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Abstract: Volcanic explosive eruptions inject several different types of particles and gasses into the
atmosphere, giving rise to the formation and propagation of volcanic clouds. These can pose a serious
threat to the health of people living near an active volcano and cause damage to air traffic. Many
efforts have been devoted to monitor and characterize volcanic clouds. Satellite infrared (IR) sensors
have been shown to be well suitable for volcanic cloud monitoring tasks. Here, a machine learning
(ML) approach was developed in Google Earth Engine (GEE) to detect a volcanic cloud and to classify
its main components using satellite infrared images. We implemented a supervised support vector
machine (SVM) algorithm to segment a combination of thermal infrared (TIR) bands acquired by the
geostationary MSG-SEVIRI (Meteosat Second Generation—Spinning Enhanced Visible and Infrared
Imager). This ML algorithm was applied to some of the paroxysmal explosive events that occurred at
Mt. Etna between 2020 and 2022. We found that the ML approach using a combination of TIR bands
from the geostationary satellite is very efficient, achieving an accuracy of 0.86, being able to properly
detect, track and map automatically volcanic ash clouds in near real-time.

Keywords: volcano remote sensing; machine learning classifier; volcanic cloud; volcanic ash; SO2

gas; geostationary satellite; support vector machine

1. Introduction

Any emission of gasses and particles from a volcano that reach the atmosphere is
referred to as a volcanic cloud. The principal component of volcanic clouds is the ash
derived from magmatic material that emerges as solid into large particles [1], while the
major volcanic gasses are water vapor (H2O), sulfur dioxide (SO2) and carbon dioxide
(CO2). H2O and CO2 are widely distributed in the atmosphere, making it difficult to
distinguish these gasses of volcanic origin from background quantities. Therefore, the
approaches proposed to characterize the major components of a volcanic cloud are mainly
focused on the detection and quantification of ash and SO2 [2]. The focus on ash and SO2
is mainly driven by the impacts that these components have on the atmosphere and the
environment [3,4]. Moreover, both of these emissions can be hazardous to public health
and aviation activities [5–7]. SO2 is converted to sulfuric acid, forming small droplets that
affect the Earth’s radiation balance by reflecting solar radiation away from the surface [8].
The resulting disturbance to the Earth’s radiation balance affects surface temperatures
through direct radiative effects as well as through indirect effects on atmospheric circulation,
resulting in important natural causes of climate change on many timescales [9]. Volcanic
ash can also affect the radiation balance, but since it only lasts a few days in the atmosphere,
its effects are mostly local. An eruptive column still carrying these hot particles can produce
a pyroclastic flow, which can be deadly to those unlucky enough to be at the base of the
volcano [10–12]. Nevertheless, volcanic ash is a hazard for aircraft, because it can damage
the jet engines [13].
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If inhaled, volcanic ash can damage the lungs and cause breathing problems. Moreover,
ash particles can scratch the surface of eyes and skin. SO2 gas can irritate the skin, tissues,
eyes, nose and throat, sometimes producing respiratory distress [14]. It is well known
that the dispersion of these components also impacts human health, not only in the area
surrounding a volcano, since volcanic ash is frequently dispersed even thousands of
kilometers away from the source [15].

Currently, satellite observations are widely exploited to monitor volcanic clouds [16–18].
The most useful sensors for volcanic ash and gas detection span the infrared (IR) spectral
regions [19]. In particular, the IR region between 8–12 µm is the most proper for this purpose
since SO2 gas is absorbed in the band around 8.6 µm, while ash particles exhibit dispersive
behavior in the same range [20]. These sensors operate on geostationary and polar satellites.
Polar satellites are sun-synchronous, relatively close to the Earth and provide a high spatial
resolution (but low temporal resolution). On the contrary, geostationary satellites are
geosynchronous, monitor the same area of the Earth and have a high temporal resolution
(but low spatial resolution). Both satellites are useful for volcanic ash and SO2 remote
sensing, but the high temporal resolution of geostationary observations allows one to
continuously monitor, and in near real time, volcanic activity and therefore to track the
evolution of a volcanic cloud [21]. For these reasons, a good candidate for the purpose of
detecting and characterizing a volcanic cloud is the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) sensor on board the Meteosat Second Generation (MSG) geostationary
satellites. SEVIRI has a good spectral resolution in the infrared region and a high-temporal
resolution, which allows for an almost continuous 24 h monitoring.

