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Abstract 13 

The exploitation of a geothermal field can be accompanied by both natural and induced 14 

seismicity. Hence the installation of a seismic network suitable for locating also low 15 

magnitude earthquakes is of great interest for geothermal development, especially for 16 

monitoring the activity related to the injection or production. 17 

Here we propose an improvement of the D-OPTIMAL algorithm (Tramelli et al., 2013) that 18 

tries and find optimal station positions minimizing the volume of the error ellipsoid of the 19 

event location using the D-criterion. In this version, we introduced the possibility to account 20 

for several prior information that is generally available when instrumenting a monitoring site 21 

permanently or temporarily.  The a priori parameters introduced are: i) three-dimensional 22 

seismic velocity models, ii) seismic noise levels, iii) topographic gradient, and iv) H/V ratio 23 
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values. The last three parameters are introduced in the station position selection using a 24 

weighting system. 25 

We applied the methodology to the Acoculco geothermal field (Mexico) where an injection 26 

test was planned and executed in 2021. The comparison between the network defined using 27 

the standard approach and this updated version shows the importance of introducing a priori 28 

information during the selection of the network. Installation sites resulted better distributed 29 

on the region, resulting in an overall increase of the sensitivity, and in a decreasing of the 30 

error location estimation in the target region.   31 

The methodology presented here is easy to apply to other study cases such as active 32 

volcanoes, anthropogenic activities, or whatever other study at local scale. 33 

Keywords 34 

Seismic network optimization, Seismic monitoring, Acoculco geothermal field, Seismic 35 

noise level, Topographic gradient, H/V ratio. 36 

1. Introduction 37 

Production activities in a geothermal field can be affected by both natural and induced 38 

seismicity (e.g., Gaucher et al., 2015; Schoenball et al., 2010;2013; Toledo et al., 2020). 39 

Geothermal fluid extraction and injection causes pressure variations generating changes in 40 

the property of the medium that may trigger or induce seismic activity. Although most of 41 

these events are low in magnitude (Mukuhira et al., 2013; Urban and Lermo, 2017), induced 42 

events large enough to be felt by the population are an undesirable possible result of the 43 

geothermal exploitation operations (Buijze et al., 2019). The reliable monitoring and location 44 

of the seismic activity in a geothermal field is a key factor for hazard assessment. Hence an 45 

optimal planning of a seismic network is of great interest for geothermal development. 46 
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Seismic network improvement has been approached from different perspectives and several 47 

authors used different approaches. The most common methods contemplate: i) the 48 

computation of the magnitude of completeness (Mc) and assessment of the spatial 49 

distribution of the location error (e.g., the Seismic Network Evaluation through Simulation -50 

SNES, Mahani et al., 2016; D’Alessandro et al., 2011b; 2013; 2014); ii) the location of the 51 

seismic events using a combination of random station locations applying probabilistic 52 

methods (e.g., Monte Carlo) to decrease the location errors (e.g., Bondár et al., 2004); iii) 53 

correction of teleseismic travel times (e.g., Myers and Schultz, 2000); iv) mapping the 54 

expected location errors and assessment of the lowest magnitude of events that the seismic 55 

network can detect (e.g., Stabile et al., 2013; De Landro et al., 2020); and v) employment of 56 

the D-criterion to identify an optimal seismic network configuration to decrease the location 57 

error (e.g., Steinberg and Rabinowitz 2003). In this last case, the network optimization can 58 

contemplate genetic algorithm (e.g., Bartal et al., 2000), simulated annealing (e.g., Hardt 59 

and Scherbaum, 1994; Kraft et al., 2013), or Bayesian techniques (e.g., Coles and Curtis 60 

2011; Tramelli et al., 2013).  61 

In any case, seismic monitoring depends on five main aspects: i) seismic network geometry, 62 

ii) sensitivity to detect targeted seismicity, iii) location method, and iv) knowledge of the 63 

velocity model.  64 

In this study, we focus on the seismic network geometry improvement proposing an updated 65 

version of the algorithm D-Optimal proposed by Tramelli et al. (2013) that tries and find the 66 

optimal station positions minimizing the volume of the error ellipsoid of the location for 67 

synthetic earthquakes using the D-criterion (Rabinowitz and Steinberg, 1990; 2000; 68 

