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Abstract

The evolution of High-Performance Computing (HPC) platforms enables the design and execution of progressively more complex
and larger workflow applications in these systems. The complexity comes not only from the number of elements that compose a
workflow but also from the type of computations performed. While traditional HPC workflows include simulations and modelling
tasks, current needs require in addition data analytics (DA) and artificial intelligence (AI) tasks. However, the development of these
workflows is hampered by the lack of proper programming models and environments that support the integration of HPC, DA, and
AI. What is more, there is a lack of tools to deploy and execute the workflows in HPC systems easily. To go further in this direction,
this paper analyses the context of HPC/DA/AI convergence and presents use cases where these complex workflows are required.
Based on this analysis, the paper presents the challenges of delivering a new workflow platform to manage complex workflows.
Finally, it proposes a developing approach for such workflow platforms addressing these challenges, in two directions: first, defining
a software stack that provides the functionalities to manage these complex workflows; and second, proposing the HPC Workflow as
a Service (HPCWaaS) paradigm, which leverages the software stack to facilitate the reusability of complex workflows in federated
HPC infrastructures. Proposals presented here are under design and development in the EuroHPC eFlows4HPC project.

Keywords: High Performance Computing, Distributed Computing, Parallel Programming, HPC-DA-AI Convergence, Workflow
Development, Workflow Orchestration

1. Introduction

The scientific process has been described as consisting of
three inference steps: abduction (i.e., guessing at an explana-
tion), deduction (i.e., determining the necessary consequences
of a set of propositions), and induction (i.e., making a sampling-
based generalisation). These key logical elements have been
presented in [1] by the Big Data and Extreme-Scale Computing
(BDEC) [2], an international initiative that focuses on the con-
vergence of data analytics (DA) and High-Performance Com-
puting (HPC). While the abduction and induction phases imply
the use of analysis and analytics processes (DA techniques),

the deduction phase is typically an HPC process. However, the
three different steps of the scientific process have been realised
until now with separated methodologies and tools, with a lack
of integration and a lack of common view of the whole pro-
cess. The main BDEC recommendation is to address the basic
problem of the split between the two paradigms: the HPC and
Big Data software ecosystem split. In addition, current inter-
national roadmaps, including the BDEC, focus on combining
HPC with artificial intelligence (AI), itself tightly linked to the
big data revolution. Another observation is that the usage of
HPC resources by scientific workflows is often done in a brute
force manner where a large number of simulations or modelling
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jobs are submitted, generating themselves a large amount of
data which are later analysed/processed in a decoupled process.
There is a need for smarter workflow approaches, able to use
HPC in a more energy-efficient way but also able to perform the
different HPC/DA/AI steps in a more integrated form. The situ-
ation is kind of similar in the context of industrial applications:
for example, in the area of manufacturing; current technologies
based on Full Order Models (FOM), developed for increasingly
complex designs, generate a large amount of data that is pro-
cessed in later steps to obtain Reduced Order Models (ROM)
that can be used in the construction of digital twins. A more
integrated approach will streamline the solution of FOM prob-
lems opening the door to adaptive algorithms. This, in turn,
will allow faster and more reliable ROM, reducing the required
simulation time thus improving the impact in the industry.

However, creating these new integrated workflows is not an
easy task. Every HPC, DA or AI step of these workflows are
implemented in a stand-alone framework designed for one pur-
pose. So, developers have to dedicate a lot of effort to manage
the integration of different frameworks in different phases of
the workflow lifecycle. Starting from the development phase,
where developers have to program the integration of the dif-
ferent workflow parts implemented in different programming
models, passing through the deployment phase, where different
tools and frameworks must be deployed in the infrastructure,
and the execution phase, where the execution of all the different
components must be orchestrated dynamically and intelligently
way. For these reasons, new workflow platforms enabling the
design of complex applications that integrate HPC processes,
data analytics, and AI are necessary. These platforms should
exploit the use of the HPC resources in an easy, efficient, and
responsible way and also enable the accessibility and reusabil-
ity of applications to reduce the time to solution.

To go further in this direction, this paper analyses the con-
text of HPC/DA/AI convergence and presents use cases where
these complex workflows are required. Based on this analy-
sis, the paper presents the challenges of delivering a new work-
flow platform to manage complex workflows. Finally, it pro-
poses a developing approach for such workflow platforms ad-
dressing these challenges. This platform consists of two parts:
a software stack that provides the functionalities to manage
these complex workflows, and the HPC Workflow as a Service
(HPCWaaS) concept, which leverages the software stack to fa-
cilitate the reusability of complex workflows in federated HPC
infrastructures1.

The paper is organized as follows. Section 2 analyses the
context of HPC/DA/AI convergence from different perspectives
(development, deployment, data management and computer ar-
chitecture). Section 3 presents use cases where complex work-
flows integrating different HPC/DA/AI techniques are required
to efficiently solve different scientific and industrial problems.
Section 4 presents the main challenges in efficiently supporting
these new complex workflows, and Section 5 presents an ap-
proach to address these challenges. Finally, Section 6 provides

1In this paper, a federation refers to a set of HPC resources geographically
distributed used in collaboration for a workflow execution

an overview of related work and Section 7 draws conclusions
and proposes guidelines for future research directions.

2. HPC, Big Data, and AI convergence

The recent wide availability of Big Data sources catalyzed
a data-centric science based on the intelligent analysis of large
data collections and on learning techniques for gleaning the
rules hidden in them. Such data collections may consist of out-
put from large HPC simulations, raw data from field and labora-
tory experiments, measurements of physical phenomena, from
the Web, and in general produced in different scientific and en-
gineering fields.

For implementing the integration of HPC/DA/AI solutions,
new programming paradigms that enable the combination of
HPC components with data analysis and AI algorithms must be
designed.

As claimed by Dongarra and Reed [3], unification of HPC
and Big Data analysis “is essential to address a spectrum of
major research domains”. To achieve this unification, adopted
solutions must be general, portable, and extensible.

Scientific workflows offer researchers and developers a high-
level and flexible programming paradigm for implementing a
set of combined heterogeneous tasks expressing in a single ap-
plication an entire scientific process or methodology that is too
complex, expensive, or often impossible to implement in sepa-
rate steps [4].

This section discusses the context and opportunities aris-
ing from the convergence of HPC, Big Data analysis, and AI
solutions with specific attention to the development of a sci-
entific workflow approach that may offer a high-level, smart,
and practical paradigm for programming and running work-
flows that integrate HPC simulations, High-performance data
analytics (HPDA), and scalable machine learning (ML) in a sin-
gle application.

2.1. Workflow development perspective

We aim to define methodologies for the development of
workflows where different aspects are integrated: data manage-
ment and data analytics, high-performance computing, and AI
processes. However, in current best practices, we find all these
elements in separate components and environments.