The first study for the detection of volcanic ash clouds using satellite data was con-
ducted by Sawada [22]. In 1989, Prata [23,24] proposed the first operationally viable
volcanic ash algorithm, called the reverse absorption (RA) method, which involves taking
the brightness temperature difference (BTD) between the 11 and 12 µm IR channels. This
method is also called the “split window” method, because the two IR channels selected
are situated in the atmospheric window regions, where the effects of other atmospheric
gases is small. The positive values of the BTD are related to the presence of meteorological
clouds, while negative values for the presence of volcanic ash. When a volcanic ash cloud
is present, the brightness temperature (BT) measured above the ash cloud increases with
increasing wavelength through the window, while the reverse is true for a layer of ice or
water particles (meteorological clouds) [25]. Therefore, the wavelength dependence of the
absorption by ash is the opposite with respect to water and ice [26]. The advantage of the
RA method is that, since it exploits IR bands, it is applicable both day and night. This
approach fares poorly in several circumstances, because the BTD values depend on the
height of the eruption cloud, the mass per unit area of fine ash within the cloud and the size
of the ash particles [27,28]. For this reason, the method for the detection of a volcanic ash
cloud was improved with the three-band IR algorithms, which include channels centered
near 4 µm [29,30] and 13.3 µm [31].

More robust methods to detect volcanic ash were developed successfully, using data
from the IR channels of geosynchronous satellite sensors such as SEVIRI [32] and GOES [33].
Prata and Kerkmann [34] performed the first simultaneous measurements of volcanic ash
and SO2 using five infrared channels of SEVIRI centered at 6.2, 7.3, 8.5, 11 and 12 µm.
Moreover, SEVIRI IR bands were also exploited to perform a quantitative characterization
of the volcanic cloud components and to reconstruct the ash and SO2 flux emitted during
some recent eruptions at Mt. Etna (Sicily, Italy) volcano [35–37]. However, these approaches
exploit a microphysical model of an ash cloud and parameters determined from Modtran
3 [38] simulations. One of the key parameters is the plume height, retrieved comparing the
BT of the 11 µm band (BT11) of the opaquest pixels with the temperature profile. However,
if the volcanic cloud starts to dilute and the pixels become partially transparent, this
procedure fails, underestimating the cloud height [39]. Therefore, these approaches need
parameters that cannot always be calculated automatically.
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The discrimination between volcanic and weather clouds is a major issue, because in
the region where the two types of clouds overlap, the BTD can be negative both for volcanic
and for meteorological clouds. For this reason, correction procedures were applied [40–42].

Currently, new advanced approaches to set the best BTD threshold for the detection
of volcanic ash clouds were developed, such as machine learning (ML) techniques. ML
algorithms offer an innovative paradigm to automatically process a huge amount of satellite
data for volcanology applications [43–45]. In this way, it is possible to create the volcanic
cloud mask automatically, avoiding the manual time-consuming drawing. ML techniques
can be used for classification purposes since they are able to learn complex patterns and
trends from data. The pixel classification of volcanic cloud components can be a useful
procedure because from the processing of satellite images acquired with high temporal
resolution it is possible to follow the evolution of a volcanic cloud, its composition and
how its components are dispersed in the atmosphere. The extraction of information related
to a volcanic cloud using satellite data is a challenging procedure, because sometimes it
is difficult to distinguish volcanic ash clouds from more common meteorological clouds,
such as thin cirrus clouds, and in most cases, it is necessary the supervision of an operator
to discriminate the components of a volcanic cloud. Supervised ML approaches learn
from a training dataset, which includes a set of coupled inputs and expected outputs.
Furthermore, an unsupervised ML algorithm does not use a training dataset but extracts
common features from the input data based on their similarity.

We recently explored the potential of ML techniques to detect volcanic clouds by using
both supervised and unsupervised approaches, namely support vector machine (SVM) and
K-means [46,47]. As expected, the results show that SVM outperforms K-means since the
intervention of the human to choose and label the training samples makes the model much
more accurate and moreover generalizable.

Here, we take a step forward toward the full characterization of the volcanic clouds.
We propose a SVM-based method to both detect a volcanic cloud and to discriminate its
components, namely, to classify its pixels as rich of ash, rich of SO2 or characterized by
mixed components (ash, SO2 and other). The SVM algorithm was implemented in the
Google Earth Engine (GEE) platform [48]. This cloud computing platform offers unique
opportunities for remote sensing data collection, processing, analysis, and visualizations at
a regional scale with direct access to a multi-petabyte analysis-ready data catalogue. The
proposed SVM exploits as input a combination of bands in the infrared regions of images
acquired by the sensor SEVIRI and returns as output an image with four classes: ash, SO2,
mix of ash and SO2 (or simply mix), and background. This ML algorithm was applied to
some of the paroxysmal explosive events that occurred at Mt. Etna between 2020 and 2022,
considering a separate dataset as training and as testing.

