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Abstract: Volcanic thermal anomalies are monitored with an increased application of optical satellite
sensors to improve the ability to identify renewed volcanic activity. Hotspot detection algorithms
adopting a fixed threshold are widely used to detect thermal anomalies with a minimal occurrence
of false alerts. However, when used on a global scale, these algorithms miss some subtle thermal
anomalies that occur. Analyzing satellite data sources with machine learning (ML) algorithms has
been shown to be efficient in extracting volcanic thermal features. Here, a data-driven algorithm is
developed in Google Earth Engine (GEE) to map thermal anomalies associated with lava flows that
erupted recently at different volcanoes around the world (e.g., Etna, Cumbre Vieja, Geldingadalir,
Pacaya, and Stromboli). We used high spatial resolution images acquired by a Sentinel-2 MultiSpectral
Instrument (MSI) and a random forest model, which avoids the setting of fixed a priori thresholds.
The results indicate that the model achieves better performance than traditional approaches with
good generalization capabilities and high sensitivity to less intense volcanic thermal anomalies. We
found that this model is sufficiently robust to be successfully used with new eruptive scenes never
seen before on a global scale.

Keywords: machine learning; remote sensing; volcano monitoring; lava flow mapping; Sentinel-
2 MSI

1. Introduction

The satellite remote sensing of thermal infrared radiation is successfully used to
monitor high-temperature volcanic features [1–6]. In particular, the monitoring of fresh
lava flows is, nowadays, heavily reliant on remote sensing, providing a detailed description
of lava flow emplacement during an ongoing eruption [7–15]. Satellite sensors acquired
in the visible, infrared, and thermal wavelength regions receive reflected and emitted
radiation from lava surfaces that can be used to map their areal coverage [16–25].

Satellite remote sensors measure the Top-of-Atmosphere (TOA) radiance or reflectance
of a surface at different wavelengths, i.e., the fraction of incoming solar radiation that
is reflected from Earth’s surface [1]. This radiance has two contributions, namely the
radiance emitted at a given temperature and the solar radiance reflected by the monitored
surface [1,26,27]. Following the Wien law, the wavelength at which the peak of the thermal
emission occurs is inversely proportional to the temperature of the emitting surface [5].
Thus, for surfaces at high temperatures, the highest spectral response is measured at a
lower wavelength [28–30]. In such cases, the TOA radiance measured by the sensor is
mainly dominated by thermal emission rather than solar reflection [1].

The temperature of fresh lava flows varies widely, ranging between 1073 and 1273 K [1].
Therefore, from incandescent to hot and warm surfaces, such as an active lava flow, the
peak of the emitted radiance shift from Near-InfraRed (NIR) to Short-InfraRed (SWIR) and
Middle-InfraRed (MIR) to Thermal-InfraRed (TIR) spectral bands. Normalized indexes
based on these infrared bands have been shown to be suitable for monitoring volcanic
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activity. The NHI (Normalized Hotspot Indices) based on SWIR and NIR bands [28] have
been widely used to monitor eruptive events worldwide [31,32]. Generally speaking, a
thermal anomaly may be referred to as a hotspot when it has a relatively high temperature
in comparison to a reference value, e.g., its surroundings. Hotspot detection algorithms
are based on spatial, temporal, or spectral differences with respect to the background areas
traditionally reliant on statistical or fixed threshold approaches [33–40]. Depending on
the detection algorithm adopted, the minimum detectable hotspot changes. Threshold-
based techniques applied to MIR, SWIR, NIR bands, and NHI are usually adopted for
volcanic hotspot detection [9,28,34,35]. Several thermal anomalies software and volcanoes
monitoring systems applying these techniques to a Sentinel-2 MultiSpectral Instrument
(S2-MSI) and Landsat 8 Operational Land Imager (L8-OLI) data have been developed, e.g.,
HOTMAP [41], VOLCANOMS [42], and NHI tool [29]. In [43], an improved detection
technique is proposed to process the S2-MSI data based on both fixed thresholds and
spatial statistical algorithms. A set of decision rules based on optical radiances with fixed
a priori thresholds are used to map thermal anomalies accurately even in the presence of
non-volcanic phenomena, e.g., clouds [29]. However, the minimum detectable anomaly
can be largely affected by the adopted threshold, and this may lead to errors, especially
when a fixed threshold is used to deal with different volcanoes worldwide. Thus, we have
explored the potentiality of using data-driven approaches to avoid an a priori setting of a
threshold [44,45].

Among these techniques, machine learning algorithms have been widely used to
automatically process remote sensing data in volcanic applications [46–51]. It has been evi-
denced that automatic detection of hot lava flows in NRT (near-real-time) can be achieved
by using an unsupervised machine learning (ML) classifier exploiting NHI from any avail-
able satellite sensor between the S2-MSI and L8-OLI acquired at a time interval close to
the start of the eruption. A K-means algorithm has been used as an unsupervised classifier
to easily detect hot/incandescent pixels with NHI as the input features. Unfortunately,
the weakness of such an approach is that subtle anomalies may not be detected because
they do not produce high enough changes in spectral radiances in SWIR and NIR bands
compared with other phenomena affecting the same bands, such as clouds or snow [44,45].
Thus, a supervised data-driven approach would be more suitable to enhance the accuracy
level. Since traditional fixed-threshold approaches rely on a set of decision rules [29], a
supervised technique replicating the if-else logic based on the input features and the target
during the training phase may represent the best candidate in this sense [52,53]. Based
on this perspective, the decision tree algorithm may represent a useful tool. In fact, the
decision tree replicates the if-else logic based on the input features and the target during
the training phase [52,53].