Steinberg and Rabinowitz, 2003). The optimization process accounts for every stations 69 

combination based on permutation of preestablished sites using the Monte Carlo method 70 

and covariance to restrict the ellipsoid error of the hypocenter location. 71 
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In this version of the program, we improved the procedure considering several prior 72 

information such as maps of seismic noise levels, amplitude picks obtained from H/V 73 

analysis, and three-dimensional seismic models of the study region. This information is 74 

usually produced during the exploration stage of a geothermal site and available before an 75 

injection test. Additionally, we introduced the topographic gradient as selection parameter 76 

to allow a better planning of the installation campaigns in regions with rugged topography. 77 

We applied the methodology to the Acoculco geothermal field (Mexico) where an injection 78 

test was carried out in June 2021, and an intense exploration campaign was performed 79 

between 2018 and 2020 in the framework of the Mexican European consortium GeMex 80 

(Cooperation in Geothermal energy research Europe-Mexico).  81 

Comparison between the standard approach and this updated version shows the importance 82 

to use different prior parameters for a more suitable optimization of the local scale seismic 83 

networks, including the topography of the region that allowed to simplify the logistic of the 84 

installation. 85 

2. Seismic Network Optimization 86 

The approach proposed by Tramelli et al. (2013) finds a suite of possible optimal networks 87 

starting from an initial hypothetical set of N possible sites and computes synthetic amplitude 88 

of a hypothetical earthquake to determine the detection capability for each station. Source 89 

amplitude is computed using the source parameters expected for an event that may occur 90 

in the analyzed region (i.e., stress drop (∆𝜎), hypocenter coordinates and moment 91 

magnitude (𝑀 )) and using the Brune model (Brune, 1970). Additionally, a reference model, 92 

with mean shear wave velocity (𝑉 ), density (𝜌), and quality factor (𝑄), is used to account for 93 

the attenuation properties to properly calculate the signal amplitude at each hypothetical 94 



5 
 

station position. Finally, the Signal Noise to Ratio (SNR) is computed for each site where a 95 

station could be installed. 96 

Monte Carlo method is then used to construct random stations combinations from M 97 

available stations situated in N possible sites. For each configuration, the algorithm 98 

computes the covariance matrix, and applies the D-criterion (Rabinowitz and Steinberg, 99 

1990;2000) to find the optimal configuration. The D-Optimal algorithm uses the confidence 100 

ellipsoid error as parameter for finding the optimal network configuration. This parameter is 101 

used to optimize the geometry of seismic networks because it provides a good 102 

approximation of the real location error (e.g., D’Alessandro et al., 2011a;2011b; Tramelli et 103 

al., 2013; Toledo et al., 2020). The minimization of the volume of the error ellipsoid is 104 

achieved through iterative changes of the station positions. 105 

The standard version of the D-Optimal algorithm computes the travel times between events 106 

and stations using 1D velocity models of the P and S waves and it can read travel times 107 

computed from 3D velocity model in an external process. In this version, we incorporated 108 

into the algorithm the direct computation of the travel times using 3D seismic velocity models 109 

using the pseudo-bending method. This was achieved extracting the subroutines from the 110 

well-established tomographic code Simul2000 (Thurber, 1993; Eberhart-Phillips, 1993; 111 

Thurber y Eberhart-Phillips, 1999) and incorporating them into the code. The other 112 

parameters that could influence the selection of a network are instead incorporated using a 113 

weighting system applied a posteriori. 114 

The procedure of Tramelli et al. (2013) has then been modified with a workflow (Figure 1) 115 

that contemplates the following steps: i) computing of the travel times using 1D or 3D velocity 116 

models, ii) computation of the detection capability, iii) applying the D-Optimal criterion to 117 

obtain the corresponding determinant values (D) of potential final networks, iv) reduction of 118 

the final networks space by applying a weighting system of the a-priori parameters to the 119 
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potential networks with the highest determinant, and v) estimation of the sensitivity for the 120 

best configurations that meet the a-priori parameters.  121 

 122 

Figure 1. Workflow of the optimization of a seismic network. Bold rectangles are the steps 123 

