of two older volcanoes, Piton des 
Neiges and Les Alizées on La Réunion Island. It is located in the western 

Indian Ocean, at the youngest tip of the Réunion hotspot. This basaltic shield volcano is one of the most active 
on Earth with a mean time between consecutive eruptions of 9 months over the last decades (Peltier et al., 2009). 
Geophysical and geochemical measurements, performed since 1980 by the Volcanological Observatory of PdF, 
have identified three magma reservoirs beneath the volcano, located at different depths, in coincidence with 
structural discontinuities (e.g., Battaglia et al., 2005; Beauducel et al., 2020; Peltier et al., 2009). In particular, 
at sea level, magma density reaches that of the surrounding rock (level of neutral buoyancy), favoring magma 
stagnation in a shallow reservoir. This shallow reservoir is being occasionally recharged by magma from a deeper 
reservoir, located at the boundary between the volcanic edifice and the oceanic crust, at about 5–6 km below sea 
level (bsl). In addition, a seismic swarm from 1996 has potentially revealed another reservoir at 12.5 km bsl, at 
the crust-mantle boundary (Battaglia et al., 2005).

As an application of the modeling scheme we illustrated in this article, we run some simulations for the propa-
gation of the dyke leading to the 9 March 1998 eruption of PdF volcano. Similarly to Rivalta and Dahm (2006), 
we assume that the migration of the hypocenters of a seismic swarm preceding the eruption indicates the approx-
imate position of the tip of a magmatic dyke. Out of more than 3,100 seismic events detection, 583 earthquakes 
were located by Battaglia et al. (2005), showing a vertical migration of approximately 7 km during the three days 
preceding the eruption. Battaglia et al. (2005) suggested three trends of hypocenter migration: at the early stage 
of the seismic swarm, between 6 and 7 March (corresponding to Julian days 65–67), the seismicity propagates at 
a velocity of 0.4 m/min (0.024 km/hr, Figure 5). The frequency of volcano-tectonic events started to increase from 
the beginning of 8 March (Figure 5), with a pronounced upward migration at a rate of 1.59 m/min (0.095 km/
hr). On 9 March, seismicity indicated a propagation velocity of 1.25 m/min (0.075 km/hr) up to 10.00 a.m. and 
then the propagation velocity drastically increased, reaching approximately 2.5 km/hr (Battaglia et al., 2005), and 
leading to the eruption at 11.05 a.m.

With our simulations, we aim to fit the dyke propagation velocity inferred by the hypocenter migration. Because 
of the scarce number of event locations before day 66.5, we focus our simulations on a time period starting at 
day 66.5, and we estimated an average propagation velocity of 1.82 m/min (0.11 km/hr) from day 66.5 to day 
68.4, when the dyke reaches the upper part of the edifice (brown trend in Figure 5). We disregard the seismicity 
between day 65.5 and 66.5 as it may represent a different regime of dyke propagation (as proposed by Battaglia 
et al., 2005), or may be related to the preparatory process preceding the dyke nucleation, such as for instance the 
pressurization of the reservoir at 5–6 km depth.

Figure 5. Depth of volcano-tectonic events as a function of time during 
the 3 days of the deep seismic crisis that started on 6 March 1998 (after 
Battaglia et al., 2005, with permission). The color code indicates the temporal 
distribution in days. Orange lines represent the velocity trend estimated over 
three time periods from Battaglia et al. (2005), brown line shows the average 
velocity used in the present paper to compare with numerical results and the 
red vertical line shows the onset of the eruption.
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6.2. Numerical Simulations of 1998 Magmatic Intrusion at PdF

We run several simulations considering a basaltic intrusion with a magma density of 2,700 kg/m 3, viscosity of 
100 Pa⋅s, crust rigidity of 20 GPa, Poisson's ratio of 0.25 and a rock density of 3,000 kg/m 3 (Gailler et al., 2009), 
and we vary the initial dyke length between 2.5 and 7 km (Table 1). In addition, we tested the sensitivity of our 
simulations to the starting depth of the tip of the intrusion considering two different initial positions, at 9.5 and 
6.8 km bsl (Figures 6a and 6b respectively), both consistent with a dyke fed by a deep reservoir, as the lower tip 
of the dyke would always be deeper than 10 km bsl. We set the starting time of our simulations, so that the dyke 
tip will be located at the depth of the deeper seismicity (∼5 km bsl) when the high-rate seismic swarm began 
(day 66.5).