2.1.1. General purpose workflows
Workflows provide a high-level paradigm for specifying the

logic of an application, hiding the low-level details that are
not fundamental for application design. They are also able
to integrate existing software routines, data sets, and services
in complex compositions that implement scientific discovery
processes. The main issue in scientific workflow systems is
the programming structures they provide to the developer who
needs to implement a scientific application [4]. Various pro-
posals have been formulated for the development of scientific
workflows. Existing approaches in this area can be broadly cat-
egorized based on their level of abstraction (high-level versus
low-level models) and on the type of programming formalism
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they support; some are based on graphical interfaces, such as
Kepler [5], Taverna [6] or Galaxy [7], some on textual inter-
faces, such as Pegasus [8], Askalon [9] or Autosubmit [10],
and some on programmatic interfaces, such as COMPSs [11]
or Swift [12].

Another aspect of the scientific workflows’ environments is
that each scientific community seems to stick to one or another
solution. For example, Galaxy [13] has been adopted by the
ELIXIR life science research infrastructure as its main work-
flow environment, while Cylc [14] was selected among others
by the Earth Science community. An important component of
workflow environments is their runtime or engine, which is re-
sponsible for coordinating the execution of all workflow tasks,
scheduling them in the available computing resources, transfer-
ring the data between distributed storage systems, monitoring
the execution of the tasks, etc. As with the interface, the run-
time can be different from one environment to another, from
very simple to more sophisticated ones, sometimes implement-
ing different techniques to optimize the execution of the work-
flows and reduce the number of required data transfers, for ex-
ample. Traditionally, workflow systems did not entail the possi-
bility of supporting massively parallel or HPC tasks (tasks that
run in parallel in large HPC infrastructures, implemented with
MPI and/or OpenMP).

2.1.2. Development of HPC applications
Typically, HPC applications are developed using the Mes-

sage Passing Interface (MPI) programming model [15], which
is the de-facto standard for this type of application. It is based
on the idea of having a large number of concurrent processes
that exchange messages to solve a large problem cooperatively.
Currently, MPI is combined with other approaches to exploit
concurrency inside the large and fat HPC nodes. The most pop-
ular approach for this is OpenMP [16]. Additional complexity
for the application developers is the appearance of accelerators
such as the graphical processing units (GPUs) that require spe-
cific programming environments, like CUDA [17]. HPC pro-
gramming models tend to be quite a low level and require a lot
of effort from the application developer.

2.1.3. Data analysis workflows
Big Data analysis applications can be conveniently mod-

elled as workflows combining distributed datasets, pre-processing
tools, data mining and machine learning algorithms, and knowl-
edge models. These workflows are able to integrate existing
software modules, datasets, and services in complex composi-
tions implementing discovery processes in scientific and busi-
ness applications.

The compute and storage facilities of large-scale HPC sys-
tems can be effectively exploited to parallelize the execution of
workflows composed of tens to thousands of tasks, to achieve
higher throughput and to reduce turnaround times. This is par-
ticularly true in the context of Big Data analysis workflows, in
which data volumes to be analyzed are huge, and tasks take a
long time to complete their execution on conventional machines
[18].

Implementing efficient Big Data analysis workflows from
scratch on HPC systems is not trivial and requires expertise in
parallel and distributed programming. For instance, it is neces-
sary to express the task dependencies and their parallelism, to
adopt mechanisms of synchronization and load balancing, and
to properly manage memory and communication among tasks.
In addition, when computing infrastructures are heterogeneous,
different libraries and tools are required to interact with them.
To cope with all these issues, high-performance programming
models for data analysis workflows have recently being pro-
posed [19].

As mentioned before, some key aspects of workflows are
fostering the convergence between data analysis and HPC sys-
tems. Data analysis workflows allow programmers to express
parallelism at different levels (i.e., data, task, pipeline paral-
lelism), which can be exploited at runtime by HPC platforms
composed of a large number of processing and storage ele-
ments. In addition, workflows can be designed to include sev-
eral different patterns (e.g., cycles, filter, map-reduce, divide
and conquer), whose variety helps programmers to address the
needs of a wide range of applications and their mapping onto
complex HPC platforms. Finally, the ability to reuse work-
flows by modifying the input data or the used algorithms and
tools, combined with the ability to create hierarchical work-
flows where individual nodes can, in turn, be workflows, allow
users to define and execute a variety of data analysis applica-
tions that goes well beyond the classical scientific applications
executed on HPC platforms.

2.1.4. AI workflows
The convergence of AI environments, -and more specifi-

cally ML libraries-, with HPC platforms provide the opportu-
nity for major performance improvement for the effectiveness
of simulation, reusability, and reproducibility [20]. Usually,
models are generated by running effective ML algorithms over
large data sets that are produced from various sources. The gen-
erated model can comprise vectors of coefficients, different tree
or graph structures with specific values. These derived mod-
els can accelerate the development of high-performance deep
learning inference applications. Furthermore, pre-trained mod-
els speed up the production deployment process as well.

The foremost importance of having a model repository is
to track the parameters and results of trained models to fur-
ther package with ML libraries and codes in a reproducible
and reusable manner in a targeted environment. For HPC and
Big Data convergence, storing, managing, and sharing capabili-
ties of models are key requirements for building workflows that
make use of Machine Learning (ML) and Deep Learning (DL)
models.

Furthermore, the deployment of these pre-trained models
to a specifically targeted infrastructure or custom location by
a scientific community may become a defined set of reusable
workflow steps. Without the aforementioned capabilities sur-
rounding models, users must undergo complex workflow steps
at different levels: First, to generate models and second, to de-
ploy them for usage in other workflow steps.
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The key to achieving such ML/HPC convergence is to be
able to exploit converged computing platforms for deployment
of such workflows, where more specialized hardware resources
(i.e., GPUs, FPGAs, etc.) are used to better support ML/DL
workloads, together with HPC resources. Indeed, new scientific
applications are made of the hybridization of traditional highly
computational demanding simulations with ML/DL techniques.
One may represent them as pipelines or even acyclic graphs
(some parallelism is possible) chaining applicative modules hav-
ing different kinds of execution paradigms. Therefore, the man-
agement of the life cycle of this kind of hybrid applications on
top of heterogeneous resources is a challenge of the new gener-
ation orchestration stacks. Some related studies and experimen-
tation have been conducted in the H2020 LEXIS project, both
regarding the orchestration technology [21] and representative
use cases [22].

2.2. Usage perspective
One of the main issues that HPC workflow developers and

system administrators have to deal with is the installation and
deployment of the workflow dependencies. Due to the widespread
number of compilers, library versions, and their incompatibili-
ties, every time users want to deploy a new workflow in a super-
computer, they have to check the installed dependencies, and
install the missing ones taking into account the libraries and
compiler versions to detect possible incompatibilities. To mit-
igate these issues, we can find some tools such as Spack [23]
or Easybuild [24] which provide mechanisms to deal with these
issues and automate the installation process of new software in
HPC environments. However, they still require an expert HPC
developer to create the packages or recipes for these tools and
verify that they work for each supercomputer.

