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Abstract: Numerical modelling of tephra fallout is a fast-developing research area in volcanology.
Several models are currently available both to forecast the dispersion of volcanic particles in the
atmosphere and to calculate the particles deposited at different locations on the ground. Data
from these simulations can then be used both to manage volcanic crises (e.g., protect air traffic) or
perform long-term hazard assessment studies (e.g., through hazard maps). Given the importance of
these tasks, it is important that each model is thoroughly tested in order to assess advantages and
limitations, and to provide useful information for quantifying the model uncertainty. In this study we
tested the coupled PLUME-MoM/HYSPLIT models by applying them to the Puyehue–Cordon Caulle
2011 sub-Plinian eruption. More specifically, we tested new features recently introduced in these
well-established models (ash aggregation, external water addition, and settling velocity models), we
implemented a new inversion procedure, and we performed a parametric analysis. Our main results
reaffirm the pivotal role played by mass eruption rate on the final deposit and show that some choices
for the input parameters of the model can lead to the large overestimation in total deposited mass
(which can be reduced with our inversion procedure). The parametric analysis suggests a most likely
value of the mass eruption rate in the range 2.0–6.3 × 106 kg/s. More studies with a similar approach
would be advisable in order to provide final users with useful indications about the parameters that
should be carefully evaluated before being used as input for this kind of model.

Keywords: tephra fallout; numerical modelling; PLUME-MoM; HYSPLIT

1. Introduction

Numerical modelling of tephra transport, dispersion, and sedimentation has become a
key research area in volcanology e.g., [1–6]. On the one hand, numerical models are impor-
tant to better understand and describe the physics of particle sedimentation, e.g., [7,8] or
particle aggregation, e.g., [5,9], but also of larger scale phenomena such as ash cloud devel-
opment [10] or effects of variable source parameters on transport [11]. On the other hand,
numerical models are invaluable tools during volcanic crisis for rapid forecasts of volcanic
clouds by the different Volcanic Ash Advisory Centers, or VAACs, Refs. [12–14] but also for
developing long-term probabilistic maps related to tephra fallout [15–19]. However, these
two latter tasks could be accomplished if, for the employed models, there is a good balance
between a physically reliable reproduction of the phenomena and acceptable computational
times (see [20] for a review) that, especially for operational purposes, is on the order of
several minutes to few hours [21]. The nine VAACs that operate worldwide currently
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use six different tephra transport and dispersal models for real-time tracking of volcanic
particles [22], each of them initialized with different source conditions and meteorological
data [23]. The same models are also widely used in the production of tephra fallout prob-
abilistic hazard maps. Regarding the source conditions (i.e., the spatio-temporal release
of particles/mass from the eruption column to the volcanic cloud), they could range from
simple geometric distributions to 1D integral models [2] and 3D models [24], while complex
multicomponent and multiphase flow models are still too expensive from a computational
point of view [20]. Meteorological data (typically wind field, air density/temperature,
and, in some cases, humidity, pressure, boundary layer altitude, turbulence, and precip-
itation) are necessary to simulate the transport of tephra cloud. These can be forecast
models [25,26] or reanalysis of global meteorological models [27–29], usually stored as 4D
meteorological datasets.

As discussed by Ref. [20], significant improvements in the modelling of tephra trans-
port, dispersal, and sedimentation have been put forward over the past years, such as:
(a) the implementation of satellite data assimilation techniques to improve the real-time
particle tracking; (b) the use of ensemble probabilistic forecasts to account for eruptive
source parameters uncertainty; or (c) the improvement of the computational efficiency
of numerical models to reduce computational times. Nevertheless, several mechanisms
that can highly influence tephra transport, dispersal, and sedimentation are still poorly
considered or neglected in the models used operationally and in hazard-related studies. For
instance, particle aggregation [30–32] has been implemented only sporadically in numerical
models, e.g., [33–35], while other broader scale, en masse depositional mechanisms such
as ash fingering [36–38] or sediment waves [39] have not been included in any model to
date. Moreover, the employment of different meteorological datasets with different spatio-
temporal resolutions and different atmospheric parameters could lead to great differences
in simulation outputs, even if the source conditions are the same [40].

