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Abstract
We investigate the impact of viscoelastic tidal deformation of the Moon on the motion of a
polar orbiter. The dissipative effects in the Moon’s interior, i.e., tidal phase lags, are modeled
as Fourier series sampled at given frequencies associated with linear combinations of Delau-
nay arguments, the fundamental parameters describing the lunar motion around the Earth
and the Sun. We implement the tidal model to evaluate the temporal lunar gravity field and
the induced perturbation on the orbiter. We validate the numerical scheme via a frequency
analysis of the perturbed orbital motion. We show that, in the case of the Lunar Recon-
naissance Orbiter at a low altitude of less than 200km, the main lunar tides and hence the
potential Love numbers around the monthly and some multiple frequencies are dynamically
separable. The omission of those effects in practice introduces a position error at the level of
a few decimeters within 10 days.

Keywords Moon · Tidal deformation · Viscoelasticity · Lunar orbiter · Sensitivity

1 Introduction

TheMoon deforms as a result of tidal forces raised by the Earth, and to a lesser extent, the Sun
(Harrison 1963; Williams and Boggs 2015). The deformation manifests in surface displace-
ment as well as a concurrent change in the body’s gravitational field, which are dependent
on the structure and material properties of the interior. The susceptibility or resistance of
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the body to deformation is described by the Love numbers, h, l for the vertical or horizontal
surface variations and k for the induced gravitational potential. The external forcing occurs
over a wide spectrum of frequencies governed by the relative motions of the Moon-Earth-
Sun system. The Love numbers vary across the dynamic spectrum in amplitude and phase
with respect to the excitation. While a perfectly elastic body deforms instantaneously, i.e.,
the phases of its Love numbers are zero, the viscosity delays the body response and causes
energy dissipation via internal friction.

The variability of the lunar gravitational field in turn exerts perturbations on an orbiting
spacecraft. The sensitivity of the orbiter motion to the lunar tides depends on the specific orbit
configuration. The practical consequence of these perturbations is also a question of tracking
capability and precision. Nowadays, the orbit determination of lunar spacecraft has achieved
a customary decameter-level accuracy or better and requires elaborate force models of com-
mensurate accuracy (Mazarico et al. 2012, 2018; Löcher andKusche 2018). For instance, it is
essential to account for the perturbations stemming from the elastic tidal response in gravity
recovery campaigns (Konopliv et al. 2001; Goossens andMatsumoto 2008; Matsumoto et al.
2010; Lemoine et al. 2014; Yan et al. 2020). The viscoelastic tidal deformation of the Moon,
well understood in the literature, is an even smaller effect compared with the elastic response.
However, as the precision of spacecraft tracking improves, it may soon become necessary
to take into account viscoelastic tidal effects in orbit modeling, which motivates the present
study. Furthermore, the determination of the Moon’s tidal response, including phase lags at
different frequencies, would have broad implication on our understanding of the lunar inte-
rior and evolution. Complementary to seismic measurements which are planned for future
landed missions, the phase lags would in particular provide information on the low-viscosity
zones and other dissipative layers in the deep interior (Briaud et al. 2023).

We remind ourselves of a rich literature over decades on the theory and determination of
perturbed motions of Earth’s satellites, in which the role of (solid) Earth’s tidal deformation
has been considered in detail and with rigor. Love numbers and phase lags at prominent
frequencies have been independently derived fromsatellite tracking and altimetric data (Kozai
1967; Cazenave et al. 1977; Ray et al. 1996). Following such investigations as by Kaula
(1964); Kozai (1965); Lambeck et al. (1974); Felsentreger et al. (1976), etc., we aim to
assess the impact of lunar viscoelasticity in the motion of a polar orbiter, representing a
typical class of survey satellites. We use the lunar tidal deformation model by Williams and
Boggs (2015) (Sect. 2). We employ both numerical schemes and analytical expressions to
investigate the long-term orbiter motion and as a means to validate model implementation
(Sect. 3), followed by an interpretation of the orbital spectra (Sect. 4); finally, the errors in the
orbit solutions due to omission of the viscoelastic effects are preliminarily evaluated (Sect. 5).

2 Lunar viscoelastic tidal deformation: model formulation

The external gravitational potential V of the Moon can be expressed as a spherical harmonic
series in the body-fixed frame (Heiskanen and Moritz 1967),

V = μ

r

lmax∑

l=0

l∑

m=0

(
R

r

)l

Plm(sin ϕ) (Clm cosmλ + Slm sinmλ) (1)

where μ = GM and R are the gravitational constant and reference radius of the body,
respectively, r , λ, ϕ are the spherical coordinates of the field point, Plm are the associated
Legendre functions, and Clm, Slm are Stokes’ coefficients of the field variations at degree
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l and order m. Equation (1) is expressed in the lunar Principal Axes (PA) frame (Lemoine
et al. 2014).

Referring to Williams and Boggs (2015), the time-varying components of the Stokes’
coefficients due to lunar tidal deformation at degree 2 can be expressed as a series expansion
at designated frequencies associated with the motions of the Moon, Earth, and Sun,

�C2m(t) =
∑

j

Re
{
k2( j) (−i)δm1C2m( j)e

iζ( j)
}
,

�S2m(t) =
∑

j

Im
{
k2( j) i

δm1 S2m( j)e
iζ( j)

}
.

(2)

The angular arguments, ζ( j)(t), are linear combinations of the Delaunay arguments, whose
linear change rates then specify the respective frequencies (Simon et al. 1994; Petit andLuzum
2010). The real constants C2m( j), S2m( j) measure the frequency-dependent contribution of
the potential raised by Earth and Sun with respect to the lunar reference sphere of radius R,
more specifically, through

Re
{
(−i)δm1C2m( j)e

iζ( j)
} = C2m( j)

[
cos ζ( j)

sin ζ( j)

]m �=1

m=1

Im
{
i δm1 S2m( j)e

iζ( j)
} = S2m( j)

[
sin ζ( j)

cos ζ( j)

]m �=1

m=1

(3)

The complex Love numbers k2( j), which describe the body’s response to the degree 2 tidal
potentials, can be expressed as,

k2 ( j) = |k2 ( j)|e−i�ζ( j) = k2( j) − ik�
2( j) (4)

where the imaginary component, k�
2( j), causes a phase shift (lag) with respect to ζ( j). It

follows that �ζ( j) = arctan(k�
2( j)/k2( j)). The phase shift is related to the quality factor of

energy dissipation by sin|�ζ( j)| = 1/Q( j) (Efroimsky 2012). For numerical evaluation, we
rewrite Eq. (2) as follows,