In Cloud environments, virtualization and container tech-
nologies have simplified the portability of complex applications.
Hypervisors such as KVM [25] or container engines such as
Docker [26] allow running processes in customized environ-
ments on top of computing nodes. These environments can be
customized as normal computers and can be saved in images,
which can easily be copied to other nodes where the same pro-
cess can be executed with the same environment. The main
barriers to applying these technologies in HPC are rooted in
the requirement of running hypervisors and engines in privi-
lege mode (root access) with the security consequences that this
implies, and the integration of images with specific HPC hard-
ware such as fast interconnects drivers. Singularity [27] is a
container engine that tries to overcome these issues by not re-
quiring privileged user mode to run the container and allows
direct access to the host drivers to benefit from the special HPC
hardware. Cloud Computing also provides service-oriented ab-
stractions called Everything as a Service, where a set of services
is offered depending on the usage model. One of the latest pro-
posed service models is Function as a Service (FaaS). This ser-
vice enables users to execute functions in the Cloud in a trans-
parent way with a simple REST API call and without having
to deal with the entire deployment, configuration and execution
management overhead. The FaaS platforms, such as the com-
mercial AWS Lambda, Google Cloud Functions, or the open-

source approaches like OpenWhisk [28] or OpenFaaS [29], are
in charge of managing the different function executions, allo-
cating the computing resources when required, deploying the
function software, getting the input data and storing the output
results.

2.3. Data management/storage perspective

The huge amount of data involved in Big Data analysis
workflows has a great impact on the overall performance of ap-
plications, as storage technologies have not kept up with the
performance improvement in computing technologies, which
are orders of magnitude faster.

Persistent storage in HPC has traditionally been dominated
by file systems [30]. Applications consuming file-based data
need to open and read the files and load data in memory, trans-
forming it to the appropriate data structures for efficient manip-
ulation. This process is usually implemented by the program-
mer as part of the application unless using specific file formats,
such as NetCDF [31] or HDF5 [32], which provide specific li-
braries to facilitate this task. Additionally, scalability problems
in file-based storage systems are well-known [30], which led to
different kinds of storage solutions based on abstractions other
than files (e.g. object stores or key-value stores, among others)
gaining popularity not only in Cloud but also in HPC environ-
ments [33]. These storage solutions can provide more flexibil-
ity in accessing persistent data by enabling data accesses at a
finer granularity, as well as providing efficient access to data
during the computation, and facilitating the implementation of
common application patterns in HPC, Big Data, and ML, such
as producer-consumer or in-situ analysis or visualization. The
challenge is to provide efficient storage solutions that allow the
programmer to focus on the logic of the application and not be
burdened by data access and data distribution details.

In addition, new technologies blurring the line between mem-
ory and storage have recently become available. These tech-
nologies, called persistent memories or non-volatile memories
(NVM), such as Intel Optane DC [34], are similar to memory
in speed, similar to disk in capacity, and are byte-addressable.
These features open the door to computing directly on the stored
data without having to bring it to memory, enabling HPC, Big
Data, and ML applications to deal with larger volumes of data
(i.e. not fitting in main memory) at high-speed [35]. The chal-
lenge is providing an easy way to exploit this technology that is
transparent to the developer, letting the data store be in charge
of managing the details of the interaction with the device in an
efficient way.

2.4. Computer architecture perspective

With the end of Dennard’s calling and the ever-increasing
demands for higher performance from conventional HPC nu-
merical codes, as well as emerging applications (such as, for
instance, ML), in recent years the computer architecture scene
has become much more diverse. We can identify processors
that aim to augment the floating-point operations per second
and Watt (FLOPS/W) following different paths such as very
wide SIMD units (Fujitsu A64FX as ranked in the Green500
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list [36]), very large count of cores (PEZY Computing’s PEZY-
SC2), using more conventional, yet heterogeneous designs com-
bining general-purpose processors from ARM (Cortex-A), IBM
(Power9) or Intel (Xeon) with NVIDIA’s GPUs. The recent
trends in HPC confirm that a hybrid architecture combining
CPUs, GPUs, and even specialized accelerators has become the
preferred node type for a large range of workloads of interest
for HPC and data centres, including ML, Big Data, and scien-
tific simulation.

The way to keep increasing performance while maintain-
ing energy efficiency lies in the use of Domain-Specific Ar-
chitectures (DSAs). Indeed, one of the most prominent and
clear domains where specialization and adaptation of the sys-
tem are appealing is Deep Learning. New accelerator units
such as Google’s TPU [37] offer considerable higher energy
efficiency when compared with traditional architectures (CPUs
or even GPUs). Adoption of such DSA architectures to work-
flows becomes significant. In addition, over the last years, re-
configurable devices, such as FPGAs, are gaining popularity as
co-processing devices in HPC and Data centre environments.
There are clear past successful examples such as the Catapult
project [38]. Moreover, new products based on FPGAs such
as Alveo boards or Versal boards target AI applications and the
HPC domain. These devices also open the possibility to ac-
curately balance the performance and energy efficiency objec-
tives, for instance by adapting the precision arithmetic to the
specific problem.

3. Use Cases

This section describes selected use cases from thematic ar-
eas with high industrial and social relevance, which can benefit
from innovative and a more holistic workflow approach. These
areas target very different users/communities and needs, and
refer to: digital twins in manufacturing (Section 3.1), climate
modelling (Section 3.2) and urgent computing for natural haz-
ards (Section 3.3).

3.1. Digital twins in manufacturing
Today, the maturity of numerical methods allows the sim-

ulation of realistic problems in manufacturing and the defini-
tion of realistic digital counterparts, known as ”Digital Twins”
of the object or process of interest. Simulation-based design
can nowadays largely substitute experimentation in many fields
of application. The predictive value of the numerical models
comes however at the price of a high computational cost. This
becomes a blocker in different practical scenarios, and in par-
ticular in view of deploying the Digital Twin as a companion of
the manufactured object for edge computing purposes (that is,
for example on the on-board computer of production machines).
This limitation can be solved by the use of Model Order Reduc-
tion approaches, which allow the definition of ”surrogate mod-
els”, known as ”Reduced Order Models” (ROM) which present
a similar predictive value although at a much reduced compu-
tational cost. The essential idea at the basis of such approaches
is to perform first a campaign of high fidelity numerical ex-
periments (known as Full Order Models or FOM) in order to

collect training data. Such data is then analyzed in search of
the most relevant patterns, typically by the use of large-scale
Singular Value Decomposition (SVD) techniques. Finally, the
identified patterns are fed back to the original simulation model
which exploits them to construct the target ROM model. The
corresponding workflow is shown in Figure 1.

Figure 1: Main phases in the Pillar I workflow for the construction of ROM
models.

The overall outcome is that the ROM model provides a tun-
able approximation (i.e. an approximation with a controllable
level of accuracy with respect to the original FOM model) al-
beit at a fraction of the cost and of the memory required by the
FOM. Projection-based ROM approaches such as the ones de-
scribed can be understood as a special class of ML techniques,
characterized by an overall workflow that follows the classical
training and inference model. From the computational point
of view, the training part is particularly challenging since it re-
quires dealing both with the generation of ”experimental” data
and with their analysis via large scale SVD. The computation
of the SVD is identified as the single computationally critical
kernel in the workflow. The problem will be tackled by the use
of a distributed Randomized Truncated SVD for which a task-
oriented implementation will be developed.

A complete workflow may also require an iterative refine-
ment of the training campaign to deal with gaps in the training
space. The effective use of supercomputers requires integrat-
ing both the training and the inference steps within a single
complex workflow to be adapted to the specific needs of the
problem to be addressed. A practical challenge is related to the
need to deploy the different software stacks involved on multi-
ple hardware configurations. This represents a nontrivial chal-
lenge given the hard dependency on system libraries, such as
MPI.