Numerical models have become a crucial tool for managing the tephra hazard in
real time and understanding related processes [20]. Still, it is necessary to acknowledge
the above-mentioned limitations, study their impact on the results, and identify potential
areas of improvement. A commonly used and effective strategy for this is to evaluate
the models by reproducing a past eruption for which there are sufficient and reliable
field measurements including uncertainties (plume heights, total mass of deposit, deposit
thickness at some location, duration, or meteorological data) and by validating the approach
in two possible ways: either by demonstrating that the model is internally consistent and
without known flaws [5,40–48] or by quantifying the overall uncertainty in model outputs
from the forward propagation of parameter uncertainties [40,47,49,50].

In this paper, we therefore test the current capabilities of coupling an integral plume
model (PLUME-MoM) with a Lagrangian particle transport model used for tephra dispersal
(HYSPLIT); the latter is currently used by three VAACs [22] for operational purposes, while
in this study the former is used to provide the source conditions for HYSPLIT. The two
models have been also used recently by Ref. [51] to develop tephra fallout hazard maps.
Given its large application in such critical fields, new developments of the models need
to be tested rapidly. Particular emphasis is therefore devoted to analyzing the effects of
modelling features recently incorporated in PLUME-MoM [33] but whose contribution has
not yet been tested on particle sedimentation from HYSPLIT, such as wet/dry aggregation,
addition of external water at the vent, and different settling velocity models (this latter
feature has also been included in HYSPLIT in this study). Moreover: (i) we implement a
procedure to invert observations (i.e., mass loading at specific locations and average plume
height) in order to better characterize eruptive source parameters; and (ii) we perform a
parametric analysis on the main input parameters of the two models in order to assess the
relative contributions of each of them in influencing particle sedimentation. The test case is
the well-studied 2011 Puyehue-Cordón Caulle (Chile) sub-Plinian eruption [52].

The paper is organized as follows. Section 2 reviews the test eruption and the two
models. Section 3 presents the methods, including our comparative approach, the inver-
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sion procedure, and the parametric analysis. Finally, we present results, discussion, and
conclusions in Sections 4–6, respectively.

2. Background
2.1. The 2011 Puyehue-Cordón Caulle Eruption

The Puyehue-Cordón Caulle 2011 eruption (PCC11- Figure 1) started on 4 June at
14:45 LT (18:45 UTC), and involved the formation of a new vent 7 km NNW from the main
crater of the Puyehue-Cordón Caulle complex (“We Pillàn” vent-Figure 1a; [52]).
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Figure 1. (a) Location of the Puyehue-Cordón Caulle complex and the We Pillàn vent. Coordinates
expressed in the WGS84 coordinate system. Service Layer Credits, courtesy of: Esri, DigitalGlobe,
GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS
User Community; (b) picture of the eruption on the 14 June 2011 (courtesy of Liz Keller; https:
//www.pinterest.com/pin/457537643392364548/, accessed on 13 March 2021).

This eruption involved magma of rhyolitic-rhyodacitic composition [53], lasted until
June 2012 [54], and comprised both explosive and effusive activity [55]. The latter resulted
in the emission of ~0.5 km3 of rhyodacitic lava [54]. The main explosive phase (Unit I, layers
A-F; [56]) lasted approximately 17–27 h between 4–5 June [54,57] and featured: (i) a plume
height varying between 9 and 12 km above vent [52,57]; (ii) an average mass eruption rate
(MER) of 7.3 × 106 kg/s [57]; and (iii) a total erupted mass of 4.5 ± 1.0 × 1011 kg [56]. With
these values, this eruption was classified as sub-Plinian with a VEI of 3–4 by [57]. Finally,
Ref. [53] calculated the total grain size distribution (TGSD) of Unit I in the range −4Φ/11Φ,
using different datasets and methods (i.e., Voronoi tessellation, weighted average of sam-
ples, and mass of individual Φ sizes). Globally, main results indicated that: (a) TGSD
has a bimodal distribution with the two sub-populations (with modes at −2Φ and 7Φ)
separated by the 3Φ grain size; (b) the fine subpopulation is associated with size-selective
sedimentation processes (e.g., particle aggregation, convective instabilities); and (c) grain
size bimodality is related to a significant lack of particles in the 3Φ size.

This eruption has been the focus of multiple studies which compared the observed and
modelled values of: (a) column height [40]; (b) column mass load (i.e., the integration of the
mass of the ash cloud along the atmospheric vertical levels; [51,58]); and (c) ground deposit
measurements (thickness and mass loading, [52,59]); mass loading and grain sizes [40].