Random forest or random decision forest models are an ensemble learning method
for classification, regression, and other tasks that operate by constructing a multitude
of decision trees at training time [54]. For classification tasks, the output of the random
forest is the class selected by most trees [55,56]. It has been widely used as a tool to detect
anomalies because the separation between anomalies and normal behavior is made easier
due to the shortest path in the trees than normal instances.

Here we propose a robust data-driven strategy based on a random forest to map low
to extreme thermal anomalies using high spatial resolution Sentinel-2 images. It is robust
in terms of the capability of the model to detect thermal anomalies accounting for the large
variability in its input values. In particular, we used a supervised random forest to design
a data-driven hotspot detection algorithm using spectral information coming from the
S2-MSI. We aimed at detecting low to extreme volcanic thermal anomalies by exploring
the capability of a data-driven model to tune its parameters to the real training data. The
potentiality of this approach for worldwide applications is accessed by analyzing some
recent lava flow-forming eruptions at five different volcanoes with different volcanic styles
and located in different geographic areas.
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2. Materials
2.1. Study Sites

Volcanoes located in different areas around the world were considered in order to
account for heterogeneity in our dataset (Figure 1a, Table 1).
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images were captured via Google Earth Engine.
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Table 1. Volcanoes investigated with the date of beginning and ending of the eruptive events.

Volcano Eruption Starting Date Eruption Ending Date

Etna 21 December 2020 23 December 2020
Etna 17 January 2021 17 January 2021
Etna 17 February 2021 18 February 2021

Geldingadalir 19 March 2021 21 September 2021
Etna 20 February 2021 21 March 2021

Cumbre Vieja 19 September 2021 13 December 2021
Stromboli 22 July 2019 27 July 2019

Pacaya 20 October 2020 13 August 2021

The Cumbre Vieja volcano (Figure 1b, Table 1) is one of the seven volcanic islands located
in the eastern Atlantic Ocean, in the Canarian Archipelago, situated in La Palma Island.
Different eruptions characterized La Palma Island in 1585, 1646, 1677–1678, 1712, 1949, and
1971, with different behaviors and products. The 2021 activity began on 19 September 2021,
with lava flows, lava fountains, ash, and gas plume emissions, with the closure of the La
Palma airport. The activity ended on 13 December 2021 [57,58]. The 2021 eruption flowed
on a populated, gently sloping plain on the lower flanks of the Cumbre Vieja and was
classified as a basaltic fissure type eruption, dominated by strombolian activity and with
episodic phreatomagmatic pulses. The eruption formed a new volcanic structure of about
200 m high from its base, with a total altitude of 1131 m asl and six major craters on its
top. In addition, an eruptive column, fine lapilli, and ash were produced, with the ash fall
affecting the eastern side of the island, the airport, and the island’s capital. Also, lava flows
were produced.

The Geldingadalir volcano (Figure 1c, Table 1) is located on the Reykjanes Peninsula
(Iceland). The activity began on 19 March 2021, with a fissure vent that appeared in Geldin-
gadalir. The products were small lava fountaining, lava flows, and little ash extrusions that
affected aircraft, and the activity ended on 21 September 2021 [59,60]. Reykjanes Peninsula
is an onshore continuation of the Mid-Atlantic plate boundary and is a highly oblique
spreading zone. It has N–S trending strike-slip faults and volcanic systems consisting of
10–40 km long, NE–SW-trending fissure swarms, and geothermal areas. The Reykjanes
Peninsula is densely inhabited, and the lava flows may inundate essential infrastructures.

The Stromboli volcano (Figure 1d, Table 1) appears as a small island (less than 5 km
wide) in the southern Tyrrhenian Sea (Italy), which has been continuously erupting for
the past 2000 years. Its activity is almost exclusively explosive, but lava flows do occur at
times. Its persistent but moderate explosive activity, termed “Strombolian,” is occasionally
interrupted by explosive events that are more violent and represent the main hazard for the
inhabitants of the island, whose amounts vary due to the touristic seasonal variation (less
than 500 in the winter, but more than 5000 in the summer) [61–63]. The current activity
takes place at three main craters located on the crater terrace within the Sciara del Fuoco.
Emitted products reach ten to a hundred meters heights, and the explosive activity is
associated with continuous degassing.

The Pacaya volcano (Figure 1e, Table 1) is located in Guatemala and belongs to the
Pacaya complex, which is composed of six basaltic cones. The volcano is characterized by
low-level volcanic activity, with episodes of activity, and rests every few centuries [64,65].
The analyzed lava overflowed from a fissure that opened on 20 October 2020, and the total
activity to which it belongs ended on 13 August 2021. The current eruptive episode began
in 1961 with Strombolian eruptions, ash plumes, and effusive lava flows; the majority
originates from the summit of the active cone and also from the volcano’s flanks.