Furthermore, the described workflow can also be integrated
with other AI frameworks with the aim of eventually employing
the constructed ROMs as building blocks in the construction of
system-level models. This integration also poses challenges,
particularly regarding the interoperability between the different
modules to be integrated within the same workflow.

3.2. Climate Modelling
The study of climate change and related climate phenom-

ena is extremely challenging and requires access to very high-
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resolution data. In this respect, the climate community has
been continuously pushing the boundaries to implement and run
model simulations at the highest resolution possible, exploit-
ing cutting-edge supercomputing infrastructures. The resulting
output consists of large, complex, and heterogeneous datasets
which require proper solutions for management and knowledge
extraction [39] and can take advantage of data-oriented approaches
from DA and AI fields.

Typical end-to-end Earth System Modelling (ESM) work-
flows consist of different steps including input data pre-processing,
numerical simulation runs, output data post-processing, as well
as data analytics and visualization. Even though they represent
different parts of the same scientific discovery process, their
seamless, intelligent, and efficient integration into HPC envi-
ronments still needs to be addressed at different levels to be-
come a reality.

The methodologies currently available to develop scientific
workflows in the climate field are, in fact, not able to seam-
lessly and transparently integrate the whole set of components
(including DA and AI) into a single end-to-end ESM workflow.
Thus, ESM workflows can greatly benefit of enhanced work-
flow solutions.

Figure 2 shows an innovative end-to-end ESM workflow
which can be made possible through the integration of HPC,
DA and AI components.

Figure 2: Main phases in the ESM workflow.

The advancements provided by dynamic access to the model
simulation results at runtime, together with AI techniques can
be exploited as part of the ESM workflow management. They
can bring forward advanced possibilities for smart execution of
the workflow, enabling more efficient resource usage as well as
a shorter time-to-solution. One of the typical tasks in the cli-
mate modelling is to run ensemble simulations that consist of
multiple members and can take a significant amount of time.
Ensembles are used to improve our certainty in model results,
for model tuning, or for exploring different scenarios of partic-
ular events. Usually, the number of members to run is limited
by the amount of computational resources available, while not
all the members might be needed at the end. In this sense, dy-
namic workflows with in-memory access to model results, able
to adapt simulations at runtime by performing smart (possibly
AI-driven) pruning of ensemble members, could thus reduce re-
source usage and impact on energy efficiency. One of our major

objectives is to determine which metrics can be used to prune
members without impacting the quality of the simulation. This
also requires systems able to dynamically adapt the workflow
execution based on mentioned runtime computed metrics. In a
more general sense, dynamical access to model results allows
implementation of model diagnostics, especially those that re-
quire high temporal frequency data without changing the model
code and frequent data serialization. This is especially impor-
tant for very high resolution climate models, that are challenged
by I/O and storage limitations.

Data-driven approaches can also play a significant role in
enhancing knowledge extraction from large climate simulation
data, for example with respect to multi-model/multi-member
ensemble and extreme events analysis, leading to a better un-
derstanding of the climate system. In this respect, Tropical Cy-
clone (TC) detection and tracking represents an important case
study since it requires multiple two-dimensional fields, such as
pressure, temperature, wind velocity, vorticity, at different time
steps (with a frequency of at least 6 hours) and from very high-
resolution General Circulation Models (GCM) data, for exam-
ple coming from the Coupled Model Intercomparison Project -
phase 6 (CMIP6) [40] or very high-resolution models (e.g. the
CMCC-CM3 model).

TC detection and tracking analysis can hence be very chal-
lenging due to the large amount of data involved, its hetero-
geneity, and processing complexity. This is even more critical
if data from multiple models are considered in the process. Dif-
ferent detection and tracking methods are available in the liter-
ature [41] and new emerging approaches are investigating the
use of ML/DL techniques to verify the possibility to speed-up
the process and make it more energy efficient in the context of
a multi-model multi-member analysis.

These types of analyses will hence greatly benefit from the
inclusion of the DA and ML/DL technologies in the HPC work-
flow. The adoption of more integrated and data-driven approaches
will enable scientists to tackle much larger and more complex
science problems than are possible today in the climate change
domain. In-situ mechanisms will represent another step for-
ward in this direction by integrating data-driven approaches di-
rectly within the model simulation, thus delivering an even more
efficient solution. The outcome of these analyses can represent
added-value datasets provided to end users to support the de-
velopment of new downstream services.

These enhanced workflow capabilities will ultimately (i)
support transparent integration of simulation-centric and data-
driven components, (ii) allow scientists to further increase knowl-
edge of the climate system by delivering better data to end users
for societal challenges and (iii) democratize access to these com-
plex end-to-end ESM workflows.

3.3. Urgent Computing for Natural Hazards

In a general sense, urgent computing (UC) refers to the
use of HPC/DA during or immediately after emergency situ-
ations and typically combines complex edge-to-end workflows
with capacity computing, where multiple model realizations are
required (to account for input and model uncertainties) under
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strict time-to-solution constraints. Early decisions in rapid re-
sponse to earthquakes have to be based upon interpretations of
the best, yet often limited, data available at a given time im-
mediately following the event to estimate the severity of shak-
ing and, potentially, the impact of a subsequent tsunami. A
combination of data analysis and numerical modelling, start-
ing from a large ensemble of sources describing the uncertainty
stemming from limited data, produces maps of strong ground
shaking and/or tsunami inundation which can be employed to
forecast losses (e.g. towards the insurance industry) and direct
immediate relief measures (e.g. towards civil protection and
first and second responders). The temporal horizon for seismic
and tsunami urgent computing typically ranges from minutes to
a few hours. For instance it is around 2 hours for the phenomena
investigated in the ARISTOTLE-eENHSP (enhanced European
Natural Hazard Scientific Partnership) project [42].

Numerical earthquake and tsunami simulations can accu-
rately model the wave propagation, but computed outcomes are
very sensitive to uncertainties in the source characteristics (e.g.
earthquake type, size, structure, location, slip distribution) and
boundary conditions (e.g. earthquake wave path, local site con-
ditions), which may result in large variability of the impact es-
timate [43, 44]. Such input data sensitivity, exacerbated by lim-
ited data availability shortly after an event, have rendered large-
scale ensemble numerical simulation a necessary analysis tool
to study both past and hypothetical future earthquakes and their
associated tsunamis and, considering their inherent computa-
tional cost, only HPC resources enable the use of high-fidelity
geophysical simulations within the required time-to-solution con-
straints.

Seismic and tsunami urgent computing workflows consist
of three main phases (Figure 3):

1. A pre-processing phase, in which an ensemble of possi-
ble sources is defined based on seismic data assimilation
and earthquake parameter estimation, with uncertainty.

2. A simulation phase, in which individual scenarios are
simulated and ground shaking / tsunami inundation nu-
merically quantified for all the scenarios in the ensemble

3. A post-processing phase, in which simulation results are
processed to produce probabilistic forecasts including both
source and modelling uncertainty, eventually updated through
newly available observations from the monitoring net-
works.