2.2. The PLUME-MoM/HYSPLIT Model

For this work, we used the integral plume model PLUME-MoM and the particle
transport and dispersion model HYSPLIT, as already performed by Refs. [4,40], coupled
through a suite of Python scripts (see “Data Availability Statement”). First of all, the column
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model is initialized with a meteorological profile extracted at the vent location by HYSPLIT
from the meteorological datasets. Then, the mass lost from the plume edges at intervals
of fixed height and that reaching the neutral buoyancy level are processed to define the
source locations and rates for HYSPLIT.

In this paper, we use a newly released version of PLUME-MoM (PLUME-MoM-
TSM, [33]). As in the first version of Ref. [60], PLUME-MoM solves the equations for
the conservation of mass, momentum, energy of the gas-particle mixture, and for the
conservation of mass of the individual phases (solid particles and gas components). The
model accounts for particle loss during the plume rise and for radial and crosswind air
entrainment parameterized using two entrainment coefficients, and adopts the method of
moments to describe a continuous size distribution of one or more group of particles (i.e.,
juveniles, lithics, aggregates, etc.). New features introduced by Ref. [33] for PLUME-MoM-
TSM include:

• The simulation of particle aggregation according either to the wet aggregation model
proposed by Ref. [9] or to a constant “dry” aggregation kernel (see Appendix A
for details);

• The possibility to add external water at the vent or incorporated through ingestion of
moist atmospheric air, and the phase transition of water (vapor, liquid, or ice) according
with the pressure-temperature conditions. By adding external water, magma-water
mixing takes place at the vent, thermal equilibrium is reached, and PLUME-MoM
updates magma temperature and water phases partitions before their interaction with
the atmosphere;

• The possibility to simulate the spreading of the umbrella cloud intruding from the vol-
canic column into the atmosphere, with a transient shallow water system of equations
which models the umbrella cloud as an intrusive gravity current affected by the wind;

• The possibility to model particle settling velocity with three different schemes, i.e.,
those of Ganser [61], Textor [62], and Pfeiffer [63] (see Appendix B for details);

• The possibility to model the presence of additional volcanic gases such as CO2 and
SO2 (transported as passive components).

Apart from the last point, all the other features have been tested in this work due to
our focus on particle sedimentation. In the following sections, we will use PLUME-MoM
and PLUME-MoM-TSM as synonyms.

The HYSPLIT model [64] belongs to the family of Lagrangian transport and disper-
sion models, and solves the Lagrangian motion equations for the horizontal transport of
pollutants (volcanic particles in our case), while vertical motion depends on the pollutant
terminal fall velocity. The dispersion of a pollutant is described using three main types of
configuration, “3D particle”, “puff”, or hybrid “particle/puff”. Particularly in the “puff”
configuration, mass is partitioned into packets of ash particles (“puffs”) having a horizontal
gaussian distribution of mass described by a standard deviation σ. The puffs expand with
atmospheric turbulence until they exceed the size of the meteorological grid cell (either hor-
izontally or vertically) and then split into several new puffs, each with their respective mass.
For our simulations, we used the hybrid “particle/puff” configuration, that is a circular 2D
object (planar mass, having zero vertical thickness), in which the horizontal pollutant has a
“puff” distribution and in the vertical is treated as a particle; this configuration allows us
to use a limited number of puffs to properly capture both the horizontal dispersion and
the vertical wind shears [40]. In this work we have used the April 2018 release version
of HYSPLIT, with the modifications detailed in Ref. [40] and summarized in Appendix C.
Finally, we added the settling velocity models of Textor and Pfeiffer [62,63], in addition to
that of Ganser [60] originally included in HYSPLIT, in order to provide uniformity with
those used in PLUME-MoM-TSM (point iv of the paragraph about PLUME-MoM).
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3. Methods
3.1. Comparison Parameters