Mt. Etna (Sicily, Italy) (Figure 1f, Table 1) is one of the most active volcanoes in the
world, and its numerous eruptive episodes are characterized by the emission of lava foun-
tains, pyroclastic material, and lava flows, which spread within the Valle del Bove [66,67].
An intense period of activity started from December 2020 to March 2021, characterized by a
sequence of paroxysms lava fountains of short duration and high intensity, occurring with
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a certain regular frequency (every about 30 h from each other). These events have been
well documented in terms of lava volume emitted, the areal extension of the lava flows,
and of the volcanic clouds [45,68–71]. In general, the last three decades of Etna’s activity
were characterized by paroxysms with lava fountaining lasting 1–2 h, reaching the height
of 1–3 km above the crater, and generating conspicuous and lengthy ash plumes that can
drift high distances, and this type of activity may cause damages to aviation, on road and
traffic conditions, and on the villages near to the volcano.

2.2. Satellite Datasets

Sentinel-2 consists of a constellation of two identical sun-synchronous satellites,
Sentinel-2A (S2A) and Sentinel-2B (S2B), launched in 2015 and 2017, respectively. The
revisit frequency of one satellite is 10 days, resulting in a global revisit frequency of 5 days
for the constellation. Both satellites are equipped with a MultiSpectral Instrument (MSI)
with 13 bands at 10 m spatial resolutions in the visible and near-infrared, at 20 m spatial
resolution in the red edge and shortwave infrared part of the spectrum, and at 60 m spatial
resolution in the atmospheric bands (“Aerosol,” “Water vapor,” and “Cirrus”). Sentinel-2
(S2) images are made available at different product levels, namely Level-1C (orthorectified
TOA) and Level-2A (orthorectified atmospherically corrected surface reflectance SR), in
Google Earth Engine [72].

The images used in these studies are Level-1C containing 13 UINT16 spectral bands
representing TOA reflectance scaled by 10,000. For this study, TOA reflectance measure-
ments were converted to radiance in [W m−2 sr−1 µm−1].

In particular, radiances measured at bands B2 (496.6 nm (S2A)/492.1 nm (S2B)), B3
(560 nm (S2A)/559 nm (S2B)), B4 (664.5 nm (S2A)/665 nm (S2B)), B5 (703.9 nm (S2A)/703.8
nm (S2B)), B8A (864.8 nm (S2A)/864 nm (S2B)), B11 (1613.7 nm (S2A)/1610.4 nm (S2B)),
and B12 (2202.4 nm (S2A)/2185.7 nm (S2B)) are used and referred to as L0.4, L0.5, L0.6, L0.7,
L0.8, L1.6, and L2.2, respectively.

The images that have been used for the training and testing phase are reported in
Table 2, and the images for the testing phase are also shown in Figure 2.

Table 2. Volcanoes investigated with the date of the images acquired from S2-MSI used for the RF
models in the training and test phases.

Volcano
S2-MSI Acquisition Date

Training Test

Etna 23 December 2020 09:53:29 /
Etna 17 January 2021 09:53:41 /
Etna 18 February 2021 09:40:29 /
Etna 23 February 2021 09:53:29 /

Geldingadalir 10 August 2021 13:12:59 /
Cumbre Vieja 30 September 2021 12:03:31 /

Etna / 21 February 2021 09:40:31
Cumbre Vieja / 25 September 2021 12:03:19

Stromboli / 27 July 2019 09:50:31
Pacaya / 31 October 2020 16:24:29
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Figure 2. Sentinel-2 MSI TOA reflectance images used as the test set for the two models. False
RGB (B12, B11, and B5) S2-MSI acquisition over (a) Mt. Etna—21 February 2021—(b) Stromboli—
27 July 2019—(c) Cumbre Vieja—25 September 2021—and (d) Pacaya—31 October 2020.

3. Methods

We aim to design a robust supervised classifier using high spatial resolution images
from the S2-MSI exploiting spectral bands ranging from visible to short infrared, which
are relevant in the detection of thermal anomalies. This generalized supervised classifier
uses spectral information provided by the S2-MSI to learn to discriminate between thermal
anomalies (class 1, thermal anomaly) with a high accuracy level, i.e., being able to detect
lower intensities changes and background (class 0, background) characterized by different
spectral features, e.g., snow and/or clouds. The workflow representing the three main
steps of the ML algorithm is illustrated in Figure 3.
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3.1. Features Selection

Firstly, discriminative features need to be selected in order to teach the ML model
to recognize anomalies. Two sets of bands are considered as the candidate input of the
ML model. The first set of features (Feat1) relies on a set of bands that were already being
used to recognize, successfully, mid to extreme anomalies worldwide while minimizing
false alarms [29]. In particular, three normalized indexes have been used for volcanic
applications [28,29], as defined in Equations (1)–(3):

NHISWNIR =
L1.6 − L0.8

L1.6 + L0.8
(1)

NHISWIR =
L2.2 − L1.6

L2.2 + L1.6
(2)

ND =
L2.2 − L0.8

L2.2 + L0.8
(3)

where NHISWNIR is a normalized hotspot index (NHI) based on SWIR1 and NIR, NHISWIR
is based on SWIR2 and SWIR1, and ND is a normalized index based on SWIR2 and
NIR [28,29]. Increased accuracy is achieved by using additional spectral tests based on the
bands Red Edge 1, SWIR1, and SWIR2.