2. Materials
2.1. 2020–2022 Etna Paroxysmal Events

Mt. Etna (Figure 1) is the largest active volcano in Europe, and its activity often
originates from its summit areas, which include four craters, named Northeast Crater
(NEC), Voragine (VOR), Bocca Nuova (BN) and Southeast Crater (SEC), the most active
crater since 1998 [49]. The youngest cone is the New Southeast Crater (NSEC), which began
to grow after 2011 over the east flank of the SEC cone [50,51]. Eruptive activity after 2013
has led to the merging of the NSEC with the SEC [52]. Between 13 December 2020 and
21 February 2022, a new explosive phase took place at Mt. Etna, giving rise to 66 paroxysmal
lava fountain episodes (from INGV weekly bulletins at www.ct.ingv.it, accessed on 1 July
2022) [53–55]. These events were characterized by Strombolian explosions, lava fountains,
formation of short-lived lava flows and generation of eruptive columns [56]. An eruptive
column is a cloud composed of ash, tephra and gasses emitted during a volcanic eruption.
It can rise several kilometers above the vent of the volcano and can feed ash plumes. Ash
plumes generated during the 2020–2022 Etna paroxysmal event reached an altitude of
about 9–10 km above sea level and were spread by the wind into the atmosphere. The

www.ct.ingv.it
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explosive events considered in this study are those characterized by an intense and violent
activity that produced large and high volcanic clouds. These were on 23 February 2021, 12
March 2021, 9 August 2021 and 10 February 2022.
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craters, Northeast Crater (NEC), Voragine (VOR), Bocca Nuova (BN) and Southeast Crater (SEC), and
the Valle del Bove.

2.2. Satellite Data Sources

SEVIRI is an instrument onboard the Meteosat Second Generation (MSG) geostationary
satellite, operated by EUMETSAT [57]. It measures radiances in 12 spectral channels, which
cover the range of visible to the infrared with a spatial resolution of 3 km at the equator
to 4.5 km at Mediterranean latitudes. The main advantages of SEVIRI is its high temporal
resolution of 15 min for the full disc and 5 min in rapid scan mode, which mainly covers
Europe [58]. For the detection and characterization of volcanic cloud components, only
the thermal infrared (TIR) channels were considered, and in particular, the spectral bands
centered at 8.7, 10.8 and 12.0 µm.

3. Methods

The SVM is a general supervised learning method used for classification and regression.
The foundations of SVM have been developed by Vapnik [59] and gained popularity due
to many promising features such as better empirical performance. The SVM algorithm
aims to find the plane or set of hyperplane maximizing the distance between samples
belonging to different classes closest to the boundary [60,61]. The SVM was already
exploited by the authors to detect a volcanic cloud and has been shown to be more efficient
than unsupervised algorithms such as K-means [47]. One alternative to the traditional
SVM can be the Neural Networks (NN), which sometimes make classification problems
much easier and faster to compute. NN have already been employed to detect volcanic
clouds [62–67]. However, NN is not always the answer to all classification problems. SVM
requires 2 parameters (c and γ, which will be described in Section 3.2), a kernel to map
the input data to a higher dimensional space and few input data, which need minimal
processing. Furthermore, NN requires several parameters that depend on the number of
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layers, a non-linear activation function and many input data, which generally need a lot of
processing. Therefore, since we have limited data and a simple classification problem, we
prefer to implement a SVM algorithm compared to other more complex algorithms such as
NN because it produces results with easy implementations and in a quick way.

The objective of this work is to train a SVM model for a multi-class classification
problem, in order to segment a combination of SEVIRI TIR bands, called Ash RGB (Red,
Green, Blue) into 4 classes: pure ash cloud, pure SO2 cloud, mix cloud and background.
In this way, it is possible to detect and characterize a volcanic cloud produced during a
volcanic eruption. Once the model has been trained on some labeled samples and tested on
new images, due to its high accuracy, it can be applied to any new images, without being
trained again. The possibility of applying the model to new images makes it generalizable
and applicable during a volcanic event even in near real time to monitor the evolution of a
volcanic cloud.

We implemented the SVM model in GEE to automatically process and analyze SEVIRI
Ash RGB images. The Ash RGB uses only infrared window channels, and therefore, it can
be used both day and night for the detection and monitoring of volcanic ash as well as for
sulfur dioxide gas.

In Figure 2, a general scheme of the ML algorithm proposed is reported. It represents
the three main steps of our procedure: (a) the input feature preparation, i.e., the combination
of the SEVIRI TIR band to construct the Ash RGB images, (b) classification, i.e., the design
of the SVM classifier, and finally, (c) performance evaluation, to determine whether our
model is working well or not.
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(c) Performance Evaluation. The first step is to prepare the input feature of the SVM, obtained by
opportunely combining the thermal infrared (TIR) bands centered at 8.7, 10.8 and 12.0 µm. The second
is the implementation in GEE of the SVM algorithm to detect a volcanic cloud and identify its main
components, while the last is the evaluation of the performance of the model using a confusion matrix.

3.1. Input Feature Preparation

The first step of our procedure is to prepare the input feature of the SVM algorithm.
This step is fundamental since a discriminative set of features can properly separate the thin
volcanic ash from cloud objects, provide SO2 detection, and allow for analysis of scenes
containing a mix of ash and sulfur dioxide (also called mixed region).

SEVIRI images are provided by the EUMETSAT Data Store. In particular, we used
the product MSG Level 1.5 Image Data, which corresponds to image data that have been
corrected for all unwanted radiometric and geometric effects, has been geolocated using a
standardized projection, and has been calibrated and radiance-linearized [68]. The Level
1.5 image, provided in a geostationary projection (GEOS Projection), were georeferenced to
the reference system EPSG:4326—WGS 84.