In order to evaluate the effect of the most important features of the model on particle
sedimentation, we used several data from the literature related to the Unit I, Layers A-F of
the PCC11 eruption (see Section 2) and a specific approach. In particular (Figure 2), we used:
(i) mass loading (in kg/m2) measured at 75 sampling points, (ii) grain size values (MdΦ,
the median of the grain size distribution measured in the Krumbein Φ scale) measured at
24 sampling points [56], along with (iii) isomass lines (in kg/m2) reported in Ref. [53]. In
addition, we also considered (iv) 13 reconstructed test sites located along the main dispersal
axis of the PCC11 eruption provided by Ref. [40] using the GDAS meteorological data.
These latter sites are used to evaluate the along-axis differences in particle sedimentation
throughout the different model configurations, that is, without aggregation (both with
and without the addition of external water), with the “wet” aggregation model of Ref. [9]
and with a constant “dry” aggregation model. We underline that, with respect to the
addition of external water and also the “wet” aggregation model, we are testing such
configurations just to explore the model current capabilities, as the eruption does not present
any phreatomagmatic signature cf. [53,56,57]. We also remind readers that, presently,
aggregation is modeled only within PLUME-MoM, not within HYSPLIT. Consequently,
the newly formed aggregates are treated by HYSPLIT as single particles with a specific
diameter (and density) and it is not possible to “disaggregate” them once they settle. Thus,
the deposits used for the comparisons are composed of both non-aggregated particles and
aggregates treated as single particles. As the proportions between the two are not available,
we are only evaluating the differences in grain size for each site, not the mass loading. It is
important to observe that aggregation depends on the particle-particle interactions, and
thus on their volumetric fraction within the volcanic column and cloud. While at lower
levels in the column the solid fraction is large enough to favor aggregation, higher in the
column and in the cloud this is less likely, and thus modeling aggregation only within the
column represent a good approximation of the real phenomenon.Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 28 
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The along-axis reconstructed test sites are also used to define transects orthogonal to
the dispersal axis (Figure 2), which are in turn the basis to estimate the total mass deposited
within such transects, both from field data and from simulations. To do so, within a GIS
environment we used the isomass lines (both those from field data and those produced
after the simulations) converted into polygons, whose areas are multiplied by the value of
the isomass line itself.

We also tested 4 different meteorological datasets (Table 1): (1) the ERA-Interim [27]
and (2) the ERA5 reanalysis data [28], both elaborated by the European Centre for Medium-
Range Weather Forecasts (ECMWF); (3) the NCEP/NCAR Global Reanalysis Data [29]
and (4) the Global Data Assimilation System (GDAS) archive [26], both developed by the
National Oceanic and Atmospheric Administration (NOAA). The main differences within
the different datasets are summarized in Table 1, and are related to their typology (fore-
cast/reanalysis), the atmospheric parameters/pressure levels (i.e., the vertical subdivisions)
and the spatio-temporal resolution of the dataset.

Table 1. List of meteorological files used in this study.

Name Type Atmospheric
Parameters Pressure Levels Spatial Resolution Temporal

Resolution

ERA-Interim Reanalysis 10 37 1◦ (~100 km) 6 h
NCEP/NCAR Reanalysis 11 17 2.5◦ (~250 km) 6 h

GDAS Forecast 35 23 1◦ (~100 km) 3 h
ERA5 Reanalysis 10 37 0.28◦ (~31 km) 1 h

3.2. Inversion Procedure

We have implemented an inversion procedure in order to find the best combination
of PLUME-MoM/HYSPLIT inputs that minimize the differences between modeled and
observed outputs. Given that we are using a coupled plume and dispersal/sedimentation
model, we considered plume height (final output of PLUME-MoM) and ground mass
loading (final output of HYSPLIT) as the parameters to fit in order to minimize the difference
between simulated and observed values. The best-fitting inverse procedure for this coupled
model was aimed, following Ref. [65], at minimizing the T2 function, which has been
modified in the following form

T2
Total = TPH

2 + TML
2 =

NPH

∑
i=1

[
PHo,i − PHm,i

PHo,i

]2
+

NML

∑
i=1

[
MLo,i − MLm,i

MLo,i

]2
(1)

where TPH
2 and TML

2 are the T2 functions calculated using plume height (in m above vent)
and mass load (in kg/m2), respectively, and PHo,I and MLo,i denote the observed plume
height and the observed mass load, respectively, while PHm,i and MLm,i are the correspond-
ing values predicted by the model. NPH and NML are, respectively, the 75 sampling points
used in the inversion (Figure 2) and the two average daily measurements (corresponding
to the two days of the main explosive phase, see Section 2.1) of plume height provided
by Ref. [53], which have been compared with two daily averages of plume heights values
provided by PLUME-MoM.

