
1.  Introduction
Tephra injected into the atmosphere during explosive eruptions poses a direct threat to aviation, and when it falls 
to the ground, it can have widespread primary and secondary impacts at different spatial and temporal scales (e.g., 
Jenkins et al., 2015). Tephra dispersal and fallout is a function of multiple factors, including QM, efficiency of 
magma fragmentation, clast lithology, vent geometry, HTP, and wind field (e.g., Degruyter & Bonadonna, 2012; 
Gudmundsson et al., 2012; Mastin et al., 2009; Sparks et al., 1997; Wilson & Walker, 1987). Recent volcanic 
crises, such as those associated with Eyjafjallajökull (Iceland) in 2010 (Gudmundsson et  al.,  2012; Mereu 
et al., 2015), Calbuco (Chile) in 2015 (e.g., Marzano et al., 2018; Romero et al., 2016; Vidal et al., 2017), Etna 
(Italy) in 2021 (Calvari & Nunnari, 2022) have demonstrated the need of a better real-time assessment of both 
HTP and QM in order to achieve a more accurate tephra dispersal forecasting (Bonadonna et al., 2012; Reckziegel 
et al., 2016).

Various geophysical strategies for the determination of HTP and QM have been developed, such as the data integra-
tion from different sensors with field measurement analysis (e.g., Bonadonna et al., 2011; Corradini et al., 2016; 
Freret-Lorgeril et al., 2021; Mereu et al., 2022; Poret et al., 2018). In fact, the Eruptive Source Parameters can 
be either based on tephra-fallout deposits (e.g., Carey & Sparks, 1986; Constantinescu et al., 2022; Pyle, 1989; 
Rossi et al., 2019) or on both ground-based and satellite sensors (e.g., Aiuppa et al., 2015; Dubuisson et al., 2014; 
Schellenberg et al., 2019; Wood et al., 2019).

It is notable that QM has a first-order effect on sedimentation processes that are characterized by different fallout 
regimes in proximal and distal areas with respect to volcanic vent (e.g., Beckett et al., 2015; Dioguardi et al., 2020; 
Dürig et al., 2018; Harvey et al., 2018; Scollo et al., 2008). QM is typically derived from HTP using models based 
on the buoyant plume theory (e.g., Bursik, 2001; Carazzo et al., 2008; Degruyter & Bonadonna, 2012; Wilson & 
Walker, 1987; Woodhouse et al., 2015) or empirical relationship (Mastin et al., 2009; Sparks et al., 1997).

Recently, multi-sensor strategies have been applied with the aim of improving the QM estimations (e.g., 
Freret-Lorgeril et al., 2021; Marzano et al., 2020; Mereu et al., 2020,; Vulpiani et al., 2016). These estimations are 
often affected by large uncertainties, due to error propagation arising from uncertainties in: (a) HTP estimations, 
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which are usually based on visible calibrated cameras, radar or satellite retrievals (5%–10%); (b) the assumptions 
associated with the modeling approach employed (e.g., empirical, analytical); (c) the different definition of HTP 
retrieved from several sensors; (d) sensors characterized by different size detection limits, operating at various 
distance from vent and pointing at different regions of volcanic plumes (e.g., Bonadonna et al., 2012). In addi-
tion, HTP, as defined in 1D plume models, can differ from the determination of HTP based on various geophys-
ical sensors, especially in case of bent over plumes (e.g., Bonadonna et al., 2012; Scollo et al., 2019). Finally, 
complex eruptive dynamics (e.g., lava-fountain fed tephra plumes such as those of Etna volcano) cannot be easily 
described by 1D models designed for sustained eruptions and require dedicated modeling approaches (e.g., Snee 
et al., 2021).

In this work, we use the data of a weather radar able to scan the Etna summit craters in real time (Vulpiani 
et al., 2016), to develop a new statistical model for estimating QM from HTP and wind velocity vw observations, 
accounting for data and modeling uncertainties. This has been possible thanks to a unique data set of fully 
radar-based pairs of simultaneous and independent QM and HTP estimates performed during 32 paroxysms that 
occurred at Etna between 2011 and 2022.

The paper is structured as follows: Section 2 is devoted to show the radar estimates of HTP and QM for the 32 
paroxysms; Section 3 describes the model built on such data, and Section 4 summarizes the conclusions.