By opportunely combining TIR bands centered at 8.7, 10.8 and 12.0 µm, it is possible
to obtain an Ash RGB image highlighting the presence of the main components of a
volcanic cloud. In particular, Ash RGB images are realized combining the brightness
temperature (BT) of the three SEVIRI TIR channels in this way: red: BT12.0 − BT10.8; green:
BT10.8 − BT8.7; blue: BT10.8 [69]. The channel combination in the red beam is the reverse
of the “split window” method [23]: thin volcanic ash tends to have a strong reddish color,
while meteorological clouds have no contribution. The green channel emphasizes the
presence of SO2 (marked by green pixels), since it compares the SO2 absorption band at
8.7 µm with the non-absorbing 10.8 µm band. Finally, the 10.8 µm in the blue beam provides
a high contrast background for ash detection and removes the influence of cumulonimbus
clouds. Therefore, depending on the concentration, red pixels indicate the presence of thin
volcanic ash, green pixels the presence of SO2, while yellow pixels mark the mixed regions
of a volcanic cloud characterized by both ash and SO2. There are some limitations related to
an Ash RGB image, such as the difficult identification of ash and SO2 when they are mixed
with cirrus clouds. Moreover, another important limitation is related to the viewing angle,
since the colors of a SEVIRI Ash RGB image depend on it. At high satellite viewing angles
(>65◦), it is difficult to correctly discriminate the volcanic cloud components, especially the
SO2 gas because the water clouds appear on a green color similar to that of the SO2. When
the satellite viewing angle is close to the sub-satellite point, the volcanic cloud components
can be discriminated more easily and accurately. However, the main advantage of using
this type of image is to easily recognize the different components of the volcanic cloud
due to its intuitive colors [70]. These considerations led us to use the Ash RGB image
as input feature of our SVM model. Thus, for each SEVIRI image, we selected the three
TIR bands centered at 8.7, 10.8 and 12.0 µm and combined them to obtain an Ash RGB
composite image.

Pixels of the Ash RGB image were normalized between 0 and 1 by applying Equation (1):

x′ =
x− xmin

xmax − xmin
(1)

where x is the pixel to normalize, xmin the minimum pixel value of the image and xmax the
maximum pixel value of the image.

3.2. Classification

The SVM classifier was implemented in GEE to detect a volcanic cloud and to identify
its main components, namely to classify its pixels as rich of ash, rich of SO2 or with
mixed components (ash, SO2 and other). The SVM technique was already applied to
volcano monitoring, and it was demonstrated that it provides successful results [71,72],
due to its high performance and lower computation costs. Until now, algorithms and
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models have been developed for the retrieval of the components of a volcanic cloud [73–75]
but without the implementation of artificial intelligence approaches. However, machine
learning and deep learning techniques have been exploited mainly for the detection of a
volcanic cloud [63,66,76,77].

We designed the SVM classifier using a radial basis function (RBF) as kernel, whose
goal is to take data as input and transform them into the required form [78]. The RBF kernel
function resembles Equation (2):

k
(
xi, xj

)
= exp(−γ‖xi − xj‖2) (2)

where γ is the “spread” of the kernel and should be carefully tuned according to the
problem. Another important parameter is the cost c, which is the penalty for misclassifying
a data point. We set the parameter γ = 0.5 and the cost c = 10.

The realization of any supervised model such as SVM classifier consists of two parts,
the training phase and the testing phase.

The first step in the training phase is to build a dataset of pixels from Ash RGB images
labeled as pixel rich of ash belonging to a volcanic cloud (pure ash pixel), pixel rich of SO2
belonging to a volcanic cloud (pure SO2 pixel), pixel characterized by mixed components
belonging to a volcanic cloud (mixed components pixel) and pixel not belonging to the
cloud (background pixel). As a training dataset for the SVM classifier, small areas belonging
to volcanic clouds are manually selected and are labeled as pure ash, pure SO2 or mixed
components. Moreover, background regions are also defined and labeled. This approach
is called multi-class classification, since the machine learning classification task consists
of more than two classes [79,80]. In our case, the number of classes is four: (1) pure ash,
(2) pure SO2, (3) mix of ash and SO2 and (4) background. The training samples are extracted
from three SEVIRI Ash RGB images acquired on 23 February 2021 01:27 UTC, 23 February
2021 06:12 UTC and 12 March 2021 10:12 UTC. We chose these images because each of
them presents a volcanic cloud with different composition, respectively, a pure-SO2 cloud,
a pure-ash cloud and a cloud characterized by both ash and SO2. For each component, we
used as training samples 10% of the total pixels related to that component contained in the
three training images. For example, for the ash class, we used 10% of the total pure ash
pixels contained in the three training images. Once the training dataset is built, the SVM
model learns how to create the right output.

The second step is the testing phase; thus, the model learned by the training data is
applied to the testing data, which are new SEVIRI Ash RGB images not containing training
samples. To ensure that the trained model generalizes properly, it is important to verify the
performance on different testing data that are not part of the training data.