The parameters for which the inversion was performed and their range of variation are
reported in Table 2. Two types of parameters are considered: “continuous” and “discrete”.
The former have been sampled at each iteration from a continuous distribution between
two extremes (lower value and upper value) while the latter have been sampled from
a discrete number of values/options. Among all the parameters, seven of them (mass
eruption rate, water mass fraction, vent velocity, initial temperature, densities of coarse-fine
particles, and particle heat capacity) are used only by PLUME-MoM, five of them (Kmixd,
Kmix0, Kzmix, Kdef, Kbls, and Kblt) are used only by HYSPLIT to control diffusion processes,
and the remaining are used by both models.
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Table 2. List of parameters considered for the simulations in the inversion procedure (Inv-NA and Inv-NAProx; see Table 3 and Section 4.3) and in the parametric
analysis (S-Dak; see Table 3). The parameters which control diffusion (Kmixd, Kmix0, Kzmix, Kdef, Kbls, and Kblt) are detailed in Appendix D.

Parameter Description Used in PLUME-MOM
(PM) or HYSPLIT (HY) Unit Continuous (C)

or Discrete (D) Type Lower
Value

Upper
Value

MER Mass eruption rate of particles
transported in plume PM kg/s C - 105.5 107

Water mass
fraction Water mass fraction of the magma PM wt% C - 4 7

At-vent
velocity Initial exit velocity from the vent PM m/s C - 135 275

Tmix0
Initial temperature of the erupted

mixture PM K C - 1073 1273

ρ1 Particle density assigned to Φ = −4 PM kg/m3 C - 500 1000

ρ2 Particle density assigned to Φ = 5 PM kg/m3 C - 2500 2670

Cp Particle heat capacity PM J/(kg × K) C - 1100 1600

SF Particle shape factor PM/HY - C - 0.6 0.7

Settling velocity Settling velocity model considered PM/HY m/s D
Ganser

- -Textor
Pfeiffer

Meteorological file Meteorological dataset considered PM/HY - D

GDAS

- -NCEP/NCAR
ERA-Interim

ERA5

Kmix0 Minimum mixing depth HY m D Every 100 m 100 500

Kzmix Vertical Mixing Profile HY - D
Varies with height - -

Single average value

Kdef Horizontal Turbulence HY - D
Proportional to vertical turbulence - -

From velocity deformation

Kbls Boundary Layer Stability HY - D
Heat/momentum flux - -

Wind/temperature profile

Kblt Vertical Turbulence HY - D
Beljaars/Holstag

- -Kantha/Clayson
Velocity variance
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Table 3. List of simulations performed in this study.

Simulation(s)
Code N◦ Simulations Aggregation External Water Settling Velocity

Model Other Parameters

NA 1 No No Ganser Table S1
NAEW 1 No Yes Ganser Table S1

AD 1 Yes (dry) No Ganser Table S1
AW 1 Yes (wet) Yes Ganser Table S1

NAP 1 No No Pfeiffer Table S1
NAT 1 No No Textor Table S1

Inv-NA 250 No No All Table 2
Inv-NAProx 250 No No All Table 2

S-Dak 900 No No All Table 2

3.3. Parametric Analysis

In this paper, we have also performed a parametric analysis with respect to the
parameters listed in Table 2. This approach was aimed at assessing the contribution of each
parameter in the definition of the total variability in the T2 function, as similarly investigated
in Ref. [49]. In our approach, however, due to the presence of discrete variables (settling
velocity, meteorological files, and the parameters that control turbulence in HYSPLIT),
we have instead analyzed correlation plots of two discrete variables (settling velocity
model and meteorological files) and eight continuous variables (initial water content, mass
eruption rate, exit velocity, initial temperature, initial/final values of the density profile of
the particles, heat capacity, and particle shape factor). The parameters that control diffusion
in HYSPLIT (see Appendix D) have been analyzed separately in a similar correlation
plot. This distinction has been made in order to separately evaluate the effects on T2

of the parameters that control particle/eruption characterization and those controlling
atmospheric characterization.

4. Results

In the following sub-sections we present the simulations performed, summarized
in Table 3. Additional information on the parameters used can be found in Table 2 and
in Table S1 from the Supplementary Material. The same total grain size distribution has
been used for all the simulations, calculated by Ref. [53] and listed in Table S1 from the
Supplementary Material.

4.1. Effect of Initial Water and Dry/Wet Aggregation

We performed four types of simulations (Table 3) in PLUME-MoM, respectively:

• no aggregation (“NA”);
• no aggregation but with the addition of 10 wt% (weight %) of external water (“NAEW”);
• with the dry aggregation model with a constant aggregation kernel β = 10−15 m3/s

(“AD”). This value is consistent with that used in Ref. [33];
• the aggregation model of Ref. [9], considering the addition of 10 wt% of external

water (“AW”).

