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Abstract: Vulcano belongs to the seven volcanic islands forming the Aeolian archipelago (Italy) and
has the privilege to define an eruptive style as “Vulcanian”. It has to be considered as an active
volcano as its most recent activity demonstrated. Starting by late spring 2021, the thermal state of the
Vulcano summit area changed and the gas emission increased. During the summer and, in particular,
starting from September, geophysical and geochemical signals, precisely those linked to the activity
of the hydrothermal system that feeds the fumaroles of the Fossa crater, varied. The temperature of
the gases emitted by the fumaroles on the crater rim has increased and the composition of the gases
has showed an increase in CO2 and SO2 (carbon dioxide and sulfur dioxide) concentration. For such
reasons, the authors decided to follow this event by analyzing the remotely sensed available data
suitable for detecting changes in thermal state. By processing the TIRS (Landsat 8) and ASTER time
series, two long-term surface temperature logs were obtained and, therefore, by adopting a statistical
approach, an analysis in both space and time domains has emphasized a thermal signature since
mid-September 2021.

Keywords: volcanic monitoring; thermal anomalies; time series; land surface temperature maps;
statistical analysis

1. Introduction

The island of Vulcano is the southernmost emerged volcanic edifice in the Aeolian
archipelago. Vulcano has erupted in historical times and the most recent activity occurred
between August 1888 and March 1890 [1]. Given the small size of the island (about 20 km2)
and of the volcano-related active phenomena (fumaroles, hot muds, etc.), the observability
by space represents an interesting challenge. Because of its characteristics, a huge volume
of scientific literature has been written focusing on the different aspects: concerning the
geology and the eruptive dynamics of Vulcano, only in recent years [2–5]; the gas dispersal,
lava flows, pyroclastic density currents, ballistic blocks, and tephra accumulation were
deeply described by [2,6–10]. The remote sensing community has demonstrated that the
use of Thermal Infrared (TIR) satellite sensors represents a reliable method [11] to identify
volcanic activity [12]. Despite the monitoring activity that could be performed only by using
low-spatial-resolution and high-revisit-time sensors, such as Meteosat Second Generation
(MSG) [13,14], Moderate Resolution Imaging Spectroradiometer (MODIS), or Sea and
Land Surface Temperature Radiometer (SLSTR) on board Sentinel 3 (with 1 km ground
resolution) [15–17], sensors with higher spatial resolution (but lower revisit time) allow for
the analysis of smaller phenomena, both in terms of spatial extension and magnitude of the
event [18–20].

Remote Sens. 2022, 14, 3933. https://doi.org/10.3390/rs14163933 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14163933
https://doi.org/10.3390/rs14163933
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4573-3190
https://orcid.org/0000-0001-6519-3868
https://orcid.org/0000-0002-6235-1565
https://orcid.org/0000-0002-6095-6974
https://doi.org/10.3390/rs14163933
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14163933?type=check_update&version=2


Remote Sens. 2022, 14, 3933 2 of 13

In this work, an Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) sensor embarked on Terra and Thermal Infrared Sensor (TIRS), embarked on
Landsat 8 (L8), time series are processed in order to verify if the surface hydrothermal crisis
on the Island of Vulcano, occurring since summer 2021, can be detectable by space-based
TIR sensors, contributing to the identification of possible changes in volcanic activity and
following the variation trends. This identification is allowed by the availability, in the
spectral range of the TIR (8–12 microns) of data acquired with Ground Sampling Distance
(GSD, more generally, spatial resolution) of 90–100 m, as only TIRS L8 and ASTER have.

Starting from September 2021, the monitoring systems managed by Istituto Nazionale
di Geofisica e Vulcanologia (INGV) recorded significant variation in micro-seismicity linked
to the circulation of fluids and soil deformations in the La Fossa crater area [21]. Moreover,
significant changes in the composition and temperature of the fumaroles on the crater rim
and an increase in degassing diffused from the soil in the areas adjacent to the crater [22]
were also measured. As a consequence of this unrest phase, we decided to investigate
the capability of a space-based TIR sensor to support the surveillance activities on the
island of Vulcano, with particular regard to surface thermal state, related to the increase in
temperature in the fumarolic fields.

In [23], the authors built a complete heat loss model for a hydrothermal system feeding
fumarolic emission from the Vulcano La Fossa crater, by combining ground and ASTER data
and constraining the thermal flux of the Vulcano La Fossa hydrothermal system between
2000 and 2019.