added with respect to the procedure of Tramelli et al. (2013). 124 

 125 

3. A priori parameters 126 

In our procedure, the a priori parameters were added as a weight system that help to choose 127 

between a set of configurations with similar D values, penalizing the selection of networks 128 

whose installation sites are characterized by high topographic gradient values, high noise 129 

levels and low amplification factors (H/V values). 130 

3.1 Topographic gradient 131 

Instrument installation on a strong slope could be difficult and may increase the installation 132 

and maintenance costs. In addition, the recorded seismic signal would be affected by 133 

topographical effects. Therefore, the topography of a region is an important characteristic to 134 

consider during the planning of an installation campaign.  135 
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We used the topographic gradient (TG) as parameter to avoid sites where the accessibility 136 

can be difficult. The topographic gradient for the entire region was computed as 137 

𝑇𝐺 = 𝐺 + 𝐺  (5) 

where 𝐺  is the gradient in North-South direction, and 𝐺  is the gradient in the East-West 138 

direction. For each possible site we assign a topographic gradient calculated as the mean 139 

value on a radius of 150 m from the site. Finally, we computed a normalized average 140 

topographic gradient value for each seismic network with respect to the maximum mean 141 

value of topographic gradient. This mean value is considered as a representative gradient 142 

value of the network and used as weighting factor for the site selection. 143 

3.2 Noise levels 144 

Root Mean Square amplitude (RMS) or Power Spectral Density (PSD) are usually used to 145 

characterize the seismic noise level in a site. In our procedure we generate maps of noise 146 

levels at different frequency bands by interpolating the PSD calculated in sites within a grid 147 

using the cube interpolation technique. Subsequentially, for each potential network we 148 

calculate the corresponding mean noise level as the average of the values at each station 149 

composing the network for the bandwidth of interest. Finally, the weights relative to the noise 150 

level of a network is obtained normalizing the vector of the mean values with respect to the 151 

maximum mean noise level. 152 

3.3 H/V ratio 153 

H/V ratio is related to the amplification power of a particular site an depends on its specific 154 

geological and topographical characteristics. Larger is H/V, stronger the amplification of the 155 

shear waves is. Although high H/V in a site could make more difficult to estimate the P wave 156 

arrivals, the fact that the S waves are amplified would ensure a better detection of the event 157 

because the latter are almost always more energetic than the first ones. Then, amplitude 158 
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increase is estimated for various frequency ranges and considered as a parameter that can 159 

facilitate the microseismicity detection when the amplification of the S waves is high in the 160 

frequency range of interest. 161 

Similarly, as in the case of the noise level, the weights of H/V ratio are considered as 162 

normalized mean value with respect to the maximum value calculated on cubic-interpolated 163 

maps for each possible seismic network. 164 

3.4 Ponderation system 165 

The ponderation system establishes how the a priori information is accounted during the 166 

selection of an optimal seismic network. We considered the determinant value as the main 167 

parameter because the aim of the optimization is the resolving power of the network. For 168 

this reason, we organized the networks proposed by D-OPTIMAL algorithm in decreasing 169 

order as a function of D. High values of TG and noise levels are unfavored parameters, we 170 

then organized them in increasing order. Conversely, H/V values were organized in 171 

decreasing order because high values are considered a parameter in favor of the networks 172 

considered. We then used the organized vectors, in the ascending or descending order, 173 

obtaining the potential networks ordered as function of the a priori parameters. In this way, 174 

the optimal networks were selected depending on if they are associated with high D, low 175 

TG, low noise level and high H/V ratio.  176 

3.5 Sensitivity test 177 

Once some of the a priori parameters are introduced to the procedure, we can obtain a 178 

reduced set of seismic networks that maximizes determinant value and H/V ratio and 179 

minimizes topographic gradient and noise levels. The procedure allows to set the number 180 

of the potential configurations that will be admitted for further analyses. Finally, the choice 181 

of the best seismic configuration is obtained calculating the network sensitivity. 182 
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In this case, we calculate the network sensitivity using the Sensitivity Estimate of a Seismic 183 