2.  Radar Quantification of Mass Eruption Rate and Top Plume Height
The observations of Etna eruptions are performed by a X-band Weather Radar (XWR), located in Catania, Italy, 
at about 32 km from the Etna summit. The XWR is a dual-polarization scanning radar, successfully used to 
retrieve ESPs, which performs a 3-D scan of the surrounding area ∼160 km wide and 20 km tall. XWR can 
acquire an entire volume moving 360° in azimuth and with 13 fixed angles in elevation with an acquisition time 
∼5 min (Mereu et al., 2022; Montopoli, 2016; Vulpiani et al., 2016).

We apply the Volcanic Ash Radar Retrieval (VARR) to the copolar radar reflectivity Zhh (dBZ) with the aim to extract 
quantitative information of volcanic clouds from radar data (Marzano et al., 2012; Mereu et al., 2015, 2020). In 
particular we retrieve: (a) the HTP (km) above the Etna summit craters (located at about 3,350 m above sea level), 
evaluating an uncertainty of ±300 m with respect to the axis of the beam cone, due to scanning radar geometry; 
(b) the tephra concentration Ct (g/m 3), useful parameter to apply the Mass Continuity Approach (MCA) (e.g., 
Marzano et al., 2020; Mereu et al., 2015) and quantify the time variation of QM (kg/s) (see Supporting Informa-
tion S1) in the whole radar volume. We identify the most explosive phases of each Etna eruptive activity, named 
paroxysm, selecting the time when a sustained volcanic plume is formed (Freret-Lorgeril et al., 2018; Scollo 
et al., 2019). During those events, a rapid transition from Strombolian activity to sustained lava fountains up to a 
height of a few km is typically observed lasting from 10 min to 1–2 hr (Alparone et al., 2003; Calvari et al., 2018; 
Snee et al., 2021).

For each paroxysm, we retrieved several pairs of independent QM and HTP values, obtaining a set of 242 meas-
urements (Figure 1). The QM retrievals range from 10 2 to 5·10 6 kg/s whereas the HTP estimates from 1 to 12 km, 
including the main variations of Etna explosive activity (Andronico et al., 2021). Although it is known that the 
radar is not very sensitive to the finest particles (fine ash, smaller 63 μm in diameter) as the sensitivity depends 
both on the distance between the plume and the radar and on its technical characteristics, it is worth noting that 
Etna paroxysms are usually characterized by coarser volcanic particles (diameter between 63 μm and 2 mm) has 
been observed by the deposit analysis (e.g., Andronico et al., 2014; Freret-Lorgeril et al., 2021; Pioli et al., 2019).

Since wind velocity plays a relevant role in the development of the eruption column, we also collected the 
wind velocity profiles during the 32 paroxysms from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) ERA5 reanalysis (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). For each 
paroxysm, we estimated the mean wind velocity between the Etna summit craters and HTP, which is the param-
eter vW used in our statistical model. To quantify an uncertainty in the vW value, we compared them with wind 
direction and speed profiles elaborated by a local meteorological model from the hydrometeorological service 
of ARPA in Emilia Romagna and daily used by Etna volcano observatory to run volcanic ash dispersal forecast 
(Scollo et al., 2009); the maximum difference between the two estimates is about ±6 m/s that we take as a meas-
ure of the uncertainty on vW.
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3.  Model Implementation
Various 1D and 3D models of volcanic plumes exist in literature, all mostly based on the theory of turbulent erup-
tion columns (e.g., Cerminara et al., 2016; Costa & Marti, 2016; Esposti Ongaro et al., 2007; Morton et al., 1956; 
Oberhuber et al., 1998; Suzuki et al., 2016). In addition, simple empirical models, obtained by different regression 
analyses between HTP and QM of past eruptions have been developed, reflecting the theoretical power law between 
these parameters (e.g., Aubry et al., 2017; Gudmundsson et al., 2012; Mastin et al., 2009; Sparks et al., 1997). 
More recently, analytical equations based on the buoyancy theory have been proposed accounting for a variety 
of eruptive and atmospheric conditions, such as the wind velocity (Degruyter & Bonadonna, 2012; Woodhouse 
et al., 2015). These are extensively used in practice for quick, near real-time estimations of QM from the observed 
HTP (Folch et al., 2020; Scollo et al., 2019) as well as estimations of QM for old deposits (Bonadonna et al., 2015; 
Pistolesi et al., 2021).