In [20], we analyzed the possibility to use satellite time series to identify thermal
anomalies on Vulcano, observing 2000–2017 spaceborne remotely sensed time series data
of surface temperature covering the whole island and detecting hot pixels as focal points.

In this work, we enlarged the time series up to February 2022, with the aim to support
the operations of monitoring and detection of changes in volcanic activity occurring in the
summer 2021.

2. Study Area

The Volcano Island is one of the seven Aeolian Islands, located in the north-eastern
part of Sicily (Italy) (Figure 1a). It is characterized by two main thermal areas that can be
easily detected and monitored by high-spatial-resolution satellite data (TIRS and ASTER):
Fangaia, located near to the Levante harbor and La Fossa, in the central part of Vulcano
Island [22] (Figure 1b).

These thermal areas result from the circulation of water vapor at high temperature
coupled with other gases related to volcanic activities, such as CO2 and SO2 [3].

In this work, we focused on the La Fossa cone site, where the fumarolic activity is
highly localized (Figure 2) and it was recently characterized by a significant increase in
activity. For this reason, the Italian Civil Protection Department, in line with what is also
expected at the international level, changed the alert level of Vulcano Island from green to
yellow [24]. That means the volcano is exhibiting signs of elevated unrest above known
background activity.

Before this current one, there were already periods of increased intensity in degassing
activities, particularly in 1978–1980, 1988–1991, 1996, 2004–2007, and 2009–2010 [25]. These
crises were related to an unrest phase, defined as variation from the standard activity [26]
and were usually recognized by monitoring geophysical and geochemical parameters.

Starting from September 2021, the local seismicity, consisting of seismic events of
low energy recorded in the area of the La Fossa crater and linked to the dynamics of the
circulating fluids in the superficial hydrothermal system of Vulcano, showed a significant
increase in daily frequency and a positive variation in the gradient of the cumulative
number, with a maximum of 59 events observed on 27 September 2021 (Figure 3) [22].
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Figure 3. Daily frequency of micro-shocks (peak frequency between 1 and 30 Hz) that characterizes
the local seismicity of Vulcano in the last year. A significant increase in seismicity is evident in the
right end of the graphic.

In the same period, geochemical parameters in terms of temperature of fumaroles on
the crater, CO2 and SO2 flux in the crater area also increased (Figure 4A,B) [22].

Remote Sens. 2022, 14, 3933 5 of 15 
 

 

In the same period, geochemical parameters in terms of temperature of fumaroles on 
the crater, CO2 and SO2 flux in the crater area also increased (Figure 4A,B) [22]. 

 
Figure 4. Automatic recording of the CO2 flux (A) at the station located east of the fumarolic area; 
time variation in the SO2 flow (B) recorded by the automatic FLux Automatic MEasurement 
(FLAME) network managed by the INGV-OE. 

3. Materials and Methods 
The spatial scale at which thermal phenomena are observed is given by the GSD and 

swath, while the temporal scale is linked to the revisit time on a given area, which in turn 
depends on orbit characteristics and swath dimension and steering capability in the 
sensor. In order to observe phenomena on a “regional to local” scale, GSD of 60–100 m is 
required as well as a short revisit time. As of today, ASTER [27] on Terra satellite and TIRS 
on L8 [19,28] offer such a capability with 90–100 m of spatial resolution (swath width of 
60 km and 185 km, respectively, within the 8–12 µm atmospheric window) and a revisit 
time of 16 days. Table 1 reports the main features of both instruments. 

Table 1. ASTER and TIRS bands features; * TIRS bands are acquired at 100 m spatial resolution but 
are resampled to 30 m in delivered data product 

Description ASTER TIRS Unit 
Number of thermal bands 5 2 - 

Bands centers 8.29, 8.63, 9.07, 10.66, 11.32 10.9 (Band 10), 12.0 (Band 11) µm 
FWHM of bands 0.35, 0.35, 0.35, 0.7, 0.7 0.6, 1.0 µm 
Pixel size at nadir 90 100 * M 

Revisit time 16 16 Day 
Swath width 60 185 Km 

Thermal anomalies were studied analyzing the Land Surface Temperature (LST) 
estimated by ASTER and TIRS thermal channels. For retrieving LST, the Temperature and 
Emissivity Separation (TES) methodology [29] was applied to ASTER thermal channels, 
while for TIRS thermal data, due to the presence of only two bands in TIR region and 
considering the USGS announced caution in the use of Band 11 of TIRS due to the 
calibration uncertainties [30], we applied the Single-Channel Algorithm (SCA) described 
and tested in [31–33]. To match the data in terms of spatial resolution, the LST retrieved 
by TIRS data was resampled to GSD of ASTER data (90 m) by using the nearest neighbor 
method. 
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time variation in the SO2 flow (B) recorded by the automatic FLux Automatic MEasurement (FLAME)
network managed by the INGV-OE.