The second set of features (Feat2) takes advantage of the fact that the model can
discriminate volcanic anomalies and the heterogeneous background, learning the spectral
signatures of the monitored surfaces and thermal emissions [73–76]. In fact, especially when
thermal anomalies are less intense, thus affecting less S2-MSI infrared bands, contributions
from the other bands may help identify spectral signatures of the erupted bodies and
background. In particular, learning spectral signatures of different backgrounds, and
having a well-known spectral response, such as clouds, snow, and vegetation, helps reduce
false negative detection. Thus, Feat 2 contains radiances from VIS to SWIR. In Table 3, both
the feature sets, namely Feat 1 and Feat 2, are summarized.

Table 3. Feature sets used for the two models, namely Feat1 and Feat2.

Feat1 Feat2

L0.7 L0.4
L1.6 L0.5
L2.2 L0.6
ND L0.8

NHISWNIR L1.6
NHISWIR L2.2

At this point, training and testing datasets are created for the investigated eruptions
using the S2-MSI images listed in Table 2. For each eruptive event, the input and target
images need to be prepared. All the bands used in the feature sets (see Table 3) are
normalized by using the z-score normalization, accounting for the differences in the range
of the selected variables.

The target consists in a binary image where 1 is associated with the thermal anomalies
and 0 with the background. Target images have been retrieved using high spatial resolution
images from the S2-MSI. The location of true hot pixels building up the actual lava flow
map in the S2-MSI image was determined manually by visual inspection [41,77] via expert
human analysis for each of the scenes. In particular, in order to do that, experts draw in
GEE the target upon the False RGB S2-MSI image (B12-B11-B5) that is able to highlight the
incandescent components. Unfortunately, it is not always possible to conclusively define
the boundaries of the hot pixels’ clusters, i.e., discriminating where the hot target ends and
the background begins [41]. This introduces a degree of subjectivity in any true hot pixel
map [78]. However, it is possible to at least assess the algorithm performance with respect
to an expert human analyst, i.e., computing accuracy and other performance indexes using
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the target retrieved by the experts [41]. As a consequence, the target/actual maps have the
same spatial resolution as the lowest spatial resolution among the adopted S2-MSI bands,
namely a 20 m ground sampling distance. Since lower thermal anomalies are more difficult
to be detected, when selecting a target in the training images, we included the pixels with
lower temperatures. B12, which is the most suitable band to focus on lower temperatures
for the Wien law, has a minimum radiance value of 0.68 [W m−2 sr−1 µm−1] among the
anomalous thermal pixels selected as the target.

For both the trained models, the test phase involves images never seen before from the
Etna, Stromboli, Cumbre Vieja, and Pacaya volcanoes. As regards the background, pixels
belonging to different kinds of backgrounds are provided, namely soil, clouds, snow, rocks,
plume, vegetation, and housing. In general, this allows the model to discriminate spectral
responses in the selected bands, especially when anomalies are subtle and thus close to the
decision boundaries.

3.2. Model Identification

As for the ML algorithm, we used the Random Forest (RF) model for two main reasons.
On the one hand, we want to exploit the ability of the decision trees building up the RF to
tune their decision rules, i.e., discriminating the spectral features of thermal anomalies from
the rest, based on the training data. On the other hand, we adopt an RF rather than a single
decision tree to reduce overfitting, to improve generalization since the subset of the training
samples is used for each tree, and to enhance the stability since the final outcome is based
on several of the decision tree outcomes [79]. The decision tree is a supervised ML model
able to make predictions based on simple decision rules inferred from input features during
the training phase. The RF is made by a predefined number of decision trees exploiting
the bagging technique to make a prediction [80]. In particular, each decision tree is trained
independently using samples of the original training dataset with replacement, and their
results are combined to get the final RF outcome based on the majority voting [48].

A parameter to set in the RF is the number of trees; here, a number of 100 trees is
chosen since it represents a good trade-off between complexity and performance, i.e., a
higher number of trees did not improve the performance so to justify the higher complexity.
During the training phase, RF learns from data the best decision rules to minimize the error
between the target and the model output. In particular, an RF for each set of features is
trained, namely RF1 and RF2 being trained with Feat1 and Feat2, respectively (see Table 3).

3.3. Performance Evaluation

Finally, the performance evaluation step is performed using different metrics which
have been widely employed to quantify the goodness of the fit between the real and
calculated lava flow areas [5] based on the areal dimensions of the calculated (test area)
and actual lava flow fields. We avoid the use of indexes accounting for the true negative
(TN), pixels correctly classified as background pixels, such as the false positive rate (FPR),
because for imbalanced datasets, such as in this case (more background-negative than
anomalous-positive pixels), this model’s performance index would be largely biased by the
TN. A larger number of negative samples, such as in this case, would lead to a high TN and,
thus, low FPR. However, this would not reflect the model’s capability to correctly identify
a thermal anomaly but the background instead. Since we are focused on the positive class,
i.e., identifying thermal anomalies, we consider the following indexes more appropriate for
our task [81]:

• accuracy (ACC) =
√

A(test ∩ real)
A(test ∪ real)

• precision (also known as the positive predictive value, PPV) =
√

A(test ∩ real)
A(test )

• recall (also known as the true positive rate, TPR) =
√

A(test ∩ real)
A(real )

ACC involves A(test ∩ real) and A(test ∪ real), which are the areas of the intersection
and union between the calculated and actual lava flows (the targets), respectively. This
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index evaluates the difference in the emplacement between the diverse lava flow fields and
the goodness of the maps obtained. PPV indicates the percentage of calculated lava flow
fields covered by the actual lava flows. TPR is similar to the previous one and evaluates
the percentage of the actual lava flow field covered by the calculated lava flows. The three
indices have values between 0 and 1, with 1 for a complete overlap, i.e., the calculated
area coincides totally with the actual lava flow field, and 0 for a maximum error, i.e., lack
of common areas between the calculated and actual lava flows. The comparison between
the ACC, PPV, and TPR gives insights into how the calculated emplacements change
with respect to the actual areas. Precisely, the testing area underestimates the actual one
if the PPV is higher than the ACC, while it overestimates if the TPR is greater than the
ACC [82–85].