�C2m(t) =
∑

j

|k2( j)|C2m( j)

[
cos ζ̃( j)

sin ζ̃( j)

]m �=1

m=1

,

�S2m(t) =
∑

j

|k2( j)|S2m( j)

[
sin ζ̃( j)

cos ζ̃( j)

]m �=1

m=1

,

(5)

where ζ̃( j) = ζ( j) − �ζ( j).
Table 1 is an excerpt from Williams and Boggs (2015) whose series approximation of

Earth’s and solar tides consists of 21 frequencies with a truncation error of about 1% (Fig. 1a).
We will refer to the frequencies (periods) near 27 days, namely, j = 1, 2, 3, 14 (and 20,21),
as (lunar) monthly components. Those between 13 and 16 days ( j = 4, 5, 6, 7, 11, 18)
are the semimonthly components. Accordingly, we designate frequencies around 9 days
( j = 9, 12, 13, 16, 19) as tritmonthly, or thrice per month. In a similar way, the frequencies
at 365.3 and 188.2 days are the annual and semiannual components ( j = 10, 15), respectively.
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Table 1 Frequency-dependent constants of tide-raising potentials by Earth and Sun (excerpt from Williams
and Boggs 2015) and modeled Love numbers of the Moon (Briaud et al. 2023)

j ζ( j) Per. (d) C20( j) C21( j) S21( j) C22( j) S22( j) k2 ( j) k�
2 ( j)

1 F 27.212 0 −869.6 −4.4 0 0 216.0 6.61

2 � 27.555 −605.4 0 0 302.2 407.1 216.1 6.65

3 2D − � 31.812 −115.6 0 0 53.7 81.0 216.8 7.16

4 2D 14.765 −101.1 0 0 68.8 44.4 213.9 4.28

5 2� 13.777 −49.7 0 0 47.0 46.9 213.8 4.04

.

.

.
.
.
.

.

.

.

8 F − � 2190.35 0 −18.0 −47.2 0 0 250.6 6.46

9 2D + � 9.614 −16.1 0 0 13.8 13.5 213.3 2.94

10 �′ 365.26 −0.1 0 0 −0.8 −13.6 234.1 14.96

.

.

.
.
.
.

.

.

.

14 2D − F 32.281 0 −12.2 −4.9 0 0 216.9 7.21

15 F + � − 2D 188.201 0 −3.6 −11.1 0 0 227.1 12.1

.

.

.
.
.
.

.

.

.

Stokes’ coefficients are to be rescaled by 10−9 and Love numbers by 10−4

If the Moon were purely elastic, its response would not only be in scale (i.e., with k2( j) =
| k2( j) |) but also in phase with the external, tide-raising potential with ζ( j) at all frequencies.
A plausible set of Love numberswas derived based on the lunar interior simulation by (Briaud
et al. 2023). The Love numbers were sampled at the same frequencies as in Table 1. Note that
k�
2 (0) = 0 or �ζ(0) = 0. We note that the tidal dissipation of a librating body, as is the case
of the Moon, is a complicated problem that requires delicate treatment (Efroimsky 2018).

An illustration of the viscoelastic tidal response of the gravitational potential at the latitude
of 45 degrees and 15 degrees in longitude on the lunar surface is given in Fig. 1b. The vis-
coelastic curve lags slightly behind the elastic one (panel b), due to k�

2 being mostly between
30 and 40 times smaller than the real k2, or �ζ between 1 and 2 degrees, except at the end
frequencies. Note that the phase lags are dependent on the interiormodel in the simulation. As
a check, the spectrum of the tide-raising potential series exhibits precisely the 21 frequencies,
as depicted in Fig. 1c. The gravitational potential and its spectrum at other locations, e.g.,
along a moving platform at r(t), λ(t), ϕ(t), will be different. The formulation and evaluation
of the tidal effects via Eq. (5) remain the same, which is subsequently implemented for the
computation and analysis of the spacecraft orbit.

3 Perturbed spacecraft motion due to viscoelastic lunar tides

The motion of a spacecraft is affected by and, in turn, can be used to estimate the body’s
tidal response or potential Love numbers. On the one hand, the possibility of estimation
depends on the sensitivity of the motion to perturbations that vary with orbit configurations.
On the other hand, there comes the question if the induced motions are observable for given
measurement types and precisions. This work addresses the former question, i.e., how the

123



Sensitivity analysis of polar orbiter motion to... Page 5 of 23    16 

Fig. 1 Temporal variability of
degree 2 lunar gravitational field
due to tidal deformation. a
Potential at latitude of 45 deg and
longitude of 15 deg on the lunar
surface between the years 2010
and 2020. The black curve
indicates truncation errors of the
series approximation according to
Williams and Boggs (2015) with
respect to the exact expression. b
Comparison of elastic and
viscoelastic deformations over a
period of 30 days, with k2 ( j)
given in Table 1. c Spectrum of
potential variability. Dashed
vertical lines mark five periods
belonging, respectively, to the
tritmonthly, semimonthly,
monthly, semiannual, and annual
groups. The annotated periods are
in days

motion of a low-altitude polar orbiter is influenced by, and thus sensitive to, the viscoelastic
effects expressed by Eq. (5).

3.1 Force model

The perturbed orbiter motion is evaluated numerically as follows. Let the state vector of the
orbiter be

X =
(
r
ṙ

)
, (6)

where r, ṙ denote, respectively, the position and velocity in theMoon-centered, inertial frame.
The state evolution over time is given by
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X(t) = X(t0) +
∫ t

t0
Ẋ(t,X) dt (7)

with ẊT = (ṙT r̈T). If we assume the spacecraft motion is influenced only by the time-
varying lunar gravitational field, the acceleration of an orbiting spacecraft can be expressed
as

r̈ = (RB
I )

T ∂V

∂(RB
I r)

, (8)

where RB
I stands for the rotation matrix of coordinate system transformation, such that RB

I r
is expressed in the lunar body-fixed frame (in which V is defined). In the case of simple,
uniform body rotation, RB

I , becomes Rz(θ) where θ measures positive counterclockwise the
angle of rotation with respect to the z-axis.