3. Materials and Methods

The spatial scale at which thermal phenomena are observed is given by the GSD and
swath, while the temporal scale is linked to the revisit time on a given area, which in turn
depends on orbit characteristics and swath dimension and steering capability in the sensor.
In order to observe phenomena on a “regional to local” scale, GSD of 60–100 m is required
as well as a short revisit time. As of today, ASTER [27] on Terra satellite and TIRS on
L8 [19,28] offer such a capability with 90–100 m of spatial resolution (swath width of 60 km
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and 185 km, respectively, within the 8–12 µm atmospheric window) and a revisit time of
16 days. Table 1 reports the main features of both instruments.

Table 1. ASTER and TIRS bands features; * TIRS bands are acquired at 100 m spatial resolution but
are resampled to 30 m in delivered data product.

Description ASTER TIRS Unit

Number of thermal bands 5 2 -

Bands centers 8.29, 8.63, 9.07, 10.66,
11.32

10.9 (Band 10), 12.0
(Band 11) µm

FWHM of bands 0.35, 0.35, 0.35, 0.7, 0.7 0.6, 1.0 µm
Pixel size at nadir 90 100 * M

Revisit time 16 16 Day
Swath width 60 185 Km

Thermal anomalies were studied analyzing the Land Surface Temperature (LST)
estimated by ASTER and TIRS thermal channels. For retrieving LST, the Temperature and
Emissivity Separation (TES) methodology [29] was applied to ASTER thermal channels,
while for TIRS thermal data, due to the presence of only two bands in TIR region and
considering the USGS announced caution in the use of Band 11 of TIRS due to the calibration
uncertainties [30], we applied the Single-Channel Algorithm (SCA) described and tested
in [31–33]. To match the data in terms of spatial resolution, the LST retrieved by TIRS data
was resampled to GSD of ASTER data (90 m) by using the nearest neighbor method.

Cloud-free and nighttime satellite data were freely downloaded by the EarthExplorer
platform [34] managed by the USGS. The choice to use nighttime data is due to the necessity
to minimize the effect of solar heating in temperature estimation and to magnify the
differences in temperature between the anomalies and the background. Furthermore,
during the nighttime, the topographic effect is minimized and the reflectance component is
negligible. Another advantage of nighttime images is that surface radiant temperature is
more constant than in the daytime. For these reasons, ASTER and TIRS nighttime image
series were considered in this study. A final dataset consisting of more than 300 images
was collected (Table 2).

Table 2. Satellite images considered for the analysis.

Sensor Time Number of Processed Images

ASTER 6 June 2000–4 February 2022 232
TIRS 4 December 2013–2 February 2022 76

Total 6 June 2000–4 February 2022 308

The availability of a substantial number of these satellite data for the Island of Vulcano
offered the possibility of obtaining LST time series over a long period, thus, allowing for an
accurate analysis of thermal anomalies. Due to the different methodology to derive the LST,
the results were sorted according to the type of satellites and for such reason, two different
LST time series were generated for ASTER and TIRS, respectively.

A first investigation was carried out by analyzing the time distribution of the surface
temperature value over a specific area, covered by a single satellite pixel, using for both
sensor the 90 m GSD. In both TIRS and ASTER time series, the hottest pixel was chosen
by performing Pixel Purity Index (PPI) analysis. PPI analysis allows to find the extreme
pixel in multispectral and hyperspectral images, which represents the most spectrally
pure pixel in the image. In this work, we apply, unconventionally, this analysis on LST
time-series maps to discriminate which are the pixels most frequently marked as those
hottest (Figure 5). By following this approach, we identified 4 pixels that are the hottest in
284 cases on 308 total equal to 92% of the occurrence. By considering these four pixels as a
loci of the thermal anomaly we depicted a 10 × 10 pixels Region Of Interest (ROI), centered
on the pixels detected by the PPI analysis; therefore, the statistical analysis is applied taking
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into account both the area affected from the fumarolic activity (red pixels in Figure 5) and a
background area (green pixels in Figure 5) that is barely affected by the activity identified
as Background Reference Pixel (BRP).
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marked in yellow. The PPI (hottest) pixel is in dark red included in the pale red 6 × 6 pixels which
depict the hot area; in green the pixels of the ROI that belong to the background (considered as cold
area). The two dark areas (red and green) are used to analyze the seasonality effect.