We focus our analysis on the relationship of the QM and HTP estimations also considering the effect of vw and, 
for the first time, considering only one remote sensing instrument, that is, the radar. This allows to reduce the 
uncertainty resulting from the combination of multiple remote sensing and modeling strategies associated with 
different assumptions.

In agreement with the theory of turbulent convection (e.g., Morton et  al.,  1956; Sparks,  1986; Wilson & 
Walker, 1987) and consistent with our radar-based measurements, we consider a power law relationship between 
HTP and QM of the form 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 = 𝜅𝜅 ⋅𝑄𝑄

𝛾𝛾

𝑀𝑀
 ; fitting this function to QM and HTP data sets grouped by similar wind 

velocities, we have found that while 𝐴𝐴 𝐴𝐴  remains roughly constant, 𝐴𝐴 𝐴𝐴 decreases as the wind velocity increases, 
which is probably an effect of the wind bending the plume (see Supporting Information S1). Considering such 
evidence, we define a function relating HTP as a function of QM and vW as follows:

𝐻𝐻𝑇𝑇𝑇𝑇 (𝑄𝑄𝑀𝑀, 𝑣𝑣𝑤𝑤) = 𝛼𝛼 ⋅ 𝑒𝑒𝛽𝛽⋅𝑣𝑣𝑤𝑤𝑄𝑄
𝛾𝛾

𝑀𝑀� (1)

where α, β, and γ are the model parameters to be determined. The inference of the model parameter values 
is performed using a Markov Chain Monte Carlo (MCMC) method, notably appropriate for solving nonlinear 

Figure 1.  Simultaneous and independent estimates of QM (kg/s) and HTP (km) derived from the XWR and related to 32 Etna paroxysms. For each one, the different 
points, characterized by the same symbol and color, represent the pairs of QM and HTP estimated at different times. In the top left, the position of Etna and the XWR are 
shown in the map with a circle and triangle with a red dotted line, respectively.
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problems and implicitly catching correlations among model parameters 
(Garcia-Aristizabal,  2018; Garcia-Aristizabal et  al.,  2016). Markov chains 
are constructed using the Metropolis-Hastings algorithm (Metropolis & 
Ulam,  1949; Metropolis et  al.,  1953); summary statistics of the Markov 
chains are used to characterize the model parameter values (the median as 
the best estimation of each parameter, and two percentiles: 16th and 84th are 
used to define an uncertainty range). We compare the QM inferences of our 
model with those produced by two existing equations:

1.	 �the analytical equation of Degruyter and Bonadonna (2012), hereinafter 
DB12, considering the vW parameter:

𝑄𝑄𝑀𝑀−𝐷𝐷𝐷𝐷12(𝑡𝑡) = 𝑎𝑎0𝐻𝐻𝑇𝑇𝑇𝑇
4 + 𝑎𝑎1𝐻𝐻𝑇𝑇𝑇𝑇

3� (2)

�where a0 and a1 are coefficients dependent on the gravitational acceleration, air density, buoyancy frequency, 
top-hat profile radial entrainment coefficient, wind entrainment coefficient, and mean wind velocity profile 
between vent height and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 included in a1 (Degruyter & Bonadonna, 2012; Mereu et al., 2015);

2.	 �the empirical equation of Mastin et al. (2009), hereinafter MA09, expressed by:

𝑄𝑄𝑀𝑀−𝑀𝑀𝑀𝑀09(𝑡𝑡) = 3.29⋅𝐻𝐻𝑇𝑇𝑇𝑇
4,15� (3)

�assuming a magma density ρm = 2,500 kg/m 3 as prescribed in Mastin et al. (2009).

The inference of the α, β and γ parameters is performed using data from 31 (out of 32) eruptions, since the last 
eruption in the data set (21 February 2022) is kept aside to be used for testing the model performance. The 
inferred parameter values (median, 16th, and 84th percentiles) are obtained from the analysis of the MCMC 
output samples (see Supporting Material) and listed in Table 1.