3.3.1. Probabilistic Tsunami Forecasting and Faster Than Real
Time tsunami simulations

Probabilistic Tsunami Forecasting (PTF) for tsunami early-
warning and urgent computing is based on the generation of
an ensemble of Faster Than Real Time (FTRT) tsunami sim-
ulations, based on source estimate available immediately after
the (potentially tsunamigenic) earthquake [45, 46, 47, 48, 49].
Complete workflows for PTF and FTRT have been developed
as Pilot Demonstrators in the ChEESE Center of Excellence.
Uncertainty arise from both the scarce knowledge of fault ge-
ometry and mechanism, and the limitations in tsunami mod-
elling. Furthermore, PTF manages this with large ensemble of

Figure 3: Main phases in the Urgent Computing workflows for Earthquakes and
Tsunamis. See text for more details.

FTRT tsunami numerical simulations coupled with the manage-
ment of the inherent modelling uncertainty. Within the current
PTF workflow, the ensemble initialization is connected to stan-
dard seismic monitoring tools, whereas the subsequent FTRT
tsunami simulations are carried out by the Tsunami-HySEA
GPU-based software. The post-processing phase aggregates
simulations, treating inherent uncertainty. In this phase, first
order results are used for rapid post-processing, while detailed
results are stored for subsequent Big Data detailed analyses.

Further aspects of the integration of PTF and FTRT to im-
prove the operational level of tsunami forecasting are:

1. revision of the PTF workflow to reach performance time-
to-solution targets suitable for urgent computing (∼ 2 hr);

2. optimization of the ensemble initialization and updating
based on real-time seismic source data, tsunami record-
ing and DA, to produce dynamically evolving uncertainty
quantification;

3. use of AI for rapid tsunami estimation (e.g. [50, 51, 52])
to enhance the FTRT workflow and potentially integrate
ensembles in real-time;

4. use of DA and AI tools to enhance event diagnostics and
in deeper post processing analyses (like scenario disag-
gregation).

3.3.2. UCIS4EQ
The Urgent Computing Integrated Services for Earthquakes

(UCIS4EQ) workflow has been developed as a Pilot Demon-
strator under the ChEESE Center of Excellence. UCIS4EQ
aims at obtaining physically-consistent shaking estimates shortly
after the occurrence of earthquakes by means of large 3D full
waveform simulations [53]. UCIS4EQ is coupled to state-of-
the-art and massively parallel simulation solvers so that, if large
HPC resources are readily available, very fast simulations can
be run in order to produce valuable outputs within minutes to
hours. Typical uncertainties in such simulations come from
source characteristics that cannot be constrained uniquely at
the moment of issuing the forecast, and soil effects, which may
(de)amplify seismic waves and cannot be accounted for in coarse
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simulation models. UCIS4EQ includes capabilities to incor-
porate such uncertainties within the service. UCIS4EQ is de-
signed and developed considering not only the functional re-
quirements of the service, but also ensuring the quality of key
non-functional requirements such as robustness, interoperabil-
ity, availability and maintainability. To this purpose, each pro-
cess is encapsulated to work as a specialised micro-service, the
architectural building blocks of UCIS4EQ, with all components
containerized.

Further aspects to be upgraded in the UCIS4EQ workflow
to bring it closer to an operational level are:

1. The implementation of novel features addressing work-
flow monitoring and steering, including dynamic man-
agement of resources, extended output post-processing
on demand or ensemble simulation capabilities.

2. Generating a database of 3D velocity models obtained
from full-waveform inversions for a set of regions. Such
models will be ready for urgent simulations and should
support frequencies as high as currently possible given
the data coverage in each region.

3. Integrating the whole UCIS4EQ workflow in an integrated
workflow management system.

4. Adding regression or deep learning models to estimate
intensity maps (PGA, PSA, among others) at time scales
of seconds to minutes. Such ML analogs, given the fast
outputs that they can produce, will allow us to explore
uncertainty quantification. The ML models will be de-
veloped/trained based upon a large data-sets of physics-
based earthquake simulations.

4. Challenges

The context and requirements of the described use cases
have raised a set of challenges in workflow design and man-
agement that are summarised below.

4.1. Challenge 1: Enable the openness, transparency, reusabil-
ity, reproducibility and accessibility of the workflows and
their results

With the introduction of virtualization and containers, port-
ing applications into Cloud environments has improved consid-
erably, facilitating easy porting of applications implemented in
well-known software stacks (e.g. LAMPS, MEAN, Hadoop).
However, the e-science workflows’ complexity is increasing
fast, and they are required to combine multiple HPC, Big Data
and AI frameworks. Enabling the portability and accessibility
of these workflows on the wide variety of HPC systems is still
an open challenge. First, because current e-science workflows
require the deployment and orchestration of several frameworks,
which must be coupled tightly to the computing infrastructure
to benefit from the HPC infrastructure. Moreover, reusing the
same tools used in the Cloud environments to deploy applica-
tions is not possible in most HPC systems due to the security
and accessibility requirements in supercomputers. Therefore,
installations and deployments are usually managed by system
administrators to ensure they are adapted to the supercomputer

capabilities. A similar challenge appears with the workflow
results. Enabling their reusability and reproducibility requires
designing and implementing a tailored mechanism to make re-
sults available to the users considering the access restrictions
of the HPC systems. To overcome this situation, new tools or
current Cloud deployment and data-sharing tools have to be re-
designed, extended, and adapted to accommodate the require-
ments of the new complex workflows and to fulfil the HPC ac-
cess constraints.

4.2. Challenge 2: Simplify the development of complex work-
flows while keeping their capabilities and performance

Traditionally, the HPC software stack has focused on pro-
viding libraries to optimally exploit the available infrastructure.
Existing HPC programming models such as MPI or OpenMP
enable the development of parallel applications but they are still
too complex for general scientists, especially if they need to de-
velop a higher abstraction, complex, workflow.

Also, as seen in section 2, different methodologies have
been proposed for the development of HPC codes, DA, and
ML. In general, current methodologies available to develop sci-
entific workflows do not fulfil the requirements of increasingly
complex applications, which require novel methodologies sup-
porting a holistic workflow composed of HPC simulations or
modelling, data analytics, and machine learning.

To keep performance, the usage of new, powerful, and energy-
efficient heterogeneous computing nodes is a must. For ex-
ample, GPUs are not only extensively used in traditional HPC
codes but are also very efficient in the DL training phase. How-
ever, the complexity of programming heterogeneous devices
has been recognized by the community and multiple efforts to
overcome this challenge have been proposed [54, 55, 56].

To address these issues, new methodologies that support
simpler and intuitive workflow development need to be pro-
posed: focusing on workflows that integrate components of di-
verse nature (HPC, AI, and DA). These methodologies should
be able to bridge the gap between the application and the het-
erogeneous infrastructure in order to maintain the expected per-
formance.