The fixed threshold algorithm is implemented for comparison purposes, considering
the well-known decision rules [28].

4. Results

We trained the RF models with multiple volcanic eruptive events using training and
testing images as the set of the S2-MSI acquisitions reported in Table 2. During the training
phase, we used, as a target for each volcano case study, portions of the lava flows manually
selected and labelled as the anomaly and background.

For each variable in the feature space, an importance value is retrieved from the
random forest models [86,87], showing how much relevant and discriminative the variable
is in the random forest model for the classification task under investigation. These values
are computed as follows: Since the features for the internal nodes are selected with Gini
impurity or information gain, how each feature decreases the impurity of the split (the
feature with the highest decrease is selected for the internal node) can be measured. For
each feature, we can collect how, on average, it decreases the impurity. The average over
all the trees in the forest is the measure of the feature importance.

The importance values’ percentages for both RF1 and RF2 are shown in Figure 4.
Figures 5 and 6 show the test set, in particular, the S2-MSI False RGB (B12-B8A-B5) im-
ages, the RF outcomes, and the fixed threshold outcomes for Etna on 21 February 2021
(Figure 5a–d), Stromboli on 27 July 2019 (Figure 5e–h), Cumbre Vieja on 25 September 2021
(Figure 6a–d), and Pacaya on 31 October 2020 (Figure 6e–h). The S2-MSI False RGB (B12-
B8A-B5) images with an appropriate stretch are shown to highlight less intense anomalies
otherwise not clearly visible.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 4. Feature importance related to the models RF1 (a) and RF2 (b). 

 

Figure 4. Feature importance related to the models RF1 (a) and RF2 (b).



Remote Sens. 2022, 14, 4370 10 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 4. Feature importance related to the models RF1 (a) and RF2 (b). 
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and the RF (VIS, NIR, and SWIR) outcomes for Etna on the 21 February 2021, (a–d) and Stromboli on
the 27 July 2019 (e–h). All the images were captured via Google Earth Engine.
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5. Discussion

Our results highlight the ability of the Random Forest to learn the detection of low to
extreme thermal anomalies using spectral observations. In particular, both the proposed RF
models show a good generalization capability, being able to map thermal anomalies over
several different volcanoes. We obtained a good performance level and an accuracy that
is around 0.9 for both RF1 and RF2 as the average for all the volcanoes’ study cases with
respect to 0.83 for the fixed threshold (FT) algorithm (Table 4). In particular, they perform
well even when applied to volcanoes never seen during the training phase, i.e., Pacaya. In
fact, training the random forest with wide-spanning eruptive events in different areas in
the world allows us to learn the best features to correctly classify cooler to incandescent
thermal anomalies with a low number of missed detections, as shown by the TPR index
(Table 4). The first improvement is achieved by RF1 with respect to the FT algorithm.
Using the NIR and SWIR bands (that are usually adopted to monitor mid to high thermal
features), RF1 is able to detect subtler anomalies. This is due to the fact that RF1 has tuned
its parameters from the data, thus being able to generalize better in order to account for
subtle changes. An example of this is shown in Figure 6b,c, where the FT is only able to
detect the hotter portion of the volcanic anomaly in Cumbre Vieja while RF1 is able to
map far more anomalies. A further improvement is achieved with RF2, which, by using
visible bands, learns the spectral signatures of the trained, monitored surfaces. In fact,
when the emitted radiance is low, the reflected radiance becomes dominant, and thus, the
capability of the model to learn them allows us to reduce the number of false negatives.
This is reflected in a higher TPR.

Table 4. Performance indices, i.e., TPR, PPV, and ACC, for the test set for each volcano and average
scores using the fixed threshold algorithm (FT), RF1 model, with NIR, SWIR bands, and NHI indices,
the RF2 model with VISIBLE, NIR, and SWIR bands. The goodness of the trained models is evaluated
by using the performance indexes previously defined.