We decided to use less training data than testing data to avoid the errors related to the
labeling process, which is a manual process, and therefore to avoid ambiguity. In this way,
we created a classifier as generalizable as possible that is able to discriminate the volcanic
cloud from the background and to characterize its main components, resulting in an image
with four classes (pure ash, pure SO2, mix and background).

In Table 1, the images used as training and as testing of the proposed SVM model
are reported.

Table 1. List of images used as training and as testing of the proposed SVM model.

Training Images Testing Images

23 February 2021 01:27
UTC

MSG4-SEVI-MSG15-0100-NA-
20210223012743.577000000Z-NA

12 March 2021 09:27
UTC

MSG4-SEVI-MSG15-0100-NA-
20210312092743.251000000Z-NA

23 February 2021 06:12
UTC

MSG4-SEVI-MSG15-0100-NA-
20210223061243.447000000Z-NA

9 August 2021 03:27
UTC

MSG4-SEVI-MSG15-0100-NA-
20210809032743.000000000Z-NA

12 March 2021 10:12
UTC

MSG4-SEVI-MSG15-0100-NA-
20210312101243.794000000Z-NA

10 February 2022 21:57
UTC

MSG4-SEVI-MSG15-0100-NA-
20220210215742.231000000Z-NA
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3.3. Performance Evaluation

Since we have a classification model for categorical classes, a confusion matrix can
be used to evaluate the performance. The confusion matrix gives a comparison between
actual and predicted values and is represented in a N × N matrix, where N is the number
of classes. Each column of the matrix represents the instances in an actual class while each
row represents the instances in a predicted class, or vice versa [81].

Let us consider the confusion matrix for a simple binary classification example. If
we compare the actual classification values to the predicted classification values, there are
4 different outcomes:

• True positive (TP): the number of real positives that are correctly predicted as positive;
• False negative (FN): the number of real positives that are wrongly predicted as negative;
• False positive (FP): the number of real negatives that are wrongly predicted as positive;
• True negative (TN): the number of real negatives that are correctly predicted as negative.

The most common performance measures we can obtain from a confusion matrix are:

• Precision, which tells us what fraction of predicted positive values are actually positive

precision =
TP

TP + FP
; (3)

• Recall, which tells us what fraction of all positive values are correctly predicted as
positive by the classifier

recall =
TP

TP + FN
; (4)

• F1-score, which combines precision and recall into a single measure

F1− score = 2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN
; (5)

In the case of multi-class classification, we need to calculate TP, FN, FP and TN for each
individual class [82]. Figure 2c shows the confusion matrix for a multi-class classification
problem with four classes (Ash, SO2, Mix and Background). The dark green diagonal
represents correct predictions, while the other light green cells indicate the incorrect predic-
tions (E). As shown, TPash is the number of true positive ash samples in class Ash, while
Eash,SO2 is the number of samples from class Ash that were incorrectly classified as class
SO2. The false negative for the class Ash is the sum of Eash,SO2, Eash,mix and Eash,background,
which indicates the sum of all class ash samples that were incorrectly classified as class
SO2, Mix or Background. False positive for any predicted class, which is located in a row,
represents the sum of all errors in that row.

The indices used to establish the reliability of our results are:

• Micro-averaged F1-score (Micro-F1): it is calculated by using the regular F1-score
formula considering the total TP, total FP and total FN of the model. It is a global
metric since it does not consider each class individually.

• Macro-averaged F1-score (Macro-F1): it is calculated by obtaining the metrics for each
class individually, and then it takes the unweighted mean of the measures.

• Weighted-averaged F1-score (Weighted-F1): it is calculated by taking a weighted mean
of the measures.

In the case of a supervised machine learning model, we aim to build a model starting
from a training dataset that also has very high performance indices in the test phase and
therefore is able to work well with new dataset.

4. Results

The SVM classifier was trained on samples extracted from three SEVIRI Ash RGB
images (see Table 1). First, the SVM model is applied to the SEVIRI Ash RGB images from
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which the training samples were extracted in order to classify the remaining pixels not used
for the training. Each image is fed into the model, and for each case, we obtain as a result
an outcome image in which all pixels are classified as pure ash, pure SO2, mix ash/SO2
or background.

In Figure 3a,c,e, we can see the SEVIRI Ash RGB images (23 February 2021 01:27 UTC,
23 February 2021 06:12 UTC and 12 March 2021 10:12 UTC) used as input of the SVM model,
and in Figure 3b,d,f, the corresponding outcomes. These results are not used to evaluate the
accuracy of the model, since training samples were extracted from these three images. For
the testing phase, we selected three new images, where no training was performed on them.
In Figure 3b,d,f, the pixels colored in red, green and yellow correspond, respectively, to the
class pure-ash, pure SO2 and mixed components predicted by the SVM. The contours in
red, green and yellow correspond, respectively, to the actual area characterized by pure ash,
pure SO2 and mixed components, defined manually by visual inspection. Even visually,
we can note that our algorithm classifies pretty well the pixels within a volcanic cloud.
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UTC (e,f) images, from GEE. These images are those from which the training sample were extracted.