Network algorithm (SENSI) developed by Tramelli et al. (2015). SENSI computes synthetic 184 

seismic signals using the Brune model (Brune, 1970) for a source point as a function of the 185 

magnitude, stress drop, shear wave velocity, density, and a minimum number of stations to 186 

detection or location. The minimum magnitude event is calculated for every source point 187 

distributed in a regular grid (Orazi et al., 2013; Tramelli et al., 2015) considering the signal 188 

to noise ratio.189 

4. Application to Acoculco Geothermal Field (Puebla, Méx.) 190 

4.1 Geological Settings 191 

Acoculco caldera is located in easternmost part of the Trans Mexican Volcanic Belt (TMVB) 192 

(Figure 2). Rhyolites-dacites-andesites-basaltic and rhyolites-dacites tuffs from 1.4 to 0.24 193 

Ma characterize the main volcanic rock composition (López-Hernández and Castillo-194 

Hernández, 1997). Eruptive chronology has been grouped in four main eruptive phases: 195 

syn-caldera, early post-caldera, late post-caldera and extra-caldera (Avellán et al. 2020).  196 

The latter began around 2.7 Ma with the dispersion of andesitic ignimbrite followed by the 197 

collapse of the magma chamber. The volcanic complex is affected by two regional stress 198 

regimes with NE-SW and NW-SE orientations (López-Hernández and Castillo-Hernández, 199 

1997; López-Hernández et al., 2009). Three-dimensional heat flow modeling using an 200 

estimated Curie temperature isotherm suggests the presence of a heat source of at least 201 

750°C between 3100 m and 3400 m of depth (Guerrero-Martínez et al., 2019). 202 
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 203 

Figure 2. Tectonic setting of Mexico. Location of the Trans-Mexican Volcanic Belt (TMVB) 204 

is marked with a black bold line. Main active volcanoes and geothermal sites of interest 205 

located inside the TMVB are: Domo San Pedro (DS), La Primavera (LP), Fuego de Colima 206 

(C), Tancítaro (Ta), Los Azufres (Az), Amealco (Am), Huichapan (Hc), Nevado de Toluca 207 

(To), Popocatépetl (P), Malinche (M), Pico de Orizaba (O) y Humeros (Hm). White filled 208 

rectangle marks the location of the Acoculco Caldera (AC) (modified from Avellán et al., 209 

2020). 210 

Since the early nineties, because of the intense hydrothermal manifestations, acid springs, 211 

and gas discharges present near the Acoculco caldera, the Mexican Federal Electricity 212 

Commission (CFE) started several exploration activities and in 1995 the first exploratory 213 

borehole (EAC01) was drilled to a depth of 1810 m near to Los Azufres, a hydrothermal 214 

manifestation with many gas emissions. In 2008 a second borehole (EAC02) was drilled 215 

with a depth of 1900 m confirming high temperatures in depth. However, the low permeability 216 

found at these depths discouraged the development of conventional high enthalpy 217 

geothermal systems (Kruszewski et al., 2021; López-Hernández et al., 2009; Bolós et al., 218 

2022).  219 

A hydraulic stimulation of the borehole EAC01 was planned in 2018 and executed in 2021. 220 

Different scenarios as hydraulic fractures, fracture network stimulation, fault zone 221 
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reactivation and a combination of the previous scenarios have been studied with the 222 

integration of geological, geophysical, and geochemical information (GEMex W.P. 7.1, 223 

2020). Finally, a fracture network stimulation was tested injecting fluids on July 14, 2021 as 224 

a final activity within the GEMex project. 225 

 226 

4.2 Seismicity and velocity models 227 

Acoculco geothermal field had a limited monitoring activity. Between 1995 and 2018 only a 228 

temporal network of seven sensors (4 velocimeters and 3 accelerometers) was deployed for 229 

four months in 2004 (Lermo et al., 2009). No local seismicity was detected during this period 230 

and 30 regional seismic events were used to build a preliminary 1D velocity model of the 231 

region using the Spatial Autocorrelation method (SPAC).  232 

Recently, as a part of W.P. 5.2 of GEMex, 18 broadband seismic stations were installed in 233 

the Acoculco complex (Figure 3) and recorded from May 2018 to July 2019. The network 234 

was specifically designed to apply ambient noise and SPAC techniques. Maldonado-235 