In Figure 6, we show the depth of the dyke tip as a function of time for our simulations. We display results for two 
different starting depths (Figures 6a and 6b), and for five different dyke lengths (solid colored lines), superposed 
with the hypocenter-depth migration (black spots).

The rock fracture toughness is one of the most weakly constrained parameters. Therefore, for each starting depth 
and dyke length, we tested different values of fracture toughness in order to produce the widest possible range of 
dyke propagation velocities (Table 1).

If we consider the hypocenter migration between −5 and 0 km bsl (before the final acceleration), we can identify 
a rather wide range of dyke lengths and rock fracture toughness that can reproduce the average dyke propagation 

Table 1 
Parameters for All the Simulations Performed for the Piton de la Fournaise Case: Initial Tip Depth Below Sea Level (z0), Initial Dyke Length (L), Rigidity (μ), Rock 
Density (ρr), Magma Density (ρm), Viscosity (η), Bulk Modulus (K), Input Velocity (v0), Cross-Sectional Area (A0), Dislocation Length (l), Fracture Energy (Ef), 
Fracture Toughness (Kc) and Mean Velocity (Vmean)

z0 (km) L (km) µ (GPa) ρr (kg/m 3) ρm (kg/m 3) η (Pa⋅s) K (MPa) vi (m/min) A0 (km 2) l (km) Ef (MPa⋅m) Kc (MPa⋅m 1/2) vmean (m/min)

9.5 2.5 10 3,000 2,700 100 2.00E + 04 0.042 0.00075 0.05 1.5 200 0.78

2.2 242 0.09

9.5 3.5 10 3,000 2,700 100 2.00E + 04 0.042 0.0021 0.05 4.1 331 2.23

4.45 344 1.81

6.3 410 0.14

9.5 5 10 3,000 2,700 100 2.00E + 04 0.042 0.0062 0.05 12.9 587 12.71

17.1 675 1.83

18.7 706 0.23

9.5 6 10 3,000 2,700 100 2.00E + 04 0.042 0.0108 0.05 31.2 912 2.36

9.5 7 10 3,000 2,700 100 2.00E + 04 0.0006 0.017 0.05 34.8 963 101.17

50.7 1,163 3.46

51.8 1,175 0.80

6.8 2.5 10 3,000 2,700 100 2.00E + 04 0.042 0.00075 0.05 1.25 183 0.78

2.2 242 0.08

6.8 3.5 10 3,000 2,700 100 2.00E + 04 0.042 0.0021 0.05 4.1 331 2.91

5.4 379 1.39

6.3 410 0.07

6.8 5 10 3,000 2,700 100 2.00E + 04 0.042 0.0061 0.05 12.7 582 19.76

17.6 685 1.55

18.4 700 0.28

6.8 6 10 3,000 2,700 100 2.00E + 04 0.042 0.0082 0.05 31.9 922 2.76

6.8 7 10 3,000 2,700 100 2.00E + 04 0.0006 0.017 0.05 34.5 959 151.02

51.5 1,172 2.58

52.1 1,179 0.23

Note. Kc is deduced from Equation 6 and vmean is the average dyke velocity excluding the initial phase of crack growth and the final acceleration due to the free surface.
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velocity: for the deeper starting depth, dyke lengths range between 3.5 and 6 km, with fracture toughness between 
344 and 912 MPa⋅m 1/2, respectively (thick curves on Figure 6a), and for the shallower starting depth, lengths 
range between 2.5 and 6 km, with fracture toughness from 183 to 922 MPa⋅m 1/2 (Figure 6b). Note that these 
values of Kc are all compatible with general estimates of 𝐴𝐴 𝐴𝐴

𝑒𝑒𝑒𝑒𝑒𝑒

𝑐𝑐
 from field studies (Rivalta et al., 2015).