In order to test the classifier, new images not used during the training phase are chosen.
The SVM previously trained is applied to the SEVIRI Ash RGB images used as testing (see
Table 1). The testing images were chosen in order to take into account volcanic clouds
produced by eruptions from Etna that occurred in different and not consecutive periods
in the 2020–2022 timeframe and therefore to make the evaluation of the accuracy of our
algorithm more robust. In Figure 4a,c,e, we can see the SEVIRI Ash RGB images (12 March
2021 09:27 01:27 UTC, 9 August 2021 03:27 UTC and 10 February 2022 21:57 UTC) used as
input of the SVM model, and in Figure 4b,d,f, the corresponding outcomes.
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Figure 4. Input (SEVIRI Ash RGB images, left) and output (classification, right) of the SVM classifier
for the 12 March 2021 09:27 UTC (a,b), 9 August 2021 03:27 UTC (c,d) and 10 February 2022 21:57
UTC (e,f) images, from GEE. No training was performed on these images.

The accuracy of the proposed classifier was computed using the confusion matrix for
the multi-class classification. For each testing image, we realized a confusion matrix, based
on the areal extensions, and then, we extracted the respective indices (Micro-F1, Macro-F1
and Weighted-F1). Subsequently, we combined the confusion matrices of each testing im-
ages into one, summing the three matrices element by element, in order to obtain the 4 × 4
total confusion matrix. In Table 2, the confusion matrix with percentage values is shown.
Starting from the total confusion matrix, we calculated the overall performance indices. In
Table 3, the performance indices for the multi-class classification are collected, calculated
considering the three testing images separately and finally using the total confusion matrix.

Table 2. Overall confusion matrix with percentage values.

Actual Values

Ash SO2 Mix Background

Predicted
Values

Ash 76.8% 0.01% 3.21% 0.01%

SO2 0.09% 77.9% 1.84% 0.09%

Mix 6.5% 5.64% 93.74% 0.01%

Background 16.62% 16.45% 1.22% 99.89%
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Table 3. Performance indices for multi-class classification.

SEVIRI Image Micro-F1 Macro-F1 Weighted-F1

12 March 2021 09:27 UTC 0.75 0.73 0.75
9 August 2021 03:27 UTC 0.86 0.84 0.86

10 February 2022 21:57 UTC 0.91 0.89 0.91
Overall 0.86 0.83 0.86

For the calculation of these performance indices, we did not take into account the val-
ues related to class background because the region outside the volcanic cloud is extremely
larger than the one inside. Therefore, we would have a very great value of TPbackground,
which would make the indices very high (also close to 1). Specifically, we are interested
in evaluating the classifier’s ability to discriminate components within the cloud, for this
reason, in the performance evaluation, we considered only the predicted and actual values
related to ash, SO2 and mix.

5. Discussion

The SVM model has been found to be very efficient, since it is able to properly classify
an image in a few minutes. Training samples were extracted from three images of reference,
which are 23 February 2021 01:27 UTC, 23 February 2021 06:12 UTC and 12 March 2021
10:12 UTC. We decided to use these images because each of them contains a volcanic cloud
which has different and specific characteristics. Specifically, the 23 February 2021 01:27 UTC
image presents a pure-SO2 volcanic cloud, 23 February 2021 06:12 UTC image a pure-ash
volcanic cloud, and 12 March 2021 10:12 UTC image, a cloud with both components.

First, we applied the SVM model to the three images from which the samples were
extracted, and the results of the classification are shown in Figure 3b,d,f. We can see that
the shape of the volcanic clouds is detected correctly, and most classified pixels belong to
its real class. However, as the testing dataset, we used three new images where no training
was performed, which are 12 March 2021 09:27 01:27 UTC, 9 August 2021 03:27 UTC and
10 February 2022 21:57 UTC. The results of the classification of the testing images are shown
in Figure 4b,d,f.