Hernández et al. (2019) obtained a three-dimensional velocity model of the S waves (Figure 236 

4) using the first order and overtones of the group velocities extracted employing the ambient 237 

noise cross-correlation method.  The model is characterized by the presence of strong lateral 238 

heterogeneities and the presence of a marked low velocity zone at depths of 0.5-3 km b.s.l.  239 

Additionally, the network allowed to record 33 local events with magnitude up to 3 and mainly 240 

located outside of the caldera rim (Figueroa-Soto et al., in submission). Among these, 11 241 

events are located within 25 km of the study area.   242 
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 243 

Figure 3. Temporal seismic network installed in 2018 at the Acoculco volcanic complex (blue 244 

triangles) and local seismicity located within 25 km of the study area (red dots). 245 

 246 

 247 
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 248 

Figure 4. Three-dimensional S wave velocity model (Vs) of Acoculco geothermal field. A) 249 

Horizontal section of the Vs model at 1 km a.s.l, B), N-S and C) E-W vertical sections. (d) 250 

Mean layered one-dimensional velocity model of P and S waves used to locate the seismicity 251 

and to perform the tests described in the main text. (Modified from Maldonado-Hernández 252 

et al., 2019). 253 

 254 

4.4 Topographic gradient 255 

According to the digital elevation model (DEM) provided by the Mexican National Institute of 256 

Statistics and Geography (INEGI), Acoculco volcanic complex has a rugged topography 257 

(Figure 5.A). Local topography ranges between 2000 to 3100 m a.s.l. over an area of approx. 258 
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20x20 km2. Specifically, the volcanic caldera extends between 2600 to more than 3000 m 259 

a.s.l. 260 

 261 

Figure 5. Topography (A) and topographic gradient (B) of the Acoculco volcanic complex. 262 

Principal towns are indicated with black diamonds. Boreholes EAC01 and EAC02 are 263 

indicated with black circles. 264 

 265 

The computation of the topographic gradient (Figure 5.B) empathizes the shape of the 266 

caldera border and the main drainage pattern, which is characterized by strong variations of 267 

the slope. Resolution of the map is 50 meters and TG can reach 30-40 in several parts of 268 

the mesh corresponding to a slope of about 80%.  269 

4.5 Seismic noise levels 270 

Seismic noise levels were computed using the continuous records of the temporal seismic 271 

network (Figure 3) composed by 18 broadband seismic stations installed from September 272 

2018 to April 2019 (W.P. 5.2, GEMex).  273 
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Figure 6.A shows that the median of the PSD estimated at the stations are within the 274 

minimum and maximum levels of the Peterson curves (Peterson, 1993). However, two of 275 

them (AC17 and AC18) exhibit slightly higher levels than the rest of the curves. This is 276 

attributed to the vicinity of the stations to the populated regions and to site effects.  277 

 278 

Figure 6. (A) Median of the PSD calculated from September 2018 to April 2019 at the 18 279 

temporary stations installed. (B) Noise level map in the frequency range of 10-40 Hz; black 280 

triangles are station locations of the temporary network. 281 

 282 

Generally, induced seismicity observed in geothermal fields has small magnitude (M < 2; 283 

Gupta, H. K., 1992) and exciting mostly high frequency. Thus, we computed the spatial 284 

distribution of the mean seismic noise level of the entire geothermal field in the frequency 285 

range of 10-40 Hz (Figure 6.B). The map shows that the highest values are in the northwest 286 

and south regions, where AC17 and AC18 stations are placed.  287 

 288 

4.6 H/V values 289 

To estimate this parameter, we used the H/V values computed by Ibarra-Bustos (2019) using 290 

the seismic network deployed in 2018 at the Acoculco volcanic complex. A map was 291 
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computed using a cubic interpolation of the mean values of the normalized H/V curves 292 

(Figure 7.A) in the frequency range of 0.1-10 Hz. Although different from the frequency band 293 

selected for the seismic noise levels, this is the bandwidth that includes all the maximum 294 

amplitudes measured at the stations (figure 7.A) and where the S waves are better amplified. 295 