Ofmain interest is the perturbed orbitmotion due to viscoelastic tidal response of theMoon
with respect to the “nominal” case in which viscoelasticity, or the phase lag of deformation,
is neglected, e.g.,

�X( j) = X( j) − X. (9)

In the following, the “(j)” subscripted quantities are associated with the viscoelastic case,
i.e., in the presence of k2( j) or �ζ( j) as in Eq. (4) with a consistent notation. The indices
j are as given in Table 1. We may treat and denote accordingly more than one component,
for instance, “( j1, j2, · · · )” indicates some particular frequencies at j1, j2, · · · , and “(∑ j)”
includes all 21 frequencies in Table 1 (Williams and Boggs 2015). For matrix operations,
multiple k2 ( j) are arranged into a column vector, e.g., k2 (

∑
j) = (k2 (1) · · · k2 (21))

T.
�X( j) can be evaluated via a direct comparison of simulated orbits with and without the

viscoelastic effects modeled by k2 ( j). It can be approximated to the first order of k2( j) as,

�X( j)(t) ≈
(∫ t

t0

∂Ẋ( j)

∂k2 ( j)
dt

)
k2 ( j) = 
( j)k2 ( j), (10)

where the matrix 
( j) evaluates the sensitivity of the orbit (change) to k2 ( j) from t0 through
t , and k2 ( j) can be a column vector or a scalar.

3.2 Coordinate systems and reference frames

The numerical orbit propagation is evaluated by Eq. (7) in the Earth Mean Equator and
Equinox of 2000 (EME2000) inertial frame in terms of Cartesian coordinates. The transfor-
mation matrix (i.e., RB

I in Eq.8) between the lunar PA body-fixed frame and the EME2000
is retrieved from the DE421 ephemeris via SPICE of NASA’s Navigation and Ancillary
Information Facility (Folkner et al. 2008).

The orbital elements, i.e., the semimajor axis a, the eccentricity e, the inclination i , the
longitude of the ascending node �, the argument of the periapsis ω, and the mean (or true)
anomaly M (or f ), are more convenient for describing and interpreting the orbital behavior.
They are referred to a Moon-centered, equatorial frame (MEq).1 In order for the frame to

1 This is done to preserve intuitively the high inclination of a polar orbiter.
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Table 2 Orbit parameters of LRO
in the MEq frame on 2014 Apr. 5
at 2:00:00 (UTC)

Semi-major axis a 1845.586 km

Eccentricity e 0.0337

Inclination i 87.1 Deg

Longitude of ascending node � 85.7 Deg

Argument of perihelion ω 266.4 Deg

Mean anomaly M 43.2 Deg

be inertial, we let it coincide with the lunar PA frame at a given epoch, say t0, and assume
it is nonrotating so that the transformation matrix into and from the EME2000, RB

I (t0), is
constant. The epoch t0 is selected as UTC 2:00:00 on April 5, 2014.

3.3 The case of the Lunar Reconnaissance Orbiter

The analysis hereafter is based on the orbit of the Lunar Reconnaissance Orbiter (LRO) from
NASA (Mazarico et al. 2018). Over a majority of its mission phase, the LRO is operating
in a low, near-circular, polar orbit. The orbital elements at t0 in the MEq frame are listed in
Table 2.

Wemake use of the softwareTechnicalUniversityDelftAstrodynamicsToolbox (TUDAT)
for orbit propagation, taking advantage of, among others, its generic, multi-body simulation
setting, which is particularly suited for modeling gravitational interactions (Dirkx et al.
2019).2 The tidal deformation is incorporated by expanding the existing module based on
the elastic case to include amplitudes and phase lags at arbitrary frequencies, i.e., per user
specification.

3.3.1 Spacecraft tidal acceleration and comparison with other perturbations

In addition to nonspherical primary gravitation, other sources of perturbations on a free-
orbiting spacecraft include solar radiation pressure and gravity of external bodies. A
comparison of the perturbations acting on the LRO over two orbits is shown in Fig. 2. Ther-
mal radiation and sunlight reflected off the lunar surface may need to be considered (Smith
et al. 2008; Löcher and Kusche 2018); these effects are not assessed here. While elastic tidal
deformation plays a significant role in affecting spacecraft dynamics, the viscoelastic effects
are at the low end of all consideredmechanisms but might become relevant for high-precision
applications.

3.3.2 Orbit difference

Figure3 shows �X(
∑

j), the difference between orbits with and without considering the
viscoelastic perturbations, evolving from the same initial condition (Table 2). The duration
of 4 days roughly corresponds to the single-arc length in orbit determination. Simulations
were performed for two contrasting resolutions of the gravitational field model, lmax = 2 or
300. The former corresponds to the dominant contribution of the tidal response at degree 2.
The latter is roughly the minimum resolution needed for precise orbit determination of the
LRO (Mazarico et al. 2018).

2 https://docs.tudat.space/en/stable/ (retrieved in Oct. 2022).
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Fig. 2 Comparison of
perturbations on LRO over two
orbit periods. The viscoelastic
effects are the weakest among the
presented mechanisms. The static
gravitational field is up to degree
300. Drop-offs of the solar
radiation pressure occur when the
spacecraft is entering eclipse
phases

Fig. 3 Orbit difference �X(
∑

j)
in the radial (R), transverse (T),
and normal (N) directions over
four days in the case of LRO. The
solid and the dot-dashed curves
correspond, respectively, to the
gravitational field resolutions of
degree 2 and 300

The impact is least significant in the radial direction or on the orbit size, as is typical
with conservative forcing in a near-circular orbit. The oscillation at the short, orbital period
of about 2h for the LRO amplifies over time but does not exceed 2cm in magnitude. The
transverse component exhibits a systematic trend that grows steadily to reach about 0.5mafter
four days. The normal component is, as the radial, dominated by the amplifying, oscillatory
pattern with no clear systematic trend over time.

The nonshort-periodic, or long-term, variations are more clearly revealed in the angular
arguments, whereas the semimajor axis and eccentricity exhibit far less or no long-term
variations (Kaula 1966, see also Sect. 3.4). The inclination, longitude of the ascending node,
and argument of latitude, ω + f , all display periodicities on the order of days (Fig. 4).
The differences correspond to those observed in Fig. 3 in magnitude, i.e., at the level of
R�i ≈ 0.1 m. The stronger deviation in ω + f is associated with the transverse acceleration
under k�

(
∑

j)(Fig. 3). The orbit differences are only slightly influenced by the resolution of
the gravitational field.