Volcano
TPR PPV ACC

FT RF1 RF2 FT RF1 RF2 FT RF1 RF2

Etna 0.99 0.99 0.99 1 0.97 0.99 0.95 0.98 0.99
Stromboli 0.74 0.99 0.99 1 0.99 0.95 0.74 0.89 0.91

Cumbre Vieja 0.78 0.8 0.8 0.95 0.8 0.8 0.84 0.85 0.86
Pacaya 0.66 0.85 0.85 0.99 0.92 0.91 0.79 0.88 0.87

Average 0.79 0.87 0.87 0.99 0.92 0.91 0.83 0.9 0.91

From Table 4, we can compare the performance of the three algorithms, and we can
state that RFs outperform the FT. Furthermore, even though RF2 has slightly higher TPR
and ACC for the reasons previously stated, the performances of RF1 and RF2 are very
similar. On the one hand, ACC and TPR are higher using RFs than the fixed threshold
algorithm, meaning that RFs are able to well predict thermal anomalies with a lower
number of false negative detections with respect to the fixed threshold approach. In other
words, RFs underestimate less than the fixed threshold algorithms. This is due to the fact
that the RF is trained to detect even lower thermal anomalies, as can be noticed in all the
study cases presented. On the other hand, PPV is high for RFs but lower than the fixed
threshold approach, meaning that RFs have a higher number of false positives, and thus,
RFs overestimate more with respect to fixed threshold algorithms. This is expected because,
being that the RFs are able to detect, also, low thermal anomalies, false positives due to
hot reflections may be detected in areas very close to volcanic anomalies, as in the case
of Cumbre Vieja, where false positives are clearly visible due to the presence of thermal
reflection in clouds. Thus, the higher value of PPV for the fixed threshold approach is
due to the fact that the thresholds used are more conservative in preventing false positive
detections. However, this leads the fixed threshold algorithm to miss anomalies, as it is
shown in Figures 5 and 6.
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This means that even though some of the anomalies detected by the RFs are due to
reflection (a lower PPV), some missed by the FT are instead detected by the RFs, being
subtle anomalies (a higher TPR). In particular, a bigger portion of real anomalies is detected
than the ones misclassified as false anomalies, resulting in a greater accuracy estimated
using RFs than the FT, i.e., 0.9 to 0.91 and 0.83, respectively (Figure 7).
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Figure 7. Comparison of average recall, precision, and ACC for each volcano for the fixed threshold
model, RF1 and RF2.

In summary, RFs achieve a better compromise than fixed threshold algorithms in terms
of missed detection and false alarms. In fact, since all the performance indexes are high
and belong to a narrow range of around 0.9, i.e., (0.87, 0.92) and (0.89, 0.91) for RF1 and
RF2, respectively, there is not a clear underestimation/overestimation tendency of the RF
models. On the contrary, the fixed threshold algorithm has lower performance indexes
belonging to a wider range, i.e.,(0.79, 0.99), showing a clear underestimation tendency of
this model, i.e., its precision is far higher than its accuracy (see Figure 7).

In particular, we considered the Stromboli test case, i.e., the 27 July 2019 eruption,
which was characterized by a lava overflow from the summit crater. This is shown in
the S2-MSI False RGB with a stretch that helps highlight the lower thermal anomalies.
Furthermore, four fires that developed on the South-East side of the island are clearly
visible, as well (Figure 5e). The emplacements of the overflows have been verified from
the thermal camera of the INGV network [www.ct.ingv.it (accessed on 15 July 2022)]. The
algorithm based on the fixed thresholds, of which it has been shown to work well globally,
misses the cooler anomalies, namely the thinner overflow and the one out of the four bigger
fires (Figure 5f). The thermal anomaly map of the RF1 model is able to detect some pixels
of the cooler overflow, the incandescent overflow, and the four fires (Figure 5g). A further
improvement is shown using RF2, where more pixels belonging to the thinner overflow are
detected (Figure 5h). In order to assess the advantages of using a data-driven approach
with respect to a fixed threshold algorithm, we applied RF algorithms to another test case
image from Etna, 11 February 2022, where the cooling portions of lava flows are visible.
The first available S2-MSI image was acquired on 11 February 2022, where the cooling
portions of the lava flows are visible. As can be noticed in Figure 8, a greater portion of
thermal anomalies is detected by the RFs (Figure 8c,d) than by the fixed threshold algorithm
(Figure 8b). In particular, lower thermal anomalies are detected, as is confirmed by the false
RGB in Figure 8. These results show the effectiveness of the RF data-driven approach in
detecting low to extreme thermal anomalies. Although six scenes for training have been
used, being a pixel-based approach, the number of samples considered is hundreds of
thousands, accounting for different thermal features and enough to train machine learning
techniques. Nevertheless, future works will focus on increasing the dataset size to make
the model more and more generalizable.
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6. Conclusions

We have presented a robust data-driven strategy based on the random forest model to
map lower to extreme thermal anomalies using Sentinel-2 high spatial resolution images.
We have exploited the decision rules strategy of decision trees and the generalization
capability of RF models to tune relevant spectral features to train satellite data acquired
over different volcanoes. This allowed us to automatically map thermal anomalies avoiding
fixed a priori thresholds. We have used two sets of input features, obtaining two RF models
that have shown similar performances. It is worth noting that also using visible bands
allows us to enhance the model’s capability to detect less intense anomalies by exploiting
the learned spectral signatures of the monitored surfaces.

RFs trained on multiple volcanoes and eruptions are able to well-classify, from less to
very intense, volcanic anomalies and also volcanoes never seen before, i.e., Pacaya, showing
great generalization capabilities. This implies that the proposed data-driven approach shows
the potential to be used over different volcanoes, obtaining a model available and ready to be
used once an eruption occurs worldwide. However, further expansion of the training datasets
to more study cases and volcanoes in the future is needed to better generalize this model for
lava flow mapping worldwide. Thus, the next steps involve increasing the dataset sizes and,
thus, making a GEE app available to be used on a global scale.
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54. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.