One important effect that is visible working with LST time series is seasonality. This
effect illustrates annual insolation variations and is typically modeled as a sinusoidal func-
tion (Figure 6). To better discriminate the intensity of the thermal anomaly, the seasonality
effect has to be defined analyzing an area far from those considered thermally active. We
focused our attention on two main areas; the BRP far from La Fossa crater (Figure 5 and
the four red pixels, derived from PPI analysis, in La Fossa crater rim, Figure 5). Both areas
analyzed are affected by the same seasonality effects (Figure 6). One of these effects has
yearly wavelength and it could be modeled as a sinusoidal function (Figure 6). In order to
avoid the seasonality of the data and to highlight the hydrothermal activity of La Fossa, we
considered a statistical approach based on standard deviation.

The statistical analysis consists of calculating the standard deviation (σmap) of temper-
atures for each LST map and studying the trend of this parameter over time. The standard
deviation describes the spread of data around the mean value: low standard deviation
means that temperature values are clustered around the mean value while high standard
deviation means that temperature values are widely scattered around the mean value [35].

As reported in Table 2, the total dataset is composed of 308 samples covering the
period from 2002 up to 2022; each sample represents the solution of the methods applied
for the generation of LST map (see Section 3).
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Figure 6. Cumulative temperature time series estimated by integrating ASTER and TIRS. In red the
mean value of the four hottest pixels derived from PPI analysis, in green the temperature of the
background pixel.

In our study, we computed the standard deviation for the EO data processed and the
source of such variability was investigated.

From each LST map the parameter σmap is computed, within the same spatial extension
of the ROI (10 × 10 pixel, Figure 5), in order to obtain a historical time series. The behavior
of σmap over time is analyzed to detect extreme values, likely related to changes in thermal
activity. With the aim to automatically find high values of σmap, mean (MASTER, MTIRS) and
standard deviation values (σASTER, σTIRS) of the two satellite time series are calculated. In the
algorithm presented here, a value of σmap is defined outlier if greater than MASTER + 2σASTER
and MTIRS + 2σTIRS, respectively, for ASTER and TIRS datasets. Considering the Gaussian
distribution of σmap samples (Figure 7), the choice of 2σASTER and 2σTIRS values as limits allows
us to consider about 95% of the statistical population as regular and about 5% as outlier.
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Figure 8 reports the scheme of the algorithm proposed in this paper.
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Figure 8. Workflow and steps of the process adopted to individuate the outlier.

4. Results and Discussion

In this section, the results will be shown and discussed. A first consideration will
be carried out about the PPI surface temperature value trend over the time. Then, some
consideration about the results derived from the statistical analysis will be pointed out,
once specifying the size of the LST maps equal to the ROI.

4.1. Surface Temperature Variation vs. Time

Since ASTER and TIRS were co-registered and resized to the same pixel spatial reso-
lution (90 m), a complete temperature time series (2002–2022) was obtained (Figure 9). In
Figure 9, the plot representing the cumulative (ASTER + TIRS) LST time series, focused on
the 2013–2022 period, is evidenced. The choice to set the lower time limit set on 2013 de-
pends on the availability of TIRS data. The quasi-sinusoidal trend related to the seasonal
behaviour is easily observable. Indeed, high values of temperature in summertime and low
values of temperature in wintertime are evident. Therefore, concurrent with the increase in
Vulcano thermal activity, a rise in temperature value is evident.

4.2. LST Map Standard Deviation over Time

The statistical approach considered in this paper allows us to neglect the seasonal
effects and to highlight the role of the outliers. It is important to remark that TIRS and
ASTER do not acquire on the same days. For this reason, the number and the date of the
recognised outliers could be relevant to different sources.