123



Sensitivity analysis of polar orbiter motion to... Page 9 of 23    16 

Fig. 4 Evolution of inclination
(top), longitude of the ascending
node (middle), and argument of
latitude (bottom) due to k�

(
∑

j).

The solid and the dot-dashed
curves correspond, respectively,
to the gravitational field
resolutions of degree 2 and 300

3.3.3 Note onmodel simplification, limitation

The orbit difference in Figs. 3 and 4 no greater than 50cm can be easily overwhelmed by
other mechanisms, some of which are illustrated in Fig. 2. Another phenomenon of note is
the physical librations of the Moon, which concern the orientation of the body (frame) with
respect to the inertial space and hence the gravitational perturbation acting on the LRO. The
monthly libration amplitudes alone (i.e., at F , �) reach about 100 arcseconds in both latitude
and longitude (Rambaux and Williams 2011). Figure5a shows the evolution of the three
Euler angles for the transformation from the EME2000 into the lunar PA frame relative to the
case of uniform rotation from the same initial epoch (Table 2) (Folkner et al. 2008; Archinal
et al. 2018).3 The gravitation of a librating body differs from that of a uniformly rotating one
by as large as 10−5 m2s−2 (Fig. 5b). Assuming a simple, uniform lunar rotation thus incurs
an error already larger than all but lunar gravitation itself (Fig. 2).

In practice, e.g., precise orbit computation and determination, such a simple model would
be of no use. Nonetheless, it is legitimate to simplify the dynamic model in the present
analysis, which focuses solely on the role of viscoelasticity. Because the perturbation is
extremely small, the induced orbit variation relative to some (viscoelastically) unperturbed
reference orbit depends little on the latter. Namely, the accuracy of the reference orbit, or
that of the propagating model, does not affect the evaluated orbit difference, at least insofar
as the first-order effect is concerned. Figures3 and 4 show, for instance, that the viscoelastic
signatures are quite similar for (static) gravitational fields up to degree 2 and degree 300. The
same is true for the impact of physical librations. Figure5c shows the discrepancies between
the evaluated angular arguments, �i , ��, and �(ω + f ), with or without librations, which
reach only 10−5 of the respective variations shown in Fig. 4. Hence, the curves coincide with
those in Fig. 4, irrespective of the rotation model.

Consequently, we can employ analytic approaches taking into account only low-degree
static gravitational field and uniform rotation of the Moon. It should be reemphasized, how-
ever, that this is only feasible when analyzing the viscoelastic effects in isolation. For accurate

3 The angles account for successive coordinate system rotations from “J2000” to “Moon_PA”, i.e., RB
I =

Rz(ψ)Rx(ϑ)Rz(φ) as in Eq. (8).
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Fig. 5 Impact of lunar physical
librations. a Evolution of Euler
angles for the coordinate
transformation from EME2000
frame into lunar Principal Axes
frame with respect to the case of
uniform body rotation. b
Discrepancy of the gravitational
perturbations in the two frames. c
Discrepancy of the evaluated �i ,
��, and �(ω + f ) using the two
frames

orbit modeling, care is needed to ensure not only completeness of perturbation mechanisms
but also consistency of the coordinate frames.

3.4 Frequency analysis and long-term effects

Further insight into the orbiter motion can be gained by an inspection of the orbital elements
in the frequency domain, due to distinct periodicities of the tide-raising potentials and the
induced temporal variability of the gravitational field. The purpose is to average out the
short-periodic variations associated with M so that the long-term trend is distinguished by
the contributions from the tidal components and the slow-varying arguments of i,�, ω. The
analytic approach below has been routinely applied in previous investigations, above all, on
satellite orbit subject to Earth’s solid and ocean tides (Kaula 1964; Kozai 1965; Lambeck
et al. 1974). The analysis is likewise instructive in the case of lunar orbiters. The approach
is theoretically justified, since the error accumulation in the linear approximation of orbit
variation is tolerable over the short timespan of days. The comparison of the numerically
propagated orbits with the analytic results offers a means to validate the implementation of
the tidal deformation model.
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The gravitational potential of degree l and orderm is expressed in terms of orbit elements
as (Kaula 1966),

Vlm = μ

a

(
R

a

)l l∑

p=0

∞∑

q=−∞
Flmp(i)Glpq(e) Slmpq(ω, M,� − θ), (11)

with

Slmpq =
[
Re
Im

]l−m even

l−m odd

{
(Clm − iSlm)

× exp i
[
(l − 2p)ω + (l − 2p + q)M + m(� − θ)

]}
.

(12)

θ measures the rotation angle since t0 in the MEq frame, and θ̇ = 2π/27.322 rad/day is
assumed to be constant.

The second-degree Stokes’ coefficients are time-varying according to Eq. (5).We augment
the notation of the periodic function as S2mpq(ω, M,� − θ, ζ̃( j)) to explicate the variability
through the dependence on ζ̃( j) = ζ( j) − �ζ( j). Long-term variations are associated with
l − 2p + q = 0. The eccentricity function, G2 p (2p−2), only exists for p = 1, whereby the
argument ω vanishes. The disturbing potential is therefore simplified as,

�V2m ( j) = n2R2

(1 − e2)3/2
F2m1(i) S2m10(�, θ, ζ̃( j)), (13)

in which the inclination function is one of the following,

F201 = 3

4
sin2 i − 1

2
, F211 = −3

2
sin i cos i, F221 = 3

2
sin2 i . (14)

The equations of perturbed orbital motion are (dropping the subscripts) (Brouwer and
Clemence 1961)

d(�i)

dt
= − 1

na2(1 − e2)1/2 sin i

∂(�V )

∂�
,

d(��)

dt
= 1

na2(1 − e2)1/2 sin i

∂(�V )

∂i
,

d(�ω)

dt
= − cos i

na2(1 − e2)1/2 sin i

∂(�V )

∂i
+ (1 − e2)1/2

na2e

∂(�V )

∂e
,

d(�M)

dt
= −1 − e2

na2e

∂(�V )

∂e
− 2

na

∂(�V )

∂a
.

(15)

Equation (13) indicates that the disturbing potentials and induced perturbations are dis-
tinguished by the order m. Consequently, the components associated with tesserals and
nontesserals in Table 1 should influence the spacecraft orbit motion differently.