The solution of 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 (𝑄𝑄𝑀𝑀, 𝑣𝑣𝑤𝑤) are the surfaces shown in Figure 2. The MCMC samples of α, β, and γ parameters 
are used to calculate 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 (𝑄𝑄𝑀𝑀, 𝑣𝑣𝑤𝑤) on a regular grid of 𝐴𝐴 𝐴𝐴𝑀𝑀 and 𝐴𝐴 𝐴𝐴𝑤𝑤 values; the distribution of 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 values at each 
grid point are then used to calculate percentiles of interest. We tested the performance model by comparing the 
QM inferred from the HTP observations of 21 February 2022, applying Equation 1, with the QM estimated from 
the XWR measurements for the same event. This event happened during relatively low-intensity wind conditions 
vW ∼ 8 m/s and the model relating QM and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 is shown with black lines in Figure 3.

We note that most of the measurements fall within the represented model's uncertainty bounds, which covers the 
68% confidence interval. Two points which are not included correspond to the final phase of paroxysm for which 
sudden decrease of the eruption column could occur. Figure 3 also shows the curves defined using the DB12 and 
MA09 models for the parameters characterizing the 21 February 2022 eruption, the first of the two considering 
the variability vw ±6 m/s. It is worth noting that the DB12 model falls within the 68% confidence interval provided 
by our model for QM larger than 6 × 10 4 kg/s, whereas MA09 for QM larger than 2 × 10 4 kg/s. However, with our 
model we provide a QM range, and not only a single QM value, for each HTP single value, that can help the scientist 
to improve predictions of tephra fallout dispersal and deposit, including the evaluation of associated uncertainty.

In Figure 4, the MCMC samples of the model parameters are used in Equation 1 to obtain a sample of QM for each of 
the HTP values that the radar measured on 21 February 2022. In other words, we show horizontal sections of Figure 3 
through the HTP values measured in the testing eruption (red points). During this activity, 12 HTP measurements 
were retrieved (corresponding to the 12 panels of Figure 4), covering eight different column height values: 1.3, 2.5, 
4.8, 4.9, 5.2, 6.0, 6.7, and 7.0 km. Red, blue and green lines show, respectively, the radar-based measurement, the 
DB12 and MA09 estimate of QM for that specific testing point. In panels a, d, e, the QM estimates (red line) are not 
shown because they do not belong to the paroxysmal phase. We can note that, of the two red dots outside uncertainty 
bounds in Figure 3, one QM estimate is not captured within the uncertainty bounds shown for our model (Figure 4b), 
whereas the other QM retrieval falls in the upper tail of the histogram (Figure 4c). Moreover, all the estimates of both 
the DB12 and MA09 models for the testing data fall in the upper tail of the QM distribution provided by our model.

4.  Conclusion
In this work we present a new parametric model developed and validated on entirely radar-based, simultaneous 
and independent measurements of QM and HTP from 32 Etna paroxysms between 2011 and 2022, also considering 

Table 1 
Parameter Values of the α, β, and γ Coefficients of the Model in Equation 1, 
Inferred Using the Radar-Based Estimates of QM and HTP for 31 Eruptions 
and the vW Data Retrieved From the ECMWF

Coefficient Median 16th percentile 84th percentile

α 1.2 0.9 1.7

β −0.032 −0.038 −0.026

γ 0.16 0.13 0.18
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the effect of wind conditions. This calibrated model can be used for near real-time estimation of QM during 
explosive eruptions, given that HTP and vw measurements are available. We performed the XWR data analysis to 
estimate pairs of QM and HTP during the above-mentioned paroxysms (see Supplementary A) and we extracted 
the vw data from the ECMWF ERA5 reanalysis. These simultaneous and independent estimates of QM and HTP 
represent coherent observations of the plume conditions in time-space; this allows increasing the accuracy and 
consistency of the measurements and, in turn, the accuracy of the model parameters' estimation.

The model is trained on the data from the first 31 eruptive events and tested on the data from the last event, also 
comparing its performance with those of the DB12 and MA09 models. Most of the testing data falls well within 
the 68% confidence interval of the calibrated model, except for two data points in Figure 3, one of which is 
anyway captured within the distribution of sampled QM values (Figure 4c), whereas the second is not (Figure 4b). 
It is notable as all these cases fall within the natural variability of the paroxysmal phase of basaltic volcanoes as 
Etna (Andronico et al., 2021). Interesting to note that tephra plumes coupled with lava fountains are associated 
with higher variability of the QM-HTP relationship compared to standard plumes (Snee et al., 2021). The DB12 
and MA09 models estimates are all consistent with the sampled QM values for the testing data; however, the 
median QM from our model is systematically lower than the DB12 and MA09 estimates (Figure 4). Looking at 
the training data with similar wind conditions as the testing data in Figure 3, we observe that our model captures 
the variability exhibited by data to a much larger extent (∽90%) than the DB12 and MA09 models.