Our model also provides an acceleration when the intrusion approaches the surface, which depends on the 
dyke length. Therefore, considering the final acceleration of hypocenter migration over the last 2 km of dyke 
propagation, provides a further constraint on dyke length, and indicates that the best fit is obtained for dyke 
lengths of 6 km, and fracture toughness values of 918 and 922 MPa⋅m 1/2 for the deep and shallow starting 
depths, respectively. These dyke lengths are representative of the dyke-head length during propagation, as 
shown in Figure 7.

In Figures 7a–7d, we show the final crack shapes for the simulations relative to the thick colored lines in Figure 6a. 
For these sets of parameters, we obtain average tail thicknesses which are in the order of 10 −1–10 −2 times the 
maximum dyke opening. Particularly, for our best fit solution (Figure 7c) the average tail over maximum dyke 
opening is 0.007. In Figures 7a–7d, we also show the static dyke shapes (dashed lines): in comparison with the 
dynamic dyke shapes, they display thicker heads in their uppermost part, and maximum openings which are about 
20%–40% larger. Eventually, in Figure 7e, we display the crack velocities (and the velocity intervals that have 
been tested) for the simulations with different dyke lengths.

7. Conclusions
Our model of magmatic dyke propagation produces a dynamic shape consisting of an open tail region, which had 
been so far an exclusive characteristic of the “lubrication theory” school of models, overhung by a teardrop-shaped 
head, characteristic of the “Weertman crack” school of models. Within the range of viscosities and velocities 
typical of magmatic dykes, we have shown that they propagate in a regime where viscous forces are never fully 
negligible.

Although dyking events are of great interest and are generally analyzed by using both geodetic and seismic 
data, their propagation at mid crustal depths (larger than 4–5 km), may be hard to capture, and therefore 
are rarely documented, such that estimates of their velocity are often limited to the last part of propagation. 
The 1998 eruption at PdF is a great example of a vertical magma transfer from a relatively deep reservoir 

Figure 6. Simulations of the 1998 dyke intrusion at Piton de la Fournaise volcano for two scenarios: (a) a deep initial crack at 9.5 km bsl and (b) a shallow initial crack 
at 6.8 km bsl. The volcano-tectonic events are represented by the black dots (after Battaglia et al., 2005, with permissions). The color code symbolizes the different 
crack lengths used in the numerical simulations, from 2.5 to 7 km. Dyke shapes at the initial stage of the propagation are plotted with an opening-to-length ratio of 
0.0027 (the horizontal bar shows the opening scale). Colored areas show the domains of fracture toughness Kc for which the associated dyke is propagating. Outside the 
plot frame, values of Kc are displayed for each boundary of all propagation domains. The thick colored lines are the best fitting models.
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to the surface. The use of the dynamic model to characterize this dyke intrusion has provided additional 
information about the dyke shape, including length (3.5–6 km) and opening (0.37–1.24 m). We also deter-
mine a range for the fracture toughness of the medium, between 344 and 912 MPa⋅m 1/2 which are closer to 
field estimates than laboratory values, in agreement with Rivalta et al. (2015). Besides, this application has 
shown that the thickness of a dyke is not constant and that it can vary by one or two orders of magnitudes 
from head to tail. This implies that dyke thicknesses measured in the field can vary significantly even though 
the magma composition does not; conversely, models show that different sets of parameters and viscosities 
can lead to identical thicknesses, albeit at different depths. This means that the dyke thickness depends on 
its dynamics and where it is measured, which unfortunately is something that cannot usually be determined 
in the field.

Finally, we would like to stress that even though we have mostly focused our attention on the vertical ascent in a 
homogeneous crust, our modeling scheme has been implemented in order to account for the effect of heterogene-
ous crustal stress and layering (Figure 3f), and in particular to compute complex (non-straight) dyke trajectories 
(Maccaferri et al., 2011). In the future, we are going to use our new dynamic model to investigate non-vertically 
ascending dykes in interaction with complex stress configurations.