3.4.1 Inclination

Although tidal deformation gives rise to a time variability of the zonal coefficient �C20(t),
the inclination is not directly influenced by the zonal harmonics since ∂�Vl0/∂� = 0. The
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first expression of Eq. (15) can be rewritten as

d(�i)

dt
= − 3nR2

4a2(1 − e2)2
×

[
cos i

∑

j

−∑

+
k�
2 ( j)(C21 ( j) ± S21 ( j)) cos(� − θ ± ζ( j))

+ 2 sin i
∑

j

−∑

+
k�
2 ( j)(−S22 ( j) ± C22 ( j)) cos(2� − 2θ ± ζ( j))

]
,

(16)

where
∑−

+ f (x1±y1, · · · , xi±yi , · · · ) = f (x1+y1, · · · , xi+yi , · · · )+ f (x1−y1, · · · , xi−
yi , · · · ) as in Lambeck et al. (1974). For a linear solution, the sinusoidal functions cos x in
Eq. (16) can be integrated directly as ẋ−1 sin x . The change rates, �̇, θ̇ , and ζ̇( j) are treated
as constants. While they may assume small values, the divisors, m(�̇ − θ̇ ) ± ζ̇( j), are never
zero so that there exists no strictly secular variation.

Meanwhile, Eq. (14) indicates F221(i) � F211(i) for a polar orbiter, such as the LRO,
since cos(i ≈ π/2) ≈ 0. Hence, the trend of �i is governed by the sectoral component. The
tide-raising potential and the body response are the strongest at the monthly period(s). As a
result, �i is associated foremost with j = 2:

�i(2) = − 3nR2

2a2(1 − e2)2
sin i

×
−∑

+
k�
2 (2)(−S22 (2) ± C22 (2))

sin(2� − 2θ ± ζ(2))

2�̇ − 2θ̇ ± ζ̇(2)
− i0, (17)

where i0 is a constant to fulfill the initial condition�i = 0. Because ζ̇(2) ≈ θ̇ with a deviation
of about 1%, �i(2) presents two distinct frequencies at 2θ̇ ± ζ̇(2) ≈ 3θ̇ and θ̇ , so long as
�̇ � θ̇ (as is the case for the LRO).

Figure6 shows �i(2) in comparison with that under k�
2 (

∑
j) as also presented in Fig. 4.

�i(2) is a main constituent of the total amplitude as well as periodicity for the variation.
Equation (17) offers a reasonable approximation and explanation for the long-term trend
displayed in Fig. 6. The amplitude is obviously in proportion to k�

2 (2). One evident periodicity

is the tritmonthly, associated with 1/3θ̇ ≈ 9 days. The curves comprise also a monthly
component of 1/θ̇ , which is only incompletely depicted and thus resembles a linear trend
over 15 days.

3.4.2 Ascending node

The precession of the orbital plane differs from the behavior of the inclination. According to
Eq. (15), we write the precessing rate of the ascending node as

d(��)

dt
= nR2

2a2(1 − e2)2

2∑

m=0

∑

j

−∑

+

F ′
2m1(i)

sin i
k�
2 ( j)

[ −S2m ( j) ± C2m ( j)

−(C2m ( j) ± S2m ( j))

]m �=1

m=1
sin

(
m(� − θ) ± ζ( j)

)
, (18)

where the outermost summation applies through all orders. S20 ( j) = 0 is present only for
formality or symmetry.
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Fig. 6 Evolution of orbit
inclination over 15 days. The
solid gray curve indicates the
impact of k�

(
∑

j) as displayed

also in the top panel of Fig. 4.
The dotted red curve is for a
single component of k�

(2). The
dashed black curve approximates
analytically the long-term trend
for the latter via Eq. (17). The
analytic expression and
numerical result are compared
more closely over two and half
orbit periods at the beginning
(lower-left embedded panel)

Due to the absence of the term cos i , F ′
211 outweighs F

′
201 and F ′

221. �� is predominantly
induced by the monthly tidal response, i.e., as is the inclination but at j = 1 and a slightly
shorter period of 27.2 days (Table 1). Assuming ζ̇(1) = θ̇ and �̇ = 0, we integrate the two
periodic components of m = 1 separately (not by reason of singularity, as Eq.18 can be
integrated directly),

��(1) = − 3nR2

4a2(1 − e2)2
k�
2 (1)C21 (1) ×

[
sin(� − θ + ζ(1))�t − cos(� − θ − ζ(1))

2θ̇

]
− �0,

(19)

where the contribution from S21 (1)(� C21 (1)) is neglected and where �0 takes such a value
that �� = 0 initially.

As shown in Fig. 7a,�� exhibits a linear trend superimposed by a semimonthly variation
governed by ��(1). The contribution from other frequencies is perceptible, e.g., yielding
a better approximation of the numerical result, but secondary. A closer look shows that the
analytic approximation deviates from the numerical result in an apparent secular trend but
does not grow substantially (gray curve in Fig. 7b). We infer that this is due to the errors of
the linear approximation, i.e., orbit changes evaluated with respect to fixed reference orbit
elements.

3.4.3 Indirect effect

One reason for the discrepancies between the numerical integration and analytical approxi-
mation in Figs. 6 and 7a is that the spacecraft in two diverging orbits, e.g., those separated by
�i or ��, will experience increasingly different perturbations. The perturbations, in turn,
widen the separation of the orbits (Lambeck et al. 1974). Such indirect effects are, above all,
associated with the second-degree (static) field coefficients, C20 and C22. However, for low-
altitude lunar orbiters, i.e., a ≈ R, the contribution of higher degrees may still be significant
(Felsentreger et al. 1976). The mechanism is implicitly addressed by numerical integration
of differential orbit changes and is therefore of no concern in practice.
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Fig. 7 Evolution of longitude of
right ascension. a Impact of k�

2 ( j)
evaluated by numerical
integration (solid gray curve) and
long-term approximation (dashed
black and dotted red curves). b
Indirect effect caused by �i(2)
marked by dashed red curve
accounts for the difference
between numerical and long-term
approximation (solid gray curve)

For a diagnosis of the numerical results, the magnitude of the contribution to the total orbit
difference is roughly assessed as follows. The perturbations due toC20,C22 cause the ascend-

ingnodeof the spacecraft orbit to precess at a rate of �̇ = 3nR2

2a2(1−e2)2
[C20 + 2C22 cos(2� − 2θ)] cos i .