With this approach even when the curves have maximum H/V ratio values at different 296 

frequencies, normalized values guarantee to account for them with the same weight during 297 

the map building. Figure 7.B shows the distribution of the mean normalized amplitudes 298 

highlighting the presence of low values in the southern region close to AC12, and high 299 

amplification values in the western region. 300 

301 
Figure 7. (A) Normalized H/V curves estimated by Ibarra-Bustos (2019) for the temporal 302 

network installed between May 2018 to July 2019 (B) Map of the H/V ratio computed using 303 

the H/V ratio values. Black triangles are the station locations of the temporary network. 304 

 305 

4.7 Optimization network 306 

In order to assess how sensitive is the procedure to the velocity model used in the travel 307 

time computation in D-optimal, we applied the whole process using both the 1D reference 308 

model and the 3D one. Since the 1D and 3D velocity models proposed by Maldonado et al. 309 

(2019) are relative to the S waves, the P ones were retrieved using a constant Vp/Vs=1.6. 310 
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Subsequently, a grid of 2378 potential stations sites are generated locating them on a 311 

regular grid of 20 x 28 km covering the study area with a station spacing of 500 m (Figure 312 

8). For our analysis, the number of stations available for the potential network is 16 and can 313 

be distributed over 2378 possible sites. The determinant and the a priori parameters are 314 

then calculated for each potential configuration. Also, we normalized the determinant values 315 

to easily identify the seismic network configuration with the best determinant value. The 316 

normalization was computed with respect to the maximum determinant value of all potential 317 

seismic networks.  We set the maximum number of potential final configurations to 6, in 318 

order to evaluate the performance of the ponderation system and analyze the event 319 

detection capability of more than one network. The sensitivity of the networks was estimated 320 

simulating the occurrence of an event located within the well EAC01 at a depth of 2 km. 321 

Since the depth of the wells is 1.9 km, we consider that the expected stimulation would occur 322 

at its bottom.  323 

The parameters used to simulate the synthetic event are a mean shear wave velocity of 1.7 324 

km/s (Maldonado-Hernández et al., 2019), a density of 2.4 g/cm^3 (López-Hernández, 325 

2009), a Q=90 (W.P. 5.2 of GEMex, 2021), and a stress drop of 0.5 MPa. The last one is 326 

compatible with the range between 0.01 to 3 MPa of an expected event induced during a 327 
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hydraulic stimulation (Lengliné et al., 2014). Moreover, we consider only events that can be 328 

detected at least three stations with a signal to noise ratio greater than 2.  329 

    330 

Figure 8. Location of 140 station sites representative of the 2378 possible sites available for 331 

the virtual network. The spacing of the initial virtual station sites is 500m.  332 

 333 

Results obtained using the travel times calculated on the 1D model together with the 334 

normalized values of the determinant, topographic gradient, noise level, and H/V ratio are 335 

reported in Figure 9. The D-Optimal algorithm selected 174 potential networks able to locate 336 

events in the region with a determinant average of 0.09. This set can be reduced to 24 337 

potential configurations when considering a D >0.2 (diamonds and stars in Figure 9). This 338 

set of configurations is further reduced to 6 potential networks when the a priori parameter 339 
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ponderation is added (diamonds in Figure 9). The selected configurations reflect the 340 

following conditions: 1) D>0.2, 2) TG >0.5, 3) noise levels <= 0.5, and 4) the highest 341 

amplification factors of the H/V values. 342 

 343 

Figure 9. Normalized determinants (A), topographic gradients (B), noise levels (C), and H/V 344 

ratios (D) for different seismic network configurations using the 1D velocity model. Dashed 345 

lines are the thresholds or reference values used for the network selection. Yellow stars are 346 

the configurations that meet the threshold parameters whereas green diamonds are the six 347 

best optimal seismic networks selected.  348 

 349 

Although yellow stars pointed seismic configurations with D values suitable for the selection 350 

of a network, the TG and noise levels resulted the main a priori parameters that influenced 351 

their exclusion due to unfavorable conditions related to logistic and/or noisy locations.  352 
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Another relevant aspect resulted in this test, is the low contribution of the H/V in the 353 

ponderation system. This is because the calculated average values are almost the same for 354 

all the 174 potential configurations.  355 
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 356 