To evaluate the performance of the algorithm, we took into account only the three
images used as testing, and we created the confusion matrix reported in Table 2. On the
vertical axis, we have the actual labels, while on the horizontal axis, the predicted labels
of the testing samples. A perfect classifier is characterized by a confusion matrix with
values only on the diagonal. If we look at the first column, which refers to the ash class, we
can see that 76.8% of ash test samples is correctly classified, while the remaining 23.2% is
wrongly predicted: 0.09% is classified as SO2, 6.5% as mix and 16.62% as background. This
confusion matrix allowed us to retrieve the metrics for the measurements of the model,
which are reported in Table 3. The performance indices Micro-F1, Macro-F1 and Weighted-F1
are exploited to evaluate the ability of the model to correctly classify the volcanic cloud
components. If we considered the three testing images separately, from Table 3, it is clear
that the performances related to the first testing image (acquired during the day, at 09:27
UTC) are lower than the other two testing images (acquired during the night, respectively,
at 03:27 and 21:57 UTC). Most probably, this is not related to the different times of day
during which the acquisition took place, because SEVIRI Ash RGB images work well
during both day and night periods, but to other factors. One of them is surely the greatest
difficulty in recognizing the ash inside a cloud. This difficulty in discriminating the ash
component is found especially when in a volcanic cloudthere are more components. In
Figure 4b, we can see how part of the volcanic cloud containing ash was not classified as
such, but as background. In contrast, in the case of a pure-ash volcanic cloud (such as that
in Figure 3c), this component is detected very well (Figure 3d). On the whole, the values of
these performance indices are always higher than 0.80 for the three testing images, and this
means that the actual components present in a volcanic cloud are well predicted. Finally,
we calculated the performance indices considering all the values of the four-class confusion
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matrix. In this way, we obtained an overall estimate of the indices Micro-F1, Macro-F1
and Weighted-F1 (respectively, 0.86, 0.83 and 0.86), and we can conclude that the model
performances are great.

We decided to use another machine learning algorithm to compare our SVM model. In
particular, we implemented a random forest (RF) model, which is a classification algorithm
consisting of many decisions trees. Each decision tree is trained independently using
samples of the training dataset with replacement, and their results are combined to obtain
the final RF outcome based on the majority vote [83]. This algorithm establishes the
outcome based on the class selected by most trees. The RF is a supervised ML algorithm;
therefore, we have used the same training dataset exploited to train our SVM model. The
parameter to set in the RF is the number of trees. We performed four tests choosing as the
number of trees 10, 50, 100 and 150. We observed that, in all four cases, the results obtained
by this algorithm are acceptable, but in some cases, they are not very good.

In Figure 5, we reported the outcomes of the RF model, with a number of trees equal
to 100, applied to the images of Table 1. The input of the model is a SEVIRI Ash RGB image.
In Figure 5a–c, we can see the results of the classification of the three images from which
the samples were extracted, whereas in Figure 5d–f, the results of the classification of the
three testing images, where no training was performed, are shown.
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Figure 5. Output of the random forest (RF) classifier for the three images from which the training
samples were extracted, (a) 23 February 2021 01:27 UTC, (b) 23 February 2021 06:12 UTC and
(c) 12 March 2021 10:12 UTC and for the three testing images, (d) 12 March 2021 09:27 UTC,
(e) 9 August 2021 03:27 UTC and (f) 10 February 2022 21:57 UTC images, from GEE.

By visual inspection, we can observe that the RF model detects volcanic clouds with
an area greater than the real areal extension (Figure 5b,f). For the cases 23 February
2021 01:27 UTC, 12 March 2021 10:12 UTC and 12 March 2021 09:27 UTC, the RF model
seems to work well (Figure 5a,c,d). However, in the case of 9 August 2021 03:27 UTC, the
classification of RF does not work at all, because the SO2 is confused with most of the
background (Figure 5e), while our SVM model is able to well discriminate the cloud from
the background and classify its components (Figure 4d).

The accuracy of the RF model is computed using the confusion matrix for the multi-
class classification, and from this, we extracted the performance indices. In Figure 6, the
comparison between the performance indices of the SVM and the RF is reported. The
overall accuracy of the RF model results is very low, and this is mainly due to the fact that
the image of 9 August 2021 03:27 UTC is not classified well.
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We can conclude that our SVM model is more efficient than the RF for the task of
detection and characterization of a volcanic cloud. It works well not only when it is
applied to images from which the training samples are extracted (Figure 3a,c,e), but also
with images where no training is performed (Figure 4a,c,e). Therefore, the possibility of
applying the SVM model to new images makes it generalizable and applicable during a
volcanic event in near real time to monitor the evolution of a volcanic cloud.

In Figure 7, a 3D plot visualizing the BT values of the pixel in a three-dimensional
space is shown, where the axes are the channels of the SEVIRI Ash RGB images, and
each point has a different color according to its class group (red for ash, green for SO2,
and yellow for mix of ash and SO2). The first channel (BT12.0 − BT10.8) emphasizes the
presence of thin volcanic ash, the second (BT10.8 − BT8.7) the presence of SO2, and the third
(BT10.8) the presence of warm clouds. Moreover, the pixel values of the three channels are
normalized between 0 and 100. This plot shows the values of the pixels belonging to the
three images of reference (23 February 2021 01:27 UTC, 23 February 2021 06:12 UTC and
12 March 2021 10:12 UTC), without the training sample, and to the three testing images
(12 March 2021 09:27 UTC, 9 August 2021 03:27 UTC and 10 February 2022 21:57 UTC). For
each of the three clusters, we established a centroid value calculated as the mean value of
the points belonging to each class. The normalized brightness temperature values of the
three centroids are reported in Table 4.