4.3. Challenge 3: Support for workflow dynamicity

Another challenge introduced by complex workflows is dy-
namicity. Current workflow managers support static workflows
whose dynamicity is very limited. This approach fits with tra-
ditional workflows that solve problems with simple pipelines
or graphs, repeated loops with different input parameters, or
small workflow modifications using conditional control flows.
However, as stated in Section 3, the new complex workflows
considered in this paper require support for high degrees of dy-
namicity and flexibility in the workflow development and exe-
cution. The workflow programming models and engines have to
be able to support applications with dynamic data sources with
input values constantly changing and can produce alterations in
the computation workflow, invalidating the initiated computa-
tions and requesting new computations. Moreover, this adapta-
tion must be applied in real-time to fulfil the urgency constraint
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of the computation. To support this dynamicity, the workflow
manager should be able to react to changes in the input data and
generate new computations on demand.

However, the workflow dynamicity is often driven by more
than the input data. In some cases, an early analysis of the re-
sults can detect parts of the workflows tending to solutions that
are insignificant for the final results, such that these computa-
tions can be cancelled for saving resources or dedicating them
to extend the search space or increasing the effectiveness of so-
lutions. In this sense, the workflow manager should be also able
to modify an existing workflow by removing already expected
computations, and sometimes adding new ones in reaction to
given events.

Finally, the mentioned dynamic workflow support at the de-
velopment and execution level has to be tightly combined with
elastic resource management in order to adapt the computing
capacity with the changing computing demands required by the
workflows, which will make more sensible use of the resources
and save power.

4.4. Challenge 4: Enable data management and computation
integration

Current approaches to implementing data management usu-
ally differ between environments that execute scientific applica-
tions and those that implement data analytics. However, work-
flows integrating both kinds of computation can improve the
productivity of scientists, as well as the performance of work-
flows themselves, which could start the analysis of the data be-
fore the data generation ends. To provide an effective environ-
ment for this kind of hybrid workflows it is necessary to provide
a unique data management strategy that reduces the data move-
ment between different storage systems, whilst supporting both
scientific and data analytics workloads efficiently. This unique
strategy should be able to provide the data generation applica-
tion with a fast data ingestion mechanism, that should not limit
the potential parallelism of the computation (avoiding synchro-
nisation points due to data storing). And at the same time, it
should be able to provide a simple interface that enables pro-
grammers to access partial results efficiently.

Datastores for data analytics usually meet these require-
ments. However, developers of HPC applications, used to work-
ing with files, are reluctant to adopt them for several reasons.
First, the efficient utilisation of this type of datastores involves
a low-level knowledge of their design, to tune all the available
configuration parameters. Second, deciding how to organize the
data (i.e. defining the data model) influences the performance
of both reading and writing, and getting efficient data models
also requires a deep knowledge of the execution platform (both
hardware and software stack). Third, enhancing data locality is
also a goal of this type of data store, but once again usually it is
not transparent to programmers. Finally, changing their tradi-
tional approach to storing data involves learning new interfaces
that usually change from one datastore to another.

To overcome this reluctance, it is necessary to add a layer
to the software stack that relieves programmers of these tasks.
This layer should provide automatic and transparent tuning of
the data store and data locality enhancement, automatic data

modelling, and a simple interface independent of the particular
data store in the system and close to the data structures managed
by the application. These features would allow the programmer
to focus on the problem domain, and at the same time, provide
the required performance and parallelism in collaboration with
the programming model.

In addition, the popularisation of persistent memory devices
offers the possibility to rethink strategies both on how data is
accessed and how data is modelled in datastores. By exploiting
the capabilities of these devices in the data management layer,
again transparently to the programmer, applications will be able
to seamlessly manage larger amounts of data and benefit from
a higher performance in data access.

5. eFlows4HPC solution

eFlows4HPC is a EuroHPC funded project which aims at
enabling dynamic and intelligent workflows in the future Eu-
ropean HPC ecosystem. High-level projects structure is de-
picted in Figure 4. We propose integrated solutions to cover
the challenges presented in Section 4. First, eFlows4HPC de-
fines a software stack that covers the different functionalities
to support the whole lifecycle of the complex workflows intro-
duced in this paper. Second, it proposes the HPC Workflow as a
Service (HPCWaaS) methodology to enable reusability of these
complex workflows as well as simplifying the accessibility to
HPC resources. Finally, the project also works on the workflow
kernels for new heterogeneous architectures.

Figure 4: eFlows4HPC project overall approach.

5.1. eFlows4HPC software stack
The eFlows4HPC software stack will comprise existing soft-

ware components, integrated and organised in different layers
(Figure 5). The first layer consists of a set of services, repos-
itories, catalogues, and registries to facilitate the accessibility
and re-usability of the implemented workflows (Workflow Reg-
istry), their core software components such as HP libraries and
DA/AI frameworks (Software Catalog), and its data sources and
results such as ML models (Data Catalog and Model Reposi-
tory). The second layer provides the syntax and programming
models to implement these complex workflows combining HPC
simulations with DA and AI. A workflow implementation con-
sists of three main parts: a description about how the software
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components are deployed in the infrastructure (provided by an
extended TOSCA definition [57]); the functional programming
of the parallel workflow (provided by the PyCOMPSs program-
ming model [58]); and data logistic pipelines to describe data
movement to ensure the workflow data are available in the com-
puting infrastructure when required. Finally, the lowest layers
provide the functionalities to deploy and execute the workflow
based on the provided workflow description. From one side,
this layer provides the components to orchestrate the deploy-
ment and coordinated execution of the workflow components in
federated computing infrastructures. On the data management
side, it provides a set of components to manage and simplify
the integration of large volumes of data from different sources
and locations with the workflow execution.

Figure 5: eFlows4HPC Software Stack.

5.2. HPC Workflows as a Service (HPCWaaS)

Currently, one of the main barriers to the adoption of HPC is
the complexity of deploying and executing workflows in feder-
ated HPC environments. Usually, users are required to perform
software installations in complex systems which are beyond
their technical skills. Therefore, having the workflows ready
for execution in a supercomputer could take large amounts of
time and human resources. If it needs to be replicated for relia-
bility requirements to several clusters, the required time and re-
sources will increase. To widen the access to HPC to newcom-
ers, and, in general, to simplify the deployment and execution
of complex workflows in HPC systems, eFlows4HPC proposes
a mechanism to offer HPC Workflows as a Service (HPCWaaS)
following a similar concept as the Function as a Service (FaaS)
in the Cloud, but applying it for workflows in federated HPC
environments. The goal is to hide all the HPC deployment and
execution complexity to end users in such a way that executing
a workflow only requires a simple REST web-service [59] call.
It will also provide a mechanism to enable the sharing, reuse,
and reproducibility of complex workflows.

Figure 6 shows an overview of how the proposed model
works. The HPCWaaS is built on top of the eFlows4HPC soft-
ware stack in order to provide the required functionality to de-
velop, deploy, and execute complex services. The interaction of
the users with HPCWaaS is done in two phases: one for work-
flow developers and another for workflow user communities. At

Figure 6: Overview of the proposed HPC Workflow as a Service model.

development time, workflow developers are in charge of build-
ing the workflow using the first two layers of the eFlows4HPC
stack. Once the workflow implementation is compleated, the
workflow is registered in the HPCWaaS to make it available
to the whole community of the target sector. After success-
ful registration, the workflow developer receives a service end-
point from the HPCWaaS, that other users can invoke to use
the developed workflow which will be automatically deployed
and executed in the computing infrastructure using the rest of
eFlows4HPC stack functionalities.