Figure 10. Top: Histograms of the six seismic networks selected using the 1D velocity model. 357 

Bottom: Sensitivity maps at 1 km a.s.l. (approx. 1.8 km of depth).  Red triangles are the 358 

station locations proposed.  Black star is the earthquake position. 359 

 360 
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Figure 10 reports the parameters of the 6 networks that have been selected and ordered 361 

according to the D value together with the other parameters. Therefore, we analyzed the 362 

histogram of each seismic configuration, their spatial distribution, and their sensitivity. Since 363 

configuration 11, although reports the best values of D, shows a high heterogeneity of the 364 

station distribution and a sensitivity not centered at the location of the targeted event  365 

(marked with the black star in figure 10), we discarded it and we preferred the network 116 366 

(Figure 11) which displays a better azimuth coverage and a sensitivity more centered on the 367 

target region.  368 

The map at 1 km a.s.l. (i.e., about 1.8 km of depth) (Figure 11) indicates that this kind of 369 

configuration offers the largest sensitivity NW of target region. North-South vertical section 370 

shows the spreading of the sensitivity in the north direction and that, events of magnitude of 371 

~-1.2 or larger can be detected and located at the targeted depths. The east-west section 372 

shows the highest sensitivity concentration near the hypothetical hypocentral zone with a 373 

maximum detection power of M~-1.7 in the first km of depth.  374 

 375 



23 
 

 376 

Figure 11. Sensitivity map for the seismic network numbered 116 at 1.8 km depth (1 km 377 

a.s.l) using the 1D velocity model. The magnitude range capable of being detected is 378 

indicated by the color bar, red triangles represent the stations, and the black star the 379 

hypocenter. Vertical and horizontal solid lines indicate North-South and East-West sections. 380 

 381 

The same procedure was applied using the modified version of D-OPTIMAL that allows 382 

direct travel times computation using the 3D velocity models (Figure 12. Normalized 383 
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determinants (A), topographic gradients (B), noise levels (C), and H/V ratios (D) for 384 

different seismic network configurations using the 1D velocity models. Dashed lines are 385 

the thresholds or reference values used for the network selection. Yellow stars indicate the 386 

configurations that meet the threshold parameters whereas green diamonds are the six 387 

best optimal seismic networks selected.  388 

). In this case we observed that the possible configurations obtained were only 21. With the 389 

threshold of D >0.6 almost 50% of the total are kept and at least 5 of them have normalized 390 

determinant greater than 0.75, TG>0.6, noise level >= 0.5 and H/V≈0.6.  391 

 392 

Figure 12. Normalized determinants (A), topographic gradients (B), noise levels (C), and 393 

H/V ratios (D) for different seismic network configurations using the 1D velocity models. 394 

Dashed lines are the thresholds or reference values used for the network selection. Yellow 395 

stars indicate the configurations that meet the threshold parameters whereas green 396 

diamonds are the six best optimal seismic networks selected.  397 
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 399 

Figure 12. Histograms of the 4 seismic networks selected as optimal using 3D velocity model 400 

at the top. Resolving distribution for each optimal seismic network with stations (red 401 

triangles) and hypocenter (black star) at the bottom. 402 
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 403 

Figure 13 show histogram of the 4 best configurations together with their spatial distribution, 404 

and their sensitivity at 1.8 km of depth. In this case we can observe that all the seismic 405 

networks selected produce the greatest sensitivity concentrated in the hypocentral region. 406 