Considering the TIRS series, in Figure 10, four outliers are pointed out.
The TIRS time series (Figure 10) shows that the 15 August 2019, 21 September 2021,

27 January, and 28 February 2022 are outliers. The first outlier (1 in Figure 10) exceeds the
2σ value and it depends on the presence of cloud coverage in the background area, which
impacts the value of the standard deviation (Figure 10).
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Figure 10. σTIRS and MTIRS value for the entire TIRS dataset (Up): Visual analysis for the 15 August
2019, 21 September 2021, 27 January, and 28 February 2022, outliers (down, 1; 2; 3; 4 respectively).

The other outliers (2, 3, and 4 in Figure 10) cover a quasi-continuous time period
ranging from September 2021 up to the last data analyzed (4 February 2022) and their trend
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is in agreement with the INGV bulletins [21,22]. This permits these outliers to be assigned to
the current crisis on Vulcano island. Whilst the TIRS data relevant to two and four outliers
were acquired under optimal weather conditions, number 3 was characterized by cloud
coverage of the same magnitude as number 1. However, the following considerations can
be made: outlier number 1 is relative to data acquired during summer and, therefore, the
low temperatures to the clouds correspond to a high environmental temperature due to the
hot season. Outlier number 3 is relevant to EO data sensed during winter (27 January 2022)
and its value depends on the presence of clouds that determines the lower temperature
and to the hottest that cannot be referred to the environment (winter see Figure 9) but to
the contemporary crisis.

By analyzing the ASTER time series (Figure 11) in the same TIRS time window (data
from 2013), the three detected outliers match in time with the current crisis of Vulcano
and they are consistent with the results derived from TIRS analysis, considering the good
weather conditions present at the acquisition dates.
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Considering the previous discussed results and joining the two datasets based on the
temporal range with the available ASTER data, we obtain the largest dataset, which allows
us to increase the temporal resolution in the time series and extend the thermal activity
analysis of Vulcano, starting this back analysis from 2000 up to now and to recognize the
anomalous events occurring in 2004–2007 and 2009–2010, as reported in [25,36] (Figure 12).
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Figure 12. Cumulative analysis: ASTER and TIRS σmap, ±2σASTER&TIRS and MASTER&TIRS starting
from 2000. The three windows highlight the main anomalous events occurred in 2004–2005, 2009–2010
and the last 2021.

Comparing our results to 2004–2005, despite these points not being identified as
outliers, they have high standard deviation value (about 2.5), as their value is close to +2σ,
suggesting a relation with the occurred crises reported in [25]. For the 2009–2010 event, also
described in [25,36], we obtain an increasing trend up over 2010 and also to the beginning
2012. The others match with the current crisis in Vulcano.

The application of standard deviation permits one to neglect the absolute value of the
surface temperature obtained by the two different methods (TES and SCA, respectively, for
ASTER and TIRS). Despite the differences between the used orbiting system, as already
verified in [33], the procedures adopted led to a generation of comparable datasets where
the application of standard deviation method further reduces the uncertainties due to the
different datasets.

5. Conclusions

Thermal data can have an important role in the delineation of surface temperature
anomalies associated with thermal activity and for the measurement of near-surface heat
fluxes associated with thermal systems.

The studied case represents demonstrations of the potentiality of satellite observations
in TIR for environmental applications and confirms the request to the remote sensing
community for a continuous improvement in satellite sensors in the TIR, especially in terms
of spatial resolution.

The use of two sensors (ASTER and TIRS), despite the differences in processing method
applied for LST estimation and GSD, produced results with high correlation, offering the
possibility to extend, in time, the LST time series. The use of two sensors proved to be a
cost-effective technique for generating products that allow for not only the detection but
also the monitoring of thermal anomalies, permitting one to analyze how the anomaly
evolves over time and to highlight critical changes in thermal activities.

Despite the methodology used, this work is based on a very simple use of statistical
tools and this approach permits one to highlight the outliers, which correspond to the
evidence of the surface thermal state on Vulcano island.
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With this work, a robust and easy-to-use procedure for the detection of thermal anoma-
lies and their activity was applied. The proposed methodology can be easily replicated,
ensuring the conceptual correctness and reproducibility of image processing.

This study will be updated by using data that will be provided by the new planned
and orbiting mission with a GSD finer than what we already use (90 m), on which we could
rely for the coming years.
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