Empirical fits are intrinsically dependent on the characteristics of the data set used and typically do not have the 
capability of an analytical equation to explore and better understand the impact of the different parameters on the 

Figure 2.  Solutions of the statistical parametric model (Equation 1) shown as surfaces obtained by using the median, the 84th, and the 16th percentiles of 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 values 
obtained using samples of α, β, and γ obtained from the MCMC method and using a regular grid of 𝐴𝐴 𝐴𝐴𝑀𝑀 and 𝐴𝐴 𝐴𝐴𝑤𝑤 values. The black dots are the radar-derived samples of 

𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 and 𝐴𝐴 𝐴𝐴𝑀𝑀 and the related 𝐴𝐴 𝐴𝐴𝑤𝑤 values from the measurements performed during the 31 Etna eruptions used for fitting the model.
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results. Nonetheless, our statistical model provides key innovative features: first, it has been entirely developed, 
for the first time, on self-consistent radar-based HTP and QM estimates allowing to eliminate the uncertainty in 
the definition of parameters; second, being based on lava-fountain fed tephra plumes at Etna, it can better capture 
the high variability in rise height typical of these plumes. In fact, the MCMC approach is especially appropriate 
for the description of the QM-HTP relation for this eruptive style, which is especially impacted by the combination 
of various parameters of lava fountains (Snee et al., 2021); Third, it propagates the uncertainty on both the input 
data (HTP and vw) and the model parameter values. In this way, uncertainty on QM estimates can be propagated and 
accurately quantified. Although the importance of quantifying uncertainty in volcanic tephra hazard assessment 
is well known and reported in literature (e.g., Jenkins et al., 2015; Sandri et al., 2016; Selva et al., 2020), real-time 
forecasting is typically based on deterministic approaches due to technical and operational needs. Accounting for 
the uncertainty in ESP, among which QM is one of the most relevant (Dioguardi et al., 2020; Scollo et al., 2008), 
would improve the reliability of forecasts and/or short-term hazard assessments of tephra dispersal and fallout 
(Selva et al., 2014). One of the reasons why deterministic modeling is still the mostly used approach is the need 
for fast and computationally cheap forecasts during a volcanic crisis, nowadays made possible by the growing 
availability of computational resources (Martinez Montesinos et al., 2022).

The proposed model, coupled with radar-based real-time measurements of HTP could be easily implemented into 
the existing short-term tephra dispersal forecasting system of the Etna volcano observatory (Scollo et al., 2019). 
Moreover, since there are several ground-based radars operating near volcanoes (e.g., Eyjafjallajökull (Mereu 
et al., 2015) and Grímsvötn (Marzano et al., 2013) in Iceland, Calbuco (Vidal et al., 2017) in Chile, Kelud and 

Figure 3.  Model relating QM and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 under wind conditions like those observed during the 21 February 2022 eruption (vW = 8 ± 6 m/s) used for testing (solid black 
line: median model, dashed black lines: uncertainty defined by the 16th and 84th percentiles). For comparison, the blue lines show the model by DB12 for the same 
wind conditions, whereas the green line shows the MA09 model. Red points show the estimates of QM and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑇𝑇 for the 21 February 2022 eruption, while the gray 
squares show the data retrieved from previous eruptive events that happened under similar wind conditions.
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Lokon in Indonesia (Wardoyo, 2013)), the adopted approach could be applied to estimate QM from radar-based 
HTP measurements at these volcanoes. Further work using different radar data set of other volcanoes having 
different eruptive styles is needed to estimate and compare the overall parameters of the statistical model. In this 
way, we could test both the applicability and limits of the proposed model to quickly quantify the QM variability.

Data Availability Statement
The Supplementary A contains a table with the radar retrieval data produced in this work, identified by the acro-
nym RadMER, which has been also released through an open access repository: https://doi.org/10.13127/etna/
radmer.

Figure 4.  QM estimates for the 21 February 2022 testing data according to the proposed model (gray histograms; vertical black lines mark the median), the radar-based 
measurements (red vertical lines), the DB12 model (blue vertical lines) and the MA09 model (green vertical lines).
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