The ash centroid assumes a very high value in channel 1, which is the channel related
to the presence of thin volcanic ash. Furthermore, the SO2 centroid has a high value in
channel 2, which is related to the presence of SO2 gas plume. Lastly, the mix centroid has
high value both for channel 1 and channel 2, since the pixels classified as mix contain both
ash and SO2. Then, the pixels classified as ash will be on the right side of the 3D graph,
which is the part with the highest values in channel 1. The pixels classified as SO2 will
instead be concentrated on the left side of the 3D graph, where there are the highest values
of channel 2. Instead, the pixels classified as mix will be in a position between the ash
class and the SO2 class. A SEVIRI pixel has a rough spatial resolution (around 16 km2

at the considered latitudes); thus, being very large, it can contain more components that
can be difficult to discriminate. For this reason, it can happen that some pixels may not
be correctly classified and will be far from the centroid to which they have been assigned.
Furthermore, misclassification may be due to the dependence of the colors on the satellite
viewing angle and the difficult identification of ash and SO2 when they are mixed with
cirrus clouds. However, we found that the pixels of each class are well distributed around
their own centroid. Since we have verified that the accuracy of our model is high, we can
say that the centroids have been correctly determined.
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Figure 7. Three-dimensional plot with the normalized brightness temperature (BT) pixel values in a
three-dimensional space where the axes are the channels of the SEVIRI Ash RGB images, and the
colors of the points depend on their class group (red for ash, green for SO2 and yellow for mix).
This plot shows the normalized BT values of the pixels belonging to the three images of reference
(23 February 2021 01:27 UTC, 23 February 2021 06:12 UTC and 12 March 2021 10:12 UTC), without
the training sample, and to the three testing images (12 March 2021 09:27 UTC, 9 August 2021 03:27
UTC and 10 February 2022 21:57 UTC).

Table 4. Normalized brightness temperature values of centroid for ash, SO2 and mix classes.

Centroids
Channel 1 Channel 2 Channel 3

THIN VOLCANIC ASH SO2 GAS PLUME WARM CLOUDS

Ash 86.74 63.49 24.68
SO2 34.51 78.94 38.01
Mix 57.48 76.95 7.19

The proposed SVM model and the high temporal resolution of SEVIRI give us the
possibility to visualize and follow a volcanic cloud during an eruptive episode, from its
formation to its complete dispersion in the atmosphere. In Figure 8, the tracking of the
major components of the volcanic cloud produced during the 12 March 2021 event at Etna
volcano is represented. This analysis was conducted considering 18 SEVIRI Ash RGB
images acquired on 12 March 2021 (from 07:42 UTC to 11:57 UTC). The SVM model was
applied to each image. The graph in Figure 8 shows the total number of pixels inside
the detected volcanic cloud and the number of pixels related to each component inside
the cloud. The volcanic cloud is visible from the 08:12 UTC, and its dimensions increase
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until 11:12 UTC. Afterward, the volcanic cloud starts to disperse into the atmosphere, and
the number of pixels begins to decrease progressively. Thus, we demonstrated how our
SVM model combined with the high sample rate of SEVIRI can be exploited to track the
dispersion of a volcanic cloud in near real time.
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6. Conclusions

Accurate detection, tracking, and ultimately nowcasting (i.e., near real time tracking
and short-term forecasting) of volcanic ash clouds combining high temporal resolution
satellite data and machine learning techniques have immediate applications to the real-time
monitoring of volcanic explosive eruptions. By monitoring, we mean here both following
the manifestations of the eruption once it has started as well as forecasting the areas
potentially threatened by major components of a volcanic cloud. The need for integrated
and efficient monitoring systems, operating on a global scale, and including tools for
producing different scenarios as eruptive conditions change, is a primary challenge for
volcanic hazard assessment.

We described and demonstrated the operation of a SVM classifier designed for the
detection of volcanic clouds and the classification of their main components. The results
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show a unique temporal dataset of major volcanic cloud components, from their formation
to their dispersion in the atmosphere, hosted and processed by a cloud computing platform.
This enabled the rapid assessment of eruption evolution via a cloud computing platform
that can collect and process time series data within minutes.

We validated our approach in an operational context at Etna volcano during the
paroxysmal explosive events that occurred between 2020 and 2022. As input of the classifier,
we used Ash RGB composite images generated using a combination of three TIR bands
from SEVIRI. The advantage of this model is that, once trained, due to its good accuracy, it
can be applied to new images without having to be trained again. As a result, the proposed
SVM is able to detect and characterize the volcanic cloud in any new image, thus allowing
one to detect and track the entire volcanic event due to SEVIRI high temporal resolution.
This approach gives us the possibility to monitor the evolution of a volcanic cloud in near
real time and therefore to understand which regions may be most affected by its impact,
since the emissions of ash and SO2 can be hazardous to public health.

Although further analyses are required to fully evaluate the performance of the SVM
model, it may support operational monitoring centers, such as the Etna Volcano Observa-
tory (EVO), involved in better managing of volcanic ash clouds, providing time-critical
hazard information. Therefore, the developed technology is expected to improve opera-
tional hazard detection, alerting, and management capabilities, minimizing the impact of
dangerous and highly destructive paroxysmal events on populations and the environment.
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