Leaving out R/a ≈ 1 and (1− e2)−2 and differentiating the expression with respect to i and
�, we approximate the additional variation caused by �i, �� as,

d(��+)

dt
= −3n

2

{
[C20 + 2C22 cos(2� − 2θ)] sin i�i

+ 4C22 cos i sin(2� − 2θ)��
}
.

(20)

Since the main component of �i comes from �i(2) at the frequencies θ̇ and 3θ̇ , the induced
��+ will not grow secularly, for

∫
�i(2)dt and

∫
cos 2(� − θ)�i(2)dt remain periodic. It

suffices to consider only C20 ≈ −2× 10−4 to estimate the oscillatory amplitude. According
to Eq. (17), the tritmonthly component is 3

2nk
�
2 (2)(S22 (2) + C22 (2))/3θ̇ ≈ 4× 10−6 degrees

(see also Fig. 6). The corresponding��+ is 3
2nC20/3θ̇ ·(4×10−6) ≈ 1.5×10−7 degrees; the

magnitude of the monthly component is similar at about 2× 10−7 degrees. Both correspond
to the difference between the numerical result and the long-term approximation observed in
Fig. 7.
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The contribution of �� to ��+ is weaker as a result of the small factor cos i and C22

is about one-tenth of C20 in magnitude. In the long(er) term, the main variation, ��(1),
composed of secular and 2θ̇ trends seems more likely to become significant. According to
Eq. (19), the (absolute) linear rate is α = 3

4nk
�
2 (1)C21 (1) ≈ 2 × 10−6 degrees/day; the

semimonthly amplitude is α/2θ̇ ≈ 4× 10−6 degrees. Then, the variation induced by ��(1)
in Eq. (20), namely, 6nC22 cos i

∫
sin 2(� − θ)��(1) dt produces two amplifications in

scale with (α/2θ̇ )�t cos 2(� − θ) and (α/2θ̇ )�t , respectively. Both are on the order of
10−9 degrees/day and far slower than ��(1). Thus, �� will be dominated by ��(1), and
the indirect contribution mainly comes from�i(2) within about 100 days. Figure7b confirms
that the discrepancy between the numerical and the long-term approximation is due to the
presence of ��+. The apparent linear trend belongs in part to a monthly variation induced
indirectly by �i(2).

At last, we briefly assess the indirect effect of �� on �i . Following the same procedure
above, we find

d(�i+)

dt
= 3n sin iC22 sin 2(� − θ)��. (21)

The quasi-secular and semimonthly components of��(1) will cross-generate a periodic (i.e.,
semimonthly) amplification and a secular trend in �i+. The magnitude of the former varies
with 3n sin i C22 (α/2θ̇ )�t ≈ 2 × 10−8 degrees/day. The secular variation is of the same
order of magnitude.

4 Distinction of frequencies and practical implication

The viscoelastic signature is most distinct around 27 days at which the excitation is most
prominent, which has been revealed by the analysis of the Gravity Recovery and Interior
Laboratory (GRAIL) and Lunar Laser Ranging (LLR) observations (Williams et al. 2014).
The variations at other frequencies will provide further constraints for interior modeling and
data analysis (Williams and Boggs 2015). With the tidal deformation model implemented
and the basic perturbation mechanism identified, we next examine how the tidal frequencies
are reflected and their distinction in the spectra of the orbiter motion.

Figure8 shows the spectra of�i (panel a) and�� (panel b) of the LRO. The orbit spectra
were obtained by integrating Eq. (15) over three years. The potential has signals only from
about 9 days and beyond in period, as indicated in Table 1 and depicted in Fig. 1. Orbital
variations consist additionally of short-period components that are multiples of the orbit
frequency. These signals do not exceed 0.1 days and are scattered toward the lower end of
the periodicity.

4.1 Monthly frequencies andmultiples

The strong amplitudes around the monthly frequencies and those in the vicinity of their
multiples result from the prominence of similar frequencies in the tide-raising potentials,
e.g., at j ≤ 7, likewise clustered about the monthly and semimonthly (Fig. 1c). As discussed,
the distinguished amplitudes of orbital variations do not correspond one-to-one to those of
tidal deformation.
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4.1.1 Inclination

Only temporal variability of the sectoral harmonics affects inclination. The two peaks near
27 days both arise from 2θ̇ − ζ̇( j) (�̇ omitted hereafter), namely,

2θ̇ − ζ̇(2) =
(

2

27.322
− 1

27.555

)
day−1 = 1

27.091
day−1,

2θ̇ − ζ̇(3) =
(

2

27.322
− 1

31.812

)
day−1 = 1

23.943
day−1,

(22)

with counterparts mirrored to around 9 days, e.g.,

2θ̇ + ζ̇(2) =
(

2

27.322
+ 1

27.555

)
day−1 = 1

9.133
day−1,

2θ̇ + ζ̇(3) =
(

2

27.322
+ 1

31.812

)
day−1 = 1

9.557
day−1.

(23)

Similarly, the neighboring groups at 7 and 5 days are associated with 2θ̇ + ζ̇( j) = 1/7.096
and 1/5.643 day−1 for j = 4 and 9, respectively (and in their spectral proximity).

The strongest peak of inclination change at 13.7 days differs from those above in that
it indicates a distinct indirect effect, i.e., �i+ as in Eq. (21) (Fig. 8a). Note that 2θ̇ ± ζ̇( j)

invariably shifts the frequency away from the semimonthly. Only for (very) slow-varying
components, e.g., ζ̇(10) =1/365 day−1, will the separation be small and the resulting fre-
quency remains near 13 days. Therefore, the semimonthly variation of the inclination must
be indirectly induced by the secular ��(1). It has been shown that the corresponding semi-
monthly variation amplifies at a rate of about 2 × 10−8 degrees/day. The magnitude of
10−5 degrees after 1000 days thus explains the semimonthly amplitude in Fig. 8a.

4.1.2 Ascending node

The spectral pattern of �� as shown in Fig. 8b is explainable with the same approach. The
dominant semimonthly component of��(1) accounts for the strongest peak around13.7 days.
The impact of the sectoral harmonics is reduced by the factor cos i . This is illustrated by the
comparison of �� and �i at 9.13 days, i.e., 2θ̇ − ζ̇(2), where the former is smaller by an
order of magnitude.