However, networks 16, 9 and 19 show low D values and a dispersion of the sensitivity in 407 

regions different from the one of interest.  408 

Map at 1 km a.s.l. of network 18 (Figure 13) suggests a good azimuth coverage in the 409 

hypocentral area. North-South and East-West sections show that sensitivity is concentrated 410 

in the hypocentral volume.  On average, events with M≥-1.5 can be detected and located at 411 

the targeted depths in an area with diameter of approximately 5 km.  412 



28 
 

 413 

Figure 13. Sensitivity test for seismic network number 18 at 2 km depth (1 km a.s.l) using 414 

the 3D velocity model. The magnitude range capable of being detected is indicated by the 415 

color bar, red triangles represent the stations, and black star the hypocenter. Vertical and 416 

horizontal solid lines indicate North-South and East-West sections. 417 

 418 

5. Discussions and Conclusions 419 
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Design of a seismic network is always a difficult task, especially when the targeted seismicity 420 

is of low magnitude such as the one expected in operative geothermal power plants. Most 421 

of the existing algorithms are designed to find suitable network configurations without 422 

considering valuable a priori information that can make the difference in the selection of the 423 

best sites (Toledo et al., 2020; Edwards et al., 2015; Baujard et al., 2018). The standard D-424 

OPTIMAL algorithm resulted a performant and flexible tool to optimize the network 425 

configuration at local scale. However, this upgraded version, that allows the direct 426 

computation of travel times in 3D models, highlighted how important the lateral 427 

heterogeneities of the wavefield are on the planning of the optimized networks. This aspect 428 

is often neglected and may lead the operators to potential evaluation errors that may strongly 429 

affect the efficiency and the sensitivity of the seismic network. 430 

Seismic noise levels resulted in an important information that should be considered to make 431 

the a posteriori selection of the possible configurations, demonstrating that a previous 432 

campaign aimed at estimating the local fluctuations of this parameter is of great importance 433 

for achieving performant networks. Conversely, and surprising, H/V resulted without 434 

influence for the site selection. This may be attributed to the fact that the range of 435 

frequencies in which most of the pick amplitudes were observed fall outside the frequencies 436 

expected for of the microseismicity (>10 Hz).  437 

Finally, the decision to add the topographic gradient as constraint in the network selection 438 

resulted of great importance to properly plan the logistic of installation. In Acoculco, slopes 439 

can reach 80% in several regions making difficult not only the installation but also the 440 

subsequent maintenance of the sites.  441 

With the approach presented here, further parameters can be easily added in the procedure 442 

of the network selection, e.g., geological, and structural maps, phone and 443 
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telecommunication coverage, route accessibility, etc.  All this analysis has the aim to 444 

maximize the efficiency of the network lowering the installation and maintenance costs. 445 

For the Acoculco volcanic complex, the sensitivity of the designed network shows that 446 

events of magnitude of down to -1.1 could be detected and located at depths of around 2 447 

km. Although theoretical, this value seems in agreement with the size of small events that 448 

have been detected in other geothermal fields equipped with dense surface networks. 449 

Indeed, catalogs with magnitude of completeness equal to 0 are currently generated with 450 

the seismicity detected in the geothermal site of Landau at 6-8 km of depth (Vasterling and 451 

Vegler, 2017);  earthquakes with M ≥ -0.6 and depth of 3 km are present in the catalogue of 452 

Rittershoffen geothermal site (Meyer et al., 2017) and at the Habanero and Paralana sites 453 

(Australia), where the microseismicity occurs at more than 4 km of depth, earthquakes with 454 

M ≥ -0.8 are located  (Riffault et al., 2018). Therefore, the SENSI algorithm is providing 455 

estimations that seem to reflect the real potential sensitivity of the network.  456 

Finally, thanks to the network designed in this manuscript, 10 stations were installed in 2021 457 

and allowed to record the seismic activity associated with the hydraulic stimulation realized 458 

to enhance the permeability of the reservoir. 57 events with duration magnitude ranging 459 

between -1.6 and -0.5 were recorded during and after an injection of fluids (Figueroa-Soto 460 

et al., in submission). Events were mainly located at about 1.2 – 1.5km of depth and the 461 

epicentral errors were estimated on 0.14km for most of the induced events (Figueroa-Soto 462 

et al., in submission).  463 

 464 

7. Data and resources 465 

Seismic noise records used in this study were collected as part of the Work Project 5.2 of 466 

GEMex using Trillium Compact 120 s instruments. Digital Elevation Model (DEM) was 467 
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obtained from Instituto Nacional de Estadística y Geografía de México at 468 

www.inegi.org.mx/app/geo2/elevacionesmex/  469 
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