The following paragraphs provides more details about how
the different eFlows4HPC components interact to provide the
required functionality in the different phases.

5.2.1. Workflow development phase
One key part of the mentioned challenges is the implemen-

tation of complex workflows that combine HPC, DA, and AI
frameworks. eFlows4HPC proposes two mechanisms in or-
der to achieve this challenge as depicted in Figure 7. On the
one hand, the software stack provides a set of registries, cata-
logs and repositories, providing workflow developers with the
means to store the core components (HPC, DA, and AI frame-
works) and the required data and ML models in such a way that
they can be easily reused and combined. On the other hand, we
propose the definition of a workflow description which enables
the combination of the different workflow components. From
this workflow description, the third layer of the eFlows4HPC
software stack can be used to automatically deploy and execute
the workflow in the Computing Infrastructures.

The proposed workflow description is composed of a com-
bination of an Extended TOSCA syntax, the PyCOMPSs pro-
gramming model and a set of data logistic pipelines. In the
first part, TOSCA (an orchestration standard) allows develop-
ers to specify which software and services are required; and
how each component should be deployed, configured (linked to
each other), started, stopped and deleted. In the second part,
the PyCOMPSs programming model will provide the logic of
the different components of the overall workflow. PyCOMPSs
is a task-based programming model that enables the develop-
ment of workflows that are executed in parallel on distributed
computing platforms. It is based on programming sequential
Python scripts, offering the programmer the illusion of a sin-
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Figure 7: Workflow development phase.

gle shared memory and storage space. While the PyCOMPSs
task-orchestration code needs to be written in Python, it sup-
ports different types of tasks, such as Python methods, external
binaries, multi-threaded (internally parallelised with alternative
programming models such as OpenMP or pthreads), or multi-
node (MPI applications). Thanks to the use of Python as the
programming language, PyCOMPSs naturally integrates well
with data analytics and machine learning libraries, most of them
offering a Python interface. Finally, in the last part of the work-
flow description, the data logistic pipelines allow developers to
describe how the workflow data is acquired, moved and stored
during the workflow execution in order to ensure the data is
available in the computing infrastructure when required. The
pipelines are also defined in Python, which reduces the entry
barrier for the development.

As mentioned before, the workflow description is registered
and stored in a workflow registry by means of the HPCWaaS
interface. The result of this registration will produce a service
endpoint that can be later used to invoke the execution of the
workflow.

5.2.2. Workflow invocation phase
When users want to execute the registered workflows, they

only need to invoke the endpoint provided at the end of the
workflow development phase. As a result of this invocation,
the last layers of the eFlows4HPC software stack are used to
provide an automatic and holistic workflow deployment and ex-
ecution in federated computing HPC infrastructures. This func-
tionality is provided, as depicted in Figure 8, by the cooper-
ation of several components at different levels. At the highest
level, the Ystia Orchestrator (Yorc) is in charge of managing the
overall workflow deployment and execution. First, it retrieves
the workflow description (Step 1 in Figure 8a) and passes the
data logistic pipelines to the Data Logistic Service (Step 2 in
Figure 8a) to set up the required data movements such as the
data stage-in and stage-out, or periodical transfers to synchro-
nize data produced outside the HPC systems (Step 3b in Fig-
ure 8a and Step 2b in Figure 8b). In parallel with the data de-
ployment, Yorc orchestrates the deployment of the main work-

flow components in the computing infrastructures and manag-
ing their lifecycle (configuring, starting services) as described
in the TOSCA part in the workflow description(Step 3a in Fig-
ure 8a).

(a) Workflow deployment.

(b) Workflow execution.

Figure 8: Workflows invocation phase. Dark blue arrows represent
eFlows4HPC component interactions, light blue represent data flows, and or-
ange arrows represent component deployments.

Once the workflow components and initial data are deployed,
Yorc submits the execution of the main workflow processes in
the HPC infrastructure through UNICORE [60], which is in
charge of managing the federation of HPC compute and data
resources in order to make them available to users in a secure
way (Step 1 in Figure 8b). At the lowest level, the COMPSs
runtime [61] will coordinate the invocations of the workflow
components implemented with the PyCOMPSs task-based pro-
gramming model (Step 2a in Figure 8b). As mentioned be-
fore, COMPSs supports several task types which can include
HPC simulations, DA transformations, etc. The runtime dy-
namically generates a task-dependency graph by analysing the
existing data dependencies between the invocations of tasks de-
fined in the Python code. The task-graph encodes the existing
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parallelism of the workflow, which can be used to schedule the
executions in the resources already deployed by Yorc. Based
on this scheduling, the COMPSs runtime can interact with the
different HPC, DA, and ML runtimes to coordinate resource us-
age to avoid overlaps and get the maximum performance. Apart
from the dynamic task graph generation, the COMPSs runtime
is also able to react to task-failures and exceptions in order to
adapt the workflow behaviour accordingly. These functionali-
ties, together with similar features provided by Yorc at a higher
level, offer the possibility of supporting workflows with a very
dynamic behaviour, that can change their configuration at exe-
cution time upon the occurrence of given events, such as fail-
ures or exceptions [62].

Finally, regarding the integration of the data management
and computation, the eFlows4HPC stack provides two solutions
for persistent storage: Hecuba (based on key-value databases)
and dataClay (object-oriented distributed storage) [63]. These
solutions can be used in PyCOMPSs applications to store appli-
cation objects as persisted objects in new memory devices such
as NVRAM or SSDs, enabling the keeping of data after the
execution of the application. This changes the paradigm of per-
sistent storage in HPC, dominated by the file system, to other
more flexible approaches. By using persisted objects, applica-
tion patterns such as producer-consumer, in-situ visualisation
or analytics, can be easily implemented.

5.3. Architectural Optimizations within eFlows4HPC
One internal and important aspect within eFlows4HPC is

the actual performance achieved in the execution of the work-
flows. Therefore, the project also puts the focus on the identifi-
cation and optimization of the time-consuming running kernels
(understood as independent pieces of code with a well-defined
functionality). The optimization process takes into account not
only raw performance but also performance-per-Watt. Indeed,
new energy-efficient heterogeneous architectures currently be-
ing deployed in HPC and DA ecosystems will be targeted de-
vices for the workflow applications. The set of hardware solu-
tions inspected in the project ranges from pre-exascale systems,
such as MareNostrum 5, to high-end FPGA devices.

As an example, in the field of workflows using AI-specific
components, the project focuses on developing specific kernel
optimizations for heterogeneous architectures. One example is
the optimization of convolution operations for CNN training
and inference. In this direction, a dataflow-oriented program-
ming environment, such as that provided in HLS by Xilinx, en-
ables the design of a pipeline-oriented kernel where throughput
is maximized, latency is minimized and, in principle, higher
energy efficiency is achieved.

A similar approach is followed in the direction of simulation-
oriented HPC applications, specific kernels can be identified
and optimized for new emerging technologies, such as RISC-
V processors. In that aspect, the European Processor Initiative
(EPI) [64] is taken into account with the deployment of RISC-
V architectures, emulated on the Marenostrum Exascale Emu-
lation Platform (MEEP) [65].