Unlike inclination, �� is also affected by the zonal harmonic, in which case the fre-
quencies at which C20 ( j) are nonzero are directly introduced in the orbit motion. This
concerns, for instance, the amplitudes around 27 days, of which the strongest is due to
C20 (2) = −605.4× 10−9. Though the impact of the zonal harmonic is reduced by the factor
cos i as of the sectoral harmonics, the magnitude of C20 (2) still produces a strong signal.
Another telling observation about the role of the zonal harmonics is the peak at 31.8 days
introduced via C20 (3) at its original frequency, which is absent in inclination (Fig. 8b).

4.2 Ambiguity at semiannual and indistinctness of annual frequencies

A somewhat deceptive feature in the orbital spectra is the semiannual peak(s) at 182.7 days,
which is the lowest identifiable frequency (Fig. 8). It can be shown, however, that it cannot be
caused by the semiannual component of the tidal potential (at j = 15), of which the tesseral
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harmonics are nonzero. By definition, �i does not admit the semiannual frequency via the
zonal harmonic (for ∂Vl0/∂� = 0). On the other hand, referring to Eq. (16), we see that the
resulting orbital frequency in inclination via the time-varying tesseral harmonics is shifted
from the monthly as θ̇ ± ζ(15) ≈ 7

6 θ̇ and 5
6 θ̇ , both of which still lie close to θ̇ . Therefore,

ζ(15) is not responsible for the semiannual peak.
Subsequently, we can rule out the possibility that it is related to the (double) annual

frequency of 1/365.3 day−1 at j = 10, which affects the zonal and sectoral harmonics. The
sectoral does not affect annual orbital variations in inclination for the same reason as with
tesseral harmonics, since the resulting orbit frequencies are shifted to 2θ̇ ± ζ̇(10) ≈ 2θ̇ . The
zonal harmonic does produce annual variations of±ζ̇(10) = ±θ̇/13.4, yet this does not result
automatically in semiannual signals. The only viable mechanism to double the frequency
seems to be through a second-order effect, namely, cos2 ζ = 1

2 (1 + cos 2ζ ). If this were
the case, Fig. 8b would have exhibited a prominent annual peak (i.e., of the first-order), as
well. The absence of the annual signal is not surprising, however, as C20 (10)=−0.1 × 10−9,
far smaller than S22 (10) = −13.6 × 10−9 and four orders of magnitude below the monthly
coefficients ( j = 1, 2, Table 1).

Therefore, the last strong, semiannual peak in Fig. 8a is induced by neither semiannual
( j = 15) nor annual ( j = 10) tides. Instead, a scrutiny of Table 1 led to the following
condition related to a semimonthly term j = 4:

2θ̇ − ζ̇(4) =
(

2

27.322
− 1

14.765

)
day−1 ≈ 1

182.7
day−1. (24)

We refer to Eq. (17) and find the amplitude of the “composite” semiannual variation of the
inclination as

∣∣�i(4)
∣∣
182.7 d = 3n

2(2θ̇ − ζ̇(4))
k�
2 (4)

∣∣C22 (4) − S22 (4)
∣∣ ≈ 2 × 10−6 degrees. (25)

The peak at 182.7 days with a magnitude of 1.47 × 10−6 degrees in Fig. 8b is thus fully
attributable to the quasi-cancellation of the semimonthly tidal deformation by the rotation
rate of the Moon.

In comparison, the semiannual peak of�� has another component (dashed line in Fig. 8b).
The direct constituent, i.e., of ��(4), is small because the sectoral harmonics are factored
by cos i . The dominant contribution comes indirectly from

∣∣�i(4)
∣∣
182.7 d, i.e., via static C20

in Eq. (20)

∣∣��+∣∣
182.7 d = 3n

2(2θ̇ − ζ̇(4))
C20

∣∣�i(4)
∣∣
182.7 d ≈ 1 × 10−6 degree. (26)

The most significant direct contribution is rather from j = 14 and slightly offset at
1/177.85 = 1/27.322 − 1/32.281 day−1:

∣∣��(14)
∣∣
177.85 d = 3n

4(θ̇ − ζ̇(14))
k�
2 (14)

∣∣C21 (14) + S21 (14)
∣∣ ≈ 6 × 10−7 degree. (27)

Such coupling occurs with other nearby semimonthly components, all producing even
lower frequencies than the semiannual. For instance, in the same mechanism as (24), ζ(5)
with a period of 13.777 days accounts for a slow orbital change of about 1620 days.
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Fig. 8 Spectra of spacecraft orbit
evolution due to viscoelastic
effect. a Inclination with several
distinguished frequencies marked
in red. b Longitude of ascending
node. Dashed lines indicate
indirect effects. Units are days
unless annotated otherwise

5 Error budget in orbit adjustment

The errors of neglecting the viscoelastic effect in the least-squares orbit adjustment can be
roughly assessed as follows. The linearized dynamic equation is

X(t) = X̄(t) + x(t),

x(t) = 
(t, t0) x(t0), 
̇(t, t0) = ∂Ẋ
∂X


(t, t0),
(28)

where X̄ is a reference state from which the true state deviates by x and where the state
transition matrix 
(t, t0) propagates the initial deviation to the epoch t . The linearized
observation equation is

y = Hx(t0) + ε, (29)

with ε representing the noise. For the sake of simplicity, we assume that the orbit positions
and thus their errors are directly measurable, so that the observation matrix isH = I3
. For
a given weight matrix W, the estimate and its covariance matrix are

x̂(t0) = (HTWH)−1HTWy,

P = (HTWH)−1.
(30)

Unless otherwise noted, hereafter x refers to x(t0).
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5.1 Consider analysis

We treated the modeled viscoelastic effects as consider parameters in the adjustment. The
effects were included in the orbit and uncertainty propagation, but not estimated with the
spacecraft orbit. The observation equation is augmented as,

y = (H Hc)

(
x
c

)
+ ε, (31)

where c = k2 ( j) and Hc = 
( j), which evaluates the orbit change due to k2 ( j), as in Eq.
(10). Assuming there is no correlation between x and c, the estimated initial orbit and the
associated uncertainties become (Montenbruck and Gill 2000),

x̂( j) = x̂ + Sk2 ( j),

P( j) = P + SPcST, S = −PHTWHc,
(32)

where S is known as the sensitivity matrix describing the change of the estimate and its
uncertainties with c. Pc is the a priori covariance matrix of c, whose specification is discussed
below.