Notation
Rock parameters

Kc fracture toughness
µ shear modulus
ν Poisson's ratio
ρr density of the rock

Figure 7. Final dyke shapes for the best fitting simulations performed with a deep initial dyke tip (thick color lines in Figure 6a) with respect to dyke lengths. The 
dashed colored lines show the static crack shape for each corresponding parameter set. The opening-over-length ratio is 0.0017. (a) 3.5 km, (b) 5 km, (c) 6 km, and (d) 
7 km long dykes. (e) Mean velocity estimated for each Piton de la Fournaise (PdF) simulation, accounting only for the most constant part of the propagation. vvt is the 
mean velocity estimated between day 66.5 and 68.5 from the distribution of volcano-tectonic events (propagation below sea level in Figure 5).
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Fluid-filled crack parameters
h, q fracture opening/slip
K fluid compressibility
u = [0, us] fluid flow velocity
v propagation velocity of the crack
vth theoretical velocity from Spence and Turcotte (1990)
η viscosity of the fluid
ρm density of the fluid

Model parameters
A cross-sectional area of the magma body
A0 reference cross-sectional area of the initial magma body at vanishing lithostatic stress
b Burgers vector
D the term linking linearly the energy release ΔE to the crack velocity v (Equation 27)
emn strain rate tensor
ΔE energy release
Ef fracture energy

𝐴𝐴
𝜕𝜕𝜕𝜕

𝑣𝑣

𝜕𝜕𝜕𝜕

,Δ𝜕𝜕𝑣𝑣  rate of viscous dissipation
𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

,Δ𝜕𝜕  rate of gravitational energy variations
𝐴𝐴

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

,Δ𝜕𝜕   rate of the potential strain energy variations
f volumetric fluid flow/flux

𝐴𝐴 𝐴𝐴
𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖
  flux crossing the upper boundary of each dislocation element during the time Δt

fi flux at the middle point of ith dislocation element
F the body force per unit volume
g gravitational acceleration
hi average fracture opening at each dislocation element between propagation step k − 1 and k
i ith dislocation element
k propagation step
l dislocation length
L initial crack length
Lw Weertman length scale from Rubin (1998)
nα number of directions tested at each propagation step
N total number of dislocation elements
⎡

⎢

⎢

⎣

� � � �

�� ��

⎤

⎥

⎥

⎦

  influence coefficients matrix (Green functions) of the crack problem

P pressure scale from Rubin (1998)
𝐴𝐴

𝜕𝜕𝜕𝜕
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝜕𝜕𝑣𝑣

  viscous pressure gradient (Equation 2)
ΔP, 𝐴𝐴 Δ𝑃𝑃  , ΔPdyn static, linearized static and dynamic overpressures
Pfluid fluid pressure
Pconf confining pressure
ΔPK pressure change due to the fluid compressibility
ΔPvisc viscous pressure change

𝐴𝐴 Δ𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣

  viscous pressure change due to ith dislocation element
𝐴𝐴 Δ𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑣𝑣
  viscous pressure change at the middle point the ith dislocation element

r, s coordinate perpendicular to the fracture wall, coordinate along the crack cross-section
t time
Δt time elapsing between consecutive propagation steps
t* non-dimension time from Spence and Turcotte (1990)
ui parabolic fluid velocity profile within each dislocation element i
v0 input crack velocity
vmean average velocity excluding the initial phase and the final acceleration (see Table 1)
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V fluid-filled crack volume
w dyke half thickness from Rubin (1998)
W thickness scale from Rubin (1998)
ΔV fluid-filled crack volume variations between consecutive propagation steps
ΔV0 reference volume at vanishing lithostatic pressure
x, z horizontal/vertical axis
z* depth of the crack tip normalized by the initial depth
z0 initial depth
α angle between the vertical and the orientation of the dislocation element
βk, βv fracture and viscous coefficient for asymptotic tip solutions (Dontsov & Peirce, 2015)
Γ viscous pressure gradient
δα angle between each nα tested directions
Δρ density contrast between fluid and medium (equivalent to the buoyancy)
Σ dislocation surface
τ shear traction
Φ volumetric contribution of the rate of energy dissipated by the fluid flow
Χ distance from a point inside the fracture to the tip from Dontsov and Peirce (2015)
Ψ term linking linearly the velocity v to the fluid flux f (Equation 18)

Data Availability Statement
The numerical code presented in this study is available on a repository: https://doi.org/10.5281/zenodo.7118734.
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