Finally, GPU-based architectures are also considered used
for performance improvement of specific AI-related optimiza-

tions, mostly for distributed training as required by the project
workflows.

6. Related Work

Section 2 has already introduced part of the related work
regarding the topics of the paper. It has introduced the cur-
rent programming and data management approaches for HPC,
DA and ML. The different tools to automate installations and
deployments in HPC and Clouds and also some usage models
which simplify reusability have been outlined in Section 2.2.
One of the models presented in that section is the Function-as-
a-Service(FaaS) which offers the functionality implemented in
a function without dealing with the deployment and execution
details in the Cloud. Our HPCWaaS proposal tries to bring the
advantages of the FaaS model into the execution of the com-
plex workflows and HPC environment. However, current com-
mercial or open-source FaaS approaches, which enable deploy-
ments on private data centres, are focused on fine-grain compu-
tations (duration is restricted to few minutes) and do not support
using multiple nodes to host a function execution. Moreover,
the HPC environments are restricted environments and system
administrators are reluctant to install these kinds of services.
For all of these constraints, we propose to build the HPCWaaS
offering on top of the proposed software stack designed to op-
erate with HPC environments instead of trying to adapt one of
the existing cloud FaaS tools.

Regarding research projects aiming at similar challenges,
we can find some EU funded projects dealing with the con-
vergence between HPC and Big Data. For instance, the LEXIS
project [66] also tackles the description and automation of com-
putational workflows (e.g., simulations with subsequent data
analysis steps) providing easy access to federated computing
and data systems. For this purpose, the LEXIS project is build-
ing an advanced engineering platform and portal leveraging large-
scale geographically distributed HPC and Cloud computing re-
sources. Our approach leverages the results of the LEXIS project,
in particular the TOSCA orchestration stack (Yorc). However,
we propose a two-level orchestration approach combining TOSCA
with a task-based programming model (PyCOMPSs), where
TOSCA is used for high-level orchestration and PyCOMPSs
for lower-level dynamic workflow execution integrating in-situ
AI/ML steps. Moreover, it is bringing more advanced Work-
flow as a Service features to enable workflow reusability. Sim-
ilarly, the Evolve project [67] also proposes a software stack
to integrate HPC and Big Data environments. In this case, it
consists of a Python module for Apache Zeppellin notebook,
which is used to create workflows based on container images
deployed and orchestrated on top of a Kubernetes architecture.
It allows to transparently deploy applications both in the Cloud
and in clusters. However, the workflow definition of this ap-
proach does not provide the required dynamic behaviour and it
relies on Kubernetes, which is rarely found in HPC sites.

The ACROSS project [68] is a European funded project
that also aims at combining traditional large scale HPC simu-
lations, high-performance data analytics (HPDA) and machine
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learning/deep learning (ML/DL) techniques to boost the perfor-
mance of the simulation frameworks and/or improve the qual-
ity of the simulation results without increasing computing re-
sources consumption. Modern heterogeneous hardware resources
ranging from more traditional GPUs, to less common FPGAs
and neural network processors (NNPs), could be exploited to
efficiently execute such hybrid applications. The goal of the
project is to develop an exascale ready, HPC and data-driven
execution platform for executing complex workflows of such
hybrid applications by focusing on i) the integration of different
hardware accelerators, and ii) the implementation of a multi-
level, multi-domain orchestrator providing all the mechanisms
to easily decompose an application into smaller units of com-
putation, which can be automatically and dynamically mapped
on the hardware resources that better fulfil the requirements in
terms of performance and energy efficiency.

Regarding the data management challenge, the ADMIRE
project (Adaptive multi-tier intelligent data manager for Exas-
cale) [69] focuses on satisfying the performance requirements
of today’s data processing applications by addressing the stor-
age bottlenecks in HPC architectures. To this aim, the project
proposes to create an active I/O stack that dynamically adjusts
storage resources to the computational resources of jobs, taking
advantage of emerging multi-tier storage hierarchies including
persistent memory devices. With an emphasis on storage, the
goal of ADMIRE is to improve the performance of HPC appli-
cations, and the solution will be evaluated in different domains,
including weather, life sciences, physics, remote sensing and
deep learning. eFlows4HPC can take advantage of the improve-
ments in the I/O stack resulting from ADMIRE, especially by
leveraging the new features and optimizations in the dataClay
distributed object store to increase the performance of compu-
tational workflows.

Finally, regarding general workflows research activities, it
is worth mentioning the WorkflowsRI project [70]. It is an
NSF planning grant aiming to engage with representatives from
the workflows community including researchers, developers,
science and engineering users, and cyberinfrastructure experts.
Through targeted community surveys and focused summits, the
project will gather a diverse set of perspectives, create a community-
owned Workflow Management Systems (WMS) inventory and
common knowledge taxonomy, define an experimental method-
ology for measuring WMS capabilities, and develop a blueprint
for a community research infrastructure. The end goal of this
project is to design an infrastructure that will have the potential
to truly democratize workflows research, enabling researchers,
postdocs, and students, irrespective of their institutions, to ac-
cess cutting-edge infrastructure for comparison, evaluation, and
verification of workflows research results.

7. Conclusions

In recent years HPC, as well as DA and AI have evolved
providing the user community with powerful tools to develop
their applications. However, the lack of programming environ-
ments for the development of workflows that include all three
aspects is limiting their convergence.

We have identified four main challenges from the areas of
application that need to be overcome to achieve this conver-
gence. First, the need for tools that enable the openness, trans-
parency, reusability, and reproducibility of the workflows and
their results. Such tools are available in cloud environments but
cannot directly be used in HPC systems. Therefore, new tools
should be built or adapted from existing ones to provide these
functionalities to HPC users, and at the same time complying
with the constraints of HPC policies. Second, the development
of complex workflows should be made easier while keeping
their capabilities and performance. New methodologies that
support the development of these workflows are required and
simultaneously bridging the gap with the current and future het-
erogeneous infrastructures. Third, workflow managers must
support more dynamicity beyond static pipelines and simple
static graphs. The engines should support dynamic shifts in the
requested computation according to changes in the input data,
computation with urgency demands, and dynamic changes in
the workflow executions due to eager analysis of results, excep-
tions or software faults. What is more, the engine should be able
to leverage elastic resource management to deal with changes
in the instant workload of the workflow. The fourth challenge
comes from the data aspects and their integration with the com-
putation. Similarly to the programming model, HPC and data
analytics has been based on different solutions to store the data.
Solutions that integrate the different data practices and offer an
abstraction layer are necessary. Indeed, with the appearance
of new storage devices, the solutions should leverage them and
aggregate them in this single data layer.

Taking into account these challenges, we have proposed
an architecture for a workflows software stack that offers tools
to simplify the development, deployment and execution of the
type of complex workflows that we have been describing. In
addition to the software stack, the HPC Workflows as a Service
(HPCWaaS) paradigm has been proposed as a mechanism to en-
able reuse, easy deployment, execution and reproduction of the
workflow execution. The paradigm has been thought as a mech-
anism to lower the barriers to the adoption of HPC systems and
widen the access to a larger community of users. These ideas
are under development in the EuroHPC eFlows4HPC project.
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