5.2 Noiseless case

The impact of the considered parameters is largely independent of the measurement noise
level, i.e., it does not decrease with noise reduction or increase of observation volume (Mon-
tenbruck and Gill 2000; Tapley et al. 2004).

We neglected noise in the present solution and therefore only assessed the impact of
dynamical uncertainty (see, e.g., Dirkx et al., 2016). In this extreme case, the consider analysis
has a special appeal. Without viscoelastic effects, the estimated x̂ converges to the true
x within machine precision or below a certain specified threshold, i.e., effectively free of
errors. When considered in the orbit and error propagation but not solved for, the viscoelastic
effects prevent the error-free solution. Rather, the estimate x̂( j) deviates from x̂ (and thus x
itself) by Sk2 ( j) (Eq.32). It follows that the change of P( j) is determinate in the noiseless
case. Letting Pc = k2 ( j) kT2 ( j), we find

SPcST = (
x̂( j) − x

) (
x̂( j) − x

)T
, (33)

which indicates that the consider covariance matrix provides an exact measure of the esti-
mation error in x̂( j). Equation (33) serves as a validating test for the consider covariance
analysis (a confirmation provided later in Fig. 9).

5.3 Errors in estimated initial orbits

The estimated state vector consists of the following parameters,

X̂T =
(
r̂T0 v̂T0 ĈSR ât

)
, (34)

where ĈSR is the coefficient for the solar radiation pressure, and ât is an empirical along-
track acceleration that is commonly included in the orbit determination to absorb unmodeled
perturbations. Note that at is absent in the (simulated) true orbit, which however is influenced
by the consider parameters, k�

2 (
∑

j) (Eqs. 10 and 31).
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Fig. 9 Errors of adjusted orbit
position for the 3-day arc from
2014-04-05. The errors are
projected into the radial (top),
transverse (middle), and normal
(bottom) directions. The errors
derived from the consider
covariance matrix are marked by
dashed black curves. The true
errors are solid curves

Orbit adjustment always involves iterations of least-squares solutions and corrections of
the initial orbit X̂ = X̄ + x̂. Such refinement is not needed for the consider covariance
analysis; instead, it suffices to obtain S in just one solution, which changes little afterward.

We analyzed the solutions of 3- and 9-day arcs. The lengths correspond roughly to the
end choices in practice (Mazarico et al. 2018; Löcher and Kusche 2018). Table 3 shows the
estimation errors of the initial position at six epochs in April 2014. The errors are evaluated
as the square root of tr[(SPcST)3×3], where only the first (upper-left) 3 × 3 block of the
matrix is relevant.

As an illustration, Fig. 9 shows the estimation errors in the orbit position over three days
from 2014-04-05 derived from consider covariance analysis in comparison with the true
errors, i.e., X̂ − X. The consider errors are nonnegative and coincide with the true errors
when the latter is not negative; otherwise, they are of opposite signs. The condition of Eq.
(33) is thus observed.

Over 3 days, the maximum error is between 1 and 2 decimeters. The error level oscillates
and peaks after 4 arcs, i.e., 12 days.We infer that this is likely associatedwith��(1) (Fig. 7a),
and the effect was not (mis)absorbed by the adjusted orbits. As expected, the errors over 9
days are about 2 times more pronounced due to accumulation.
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Table 3 Errors of adjusted initial orbit positions for six arcs in 2014 (units: m)

Initial epoch (mm-dd) of year 2014
Arc length 04-02 04-05 04-08 04-11 04-14 04-17

3 days Radial 0.0042 0.0062 0.0059 0.0042 0.0048 0.0056

Transverse 0.0141 0.0106 0.0064 0.0201 0.0163 0.0376

Normal 0.1539 0.0200 0.0453 0.0453 0.1327 0.1258

Total 0.1546 0.0235 0.0461 0.0498 0.1338 0.1314

9 days Radial 0.0099 0.0011

Transverse 0.0888 0.0525

Normal 0.2701 0.0920

Total 0.2845 0.1060

6 Discussion and conclusion

Wehave adopted the lunar tidal deformationmodel byWilliams andBoggs (2015) to evaluate
the motion of a polar orbiter, focusing on the impact of viscoelastic tidal perturbation, a
mechanism of topical interest in lunar science. (Williams et al. 2014). The lunar tides are
dominated by the monthly (∼27 day) components associated with the orbital period around
theEarth. The orbital spectra of a spacecraft are altered so that the frequencies of the long-term
variations are offset order-wise from the multiples of the monthly, i.e.,mθ̇ . Tidal components
close to such frequencies produce a wide range of composite periodicities, from a few to
thousands of days. The impact of slower tides, of the annual and semiannual components
for instance, is hardly separable from the respective monthly frequencies to the first order.
Higher-order effects are too subtle to be identified in the analysis. Consequently, it is difficult
(if not impossible) to identify slow-varying tidal components in the orbiter motion directly.

We evaluated the dynamical uncertainties in the least-squares orbit adjustment based on
a simplified case neglecting noise. The errors at the level of decimeters over up to 9 days are
present in the real-world precise orbit products. At present, they are overwhelmed by other,
larger errors, e.g., due to additional dynamical uncertainties, limiting observation condition,
and inevitably measurement errors, which amount to at least several meters (Mazarico et al.
2018; Löcher and Kusche 2018).

It can be anticipated that the viscous lag of the monthly tide, or the dissipation factor, and
those at multiple frequencies can be realistically pursued in the near future, thus providing
an independent probe into the viscoelastic structure of the Moon. Among the reasons are
the prospective decimeter-level orbit accuracy, and also the distinct frequencies of orbit
variation, many of which are even observable within a single arc. Moreover, several tidal
components are likely separable in the orbit spectra. The monthly components, j = 1, 2,
affect, respectively, the ascending node and inclination of the spacecraft orbit (Sect. 3.4);
meanwhile, the semimonthly term, j = 4, produces a cumulative effect over a semiannual
cycle (Sect. 4). However, the same cannot be easily said for the lower frequencies, e.g., the
annual one.

Measuring lunar tides at different frequencies would have broad implications for under-
standing the Moon’s interior and evolution. Whereas current data sets are not sufficient for a
full evaluation, future lunar missions might allow for investigating the response of the lunar
interior to different excitation frequencies. Those measurements would provide data sets
complementary to seismic measurements at the surface. Tides and their phase lags would be
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in particular indicative of low-viscosity zones and the rheologic state and size of the lunar
core.
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