Remote Sens. 2016, 114, 24–31. [CrossRef]
55. Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J. 2020, 20, 3–29. [CrossRef]
56. Paul, A.; Mukherjee, D.P.; Das, P.; Gangopadhyay, A.; Chintha, A.R.; Kundu, S. Improved random forest for classification. IEEE

Trans. Image Processing 2018, 27, 4012–4024. [CrossRef]
57. Longpré, M.A. Reactivation of Cumbre Vieja volcano. Science 2021, 374, 1197–1198. [CrossRef] [PubMed]
58. Carracedo, J.C.; Troll, V.R.; Day, J.M.; Geiger, H.; Aulinas, M.; Soler, V.; Deegan, F.M.; Perez-Torrado, F.J.; Gisbert, G.; Gazel, E.; et al.

The 2021 eruption of the Cumbre Vieja Volcanic Ridge on La Palma, Canary Islands. Geol. Today 2022, 38, 94–107. [CrossRef]
59. Eibl, E.P.; Thordarson, T.; Höskuldsson, Á.; Gudnason, E.Á.; Dietrich, T.; Hersir, G.P.; Ágústsdóttir, T. Evolving Shallow-conduit

Container Affects the Lava Fountaining during the 2021 Fagradalsfjall Eruption, Iceland. Res. Sq. 2022. [CrossRef]
60. Pedersen, G.B.; Belart, J.M.; Óskarsson, B.V.; Gudmundsson, M.T.; Gies, N.; Högnadóttir, T.; Hjartardóttir, Á.R.; Pinel, V.; Berthier,

E.; Dürig, T.; et al. Volume, effusion rate, and lava transport during the 2021 Fagradalsfjall eruption: Results from near real-time
photogrammetric monitoring. Geophys. Res. Lett. 2022, 49, e2021GL097125. [CrossRef]

61. Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.;
Centorrino, V.; et al. Overflows and pyroclastic density currents in March-April 2020 at Stromboli volcano detected by remote
sensing and seismic monitoring data. Remote Sens. 2020, 12, 3010. [CrossRef]

62. Corradino, C.; Amato, E.; Torrisi, F.; Calvari, S.; Del Negro, C. Classifying Major Explosions and Paroxysms at Stromboli Volcano
(Italy) from Space. Remote Sens. 2021, 13, 4080. [CrossRef]

63. Aiuppa, A.; Bertagnini, A.; Métrich, N.; Moretti, R.; Di Muro, A.; Liuzzo, M.; Tamburello, G. A model of degassing for Stromboli
volcano. Earth Planet. Sci. Lett. 2010, 295, 195–204. [CrossRef]

64. Rose, W.I.; Palma, J.L.; Wolf, R.E.; Gomez, R.M. A 50 yr eruption of a basaltic composite cone: Pacaya, Guatemala. Geol. Soc. Am.
Spec. Pap. 2013, 498, 1–21.

65. Schaefer, L.N.; Lu, Z.; Oommen, T. Post-eruption deformation processes measured using ALOS-1 and UAVSAR InSAR at Pacaya
Volcano, Guatemala. Remote Sens. 2016, 8, 73.

66. Ganci, G.; Cappello, A.; Zago, V.; Bilotta, G.; Herault, A.; Del Negro, C. 3D Lava flow mapping of the 17–25 May 2016 Etna
eruption using tri-stereo optical satellite data. Ann. Geophys. 2018, 62. [CrossRef]

67. Bonaccorso, A.; Calvari, S.; Currenti, G.; Del Negro, C.; Ganci, G.; Linde, A.; Napoli, R.; Sacks, S.; Sicali, A. From source to surface:
Dynamics of Etna’s lava fountains investigated by continuous strain, magnetic, ground and satellite thermal data. Bull. Volcanol.
2013, 75, 690. [CrossRef]

68. Marchese, F.; Filizzola, C.; Lacava, T.; Falconieri, A.; Faruolo, M.; Genzano, N.; Mazzeo, G.; Pietrapertosa, C.; Pergola, N.;
Tramutoli, V.; et al. Etna paroxysms of February–April 2021 monitored and quantified through a multi-platform satellite
observing system. Remote Sens. 2021, 13, 3074. [CrossRef]

69. Calvari, S.; Bonaccorso, A.; Ganci, G. Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021,
Episode. Remote Sens. 2021, 13, 3052. [CrossRef]

70. Torrisi, F.; Folzani, F.; Corradino, C.; Amato, E.; Del Negro, C. Detecting Volcanic Ash Plume Components from Space using
Machine Learning Techniques. Earth Space Sci. Open Arch. 2021, 1. [CrossRef]

71. Torrisi, F. Automatic approach to detect volcanic plumes using SEVIRI data and machine learning techniques. Il Nuovo Cim. 45 C
2022, 81. [CrossRef]

72. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

73. Spinetti, C.; Mazzarini, F.; Casacchia, R.; Colini, L.; Neri, M.; Behncke, B.; Salvatori, R.; Buongiorno, M.F.; Pareschi, M.T. Spectral
properties of volcanic materials from hyperspectral field and satellite data compared with LiDAR data at Mt. Etna. Int. J. Appl.
Earth Obs. Geoinf. 2009, 11, 142–155. [CrossRef]

74. Head, E.; Maclean, A.L.; Carn, S. Mapping lava flows from Nyamuragira volcano (1967–2011) with satellite data and automated
classification methods. Geomat. Nat. Hazards Risk 2013, 4, 119–144. [CrossRef]

75. Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Hérault, A.; Del Negro, C. Mapping Recent Lava Flows at Mount Etna Using
Multispectral Sentinel-2 Images and Machine Learning Techniques. Remote Sens. 2019, 11, 1916. [CrossRef]

76. Li, L.; Solana, C.; Canters, F.; Kervyn, M. Testing random forest classification for identifying lava flows and mapping age groups
on a single Landsat 8 image. J. Volcanol. Geotherm. Res. 2017, 345, 109–124. [CrossRef]

77. Lu, Z.; Rykhus, R.; Masterlark, T.; Dean, K.G. Mapping recent lava flows at Westdahl Volcano, Alaska, using radar and optical
satellite imagery. Remote Sens. Environ. 2004, 91, 345–353. [CrossRef]

78. Giglio, L.; Csiszar, I.; Restás, Á.; Morisette, J.T.; Schroeder, W.; Morton, D.; Justice, C.O. Active fire detection and characterization
with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ. 2008, 112, 3055–3063.
[CrossRef]

79. Hastie, T.; Tibshirani, R.; Friedman, J. Random forests. In The Elements of Statistical Learning; Springer: New York, NY, USA, 2009;
pp. 587–604.

http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1177/1536867X20909688
http://doi.org/10.1109/TIP.2018.2834830
http://doi.org/10.1126/science.abm9423
http://www.ncbi.nlm.nih.gov/pubmed/34855493
http://doi.org/10.1111/gto.12388
http://doi.org/10.21203/rs.3.rs-1453738/v1
http://doi.org/10.1029/2021GL097125
http://doi.org/10.3390/rs12183010
http://doi.org/10.3390/rs13204080
http://doi.org/10.1016/j.epsl.2010.03.040
http://doi.org/10.4401/ag-7875
http://doi.org/10.1007/s00445-013-0690-9
http://doi.org/10.3390/rs13163074
http://doi.org/10.3390/rs13153052
http://doi.org/10.1002/essoar.10509947.1
http://doi.org/10.1393/ncc/i2022-22081-0
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1016/j.jag.2009.01.001
http://doi.org/10.1080/19475705.2012.680503
http://doi.org/10.3390/rs11161916
http://doi.org/10.1016/j.jvolgeores.2017.07.014
http://doi.org/10.1016/j.rse.2004.03.015
http://doi.org/10.1016/j.rse.2008.03.003


Remote Sens. 2022, 14, 4370 18 of 18

80. Ghimire, B.; Rogan, J.; Galiano, V.R.; Panday, P.; Neeti, N. An evaluation of bagging, boosting, and random forests for land-cover
classification in Cape Cod, Massachusetts, USA. GIScience Remote Sens. 2012, 49, 623–643. [CrossRef]

81. Bilotta, G.; Cappello, A.; Hérault, A.; Del Negro, C. Influence of topographic data uncertainties and model resolution on the
numerical simulation of lava flows. Environ. Model. Softw. 2019, 112, 1–15. [CrossRef]

82. Cappello, A.; Ganci, G.; Calvari, S.; Pérez, N.M.; Hernández, P.A.; Silva, S.V.; Cabral, J.; Del Negro, C.; Vitória, S. Lava flow hazard
modeling during the 2014-2015 Fogo eruption, Cape Verde. J. Geophys. Res. Solid Earth 2016, 121, 2290–2303. [CrossRef]

83. Kereszturi, G.; Cappello, A.; Ganci, G.; Procter, J.; Nemeth, K.; Del Negro, C.; Cronin, S.J. Numerical simulation of basaltic lava
flows in the Auckland Volcanic Field, New Zealand—Implication for volcanic hazard assessment. Bull. Volcanol. 2014, 76, 879.
[CrossRef]

84. Kereszturi, G.; Nemeth, K.; Moufti, M.R.; Cappello, A.; Murcia, H.; Ganci, G.; Del Negro, C.; Procter, J.; Zahran, H.M.A.
Emplacement conditions of the 1256 AD Al-Madinah lava flow field in Harrat Rahat, Kingdom of Saudi Arabia—Insights from
surface morphology and lava flow simulations. J. Volcanol. Geotherm. Res. 2016, 309, 14–30. [CrossRef]

85. Archer, K.J.; Kimes, R.V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal.
2008, 52, 2249–2260. [CrossRef]

86. Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest
and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC
Bioinform. 2009, 10, 213. [CrossRef]

87. Rogers, J.; Gunn, S. Identifying feature relevance using a random forest. In International Statistical and Optimization Perspectives
Workshop. In Subspace, Latent Structure and Feature Selection; Springer: Berlin/Heidelberg, Germany, 2005; pp. 173–184.

http://doi.org/10.2747/1548-1603.49.5.623
http://doi.org/10.1016/j.envsoft.2018.11.001
http://doi.org/10.1002/2015JB012666
http://doi.org/10.1007/s00445-014-0879-6
http://doi.org/10.1016/j.jvolgeores.2015.11.002
http://doi.org/10.1016/j.csda.2007.08.015
http://doi.org/10.1186/1471-2105-10-213

	Introduction 
	Materials 
	Study Sites 
	Satellite Datasets 

	Methods 
	Features Selection 
	Model Identification 
	Performance Evaluation 

	Results 
	Discussion 
	Conclusions 
	References