The newly formed aggregates are considered as a different group of particles with
respect to parent ones, with different densities and different shape factors with respect to
the parent particles. The values for aggregates density and shape factor have been derived
from Ref. [66].

For the simulations, we have used the same set of parameters as in Ref. [40]: the GDAS
meteorological dataset (Table 1 from this study) and the Ganser settling velocity model
(see Appendix B). In particular, the latter two have been chosen because: (a) the GDAS
dataset is one of the two released by NOAA (along with the NCEP/NCAR Reanalysis,
see Table 1) that could be employed in HYSPLIT without format conversion (as necessary
for ERA-Interim and ERA5, see Table 1), and the one among the two with a better repro-
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duction of past eruptions (see [40]); (b) the Ganser settling velocity model [61] is one of
the default models used in HYSPLIT and the only one originally present in both models.
The complete list of parameters used for such simulations is available in Table S1 from the
Supporting Information.

We show in Figure 3 the along-axis differences (every 10 km) in grain size distribution
for the four simulation types. For all the simulations, we can observe in the deposit a shift of
median Φ size toward fine classes with increasing distance from vent. The grain size graphs
also show that the differences between the “NA” and the “NAEW” simulations are not
particularly marked for all the test sites up to 120 km. Contrastingly, with the occurrence of
whichever type of aggregation process (dry or wet), markedly coarser particles are formed
early at the expense of finer ones beyond 10 km in range. The difference among simulations
including aggregation (“AD” and “AW”, respectively) is mostly revealed at ranges of
20–60 km from the vent by a coarser median of the particle size distribution during dry
aggregation (–4 to –3 with dry aggregation and –3 to –2 with wet aggregation). To better
quantify the effect of aggregation, we also show in Figure 3 an aggregation index (∆mm),
measuring the effect of aggregation on the median value of the grain size distribution. ∆mm
represents the difference in the median of the deposit grain size (converted from the Φ scale
to mm) between the simulations with aggregation and without aggregation. The higher
the value of ∆mm, the greater the difference in grain size due to the effect of aggregation.
Positive ∆mm indicates a shift toward larger median clasts with aggregation. We have
calculated ∆mm for both the “dry” (“AD”-“NA”) and “wet” (“AW”-“NAEW”) conditions.

The strong control of aggregation on sedimentation is revealed by striking differences
in the grain size distributions (GSDs) of simulated deposits, for both dry and wet eruptive
conditions, between conditions of aggregation versus without aggregation. In particular,
departures in GSD modes and median values, although relatively weak up to 20 km,
increase considerably thereafter as seen from the Φ-scale values and also from the quantified
aggregation index in mm (Figure 3 inset). Differences in median value between aggregation
and no aggregation cases (for both wet and dry conditions) are around 2 mm at ultra-
proximal sites (0–10 km), peak at ~12–13 mm at 30–40 km from the vent, and then drop
regularly down to the same value of ~2 mm at 80 km. Despite the fact that similar absolute
values of the aggregation index (2 mm) are observed at ultra-proximal (0–10 km) and distal
sites (>90 km), note that, proportionally, the increase in median grain size under the effect
of aggregation is greater at more distal sites, for instance ~0.5 mm without aggregation
versus ~2.5 mm with aggregation at 0–10 km, and ~10 mm without aggregation versus
~12 mm with aggregation at >90 km.

4.2. Effect of Different Settling Velocity Models

In addition to the simulations presented in the previous section, we performed three
further simulations in which we have considered (in both PLUME-MoM and HYSPLIT)
the three settling velocity models detailed in this study (Ganser, Pfeiffer, and Textor; see
Appendix B). For such simulations (named NA, NAP, and NAT, respectively-see Table 3)
we have not considered aggregation and we have used the same set of parameters as
Table S1 and the GDAS meteorological dataset (Table 1) for the same reasons specified in
Section 4.1. We have compared the simulated values with those deriving from field data of:
(1) the total mass deposited in each transects defined in Section 3.1 (Figure 4a–d); (2) the
mass loading values at the sampling points of Ref. [56], according to the classic approach
used to validate similar numerical models, e.g., [67,68] (Figure 4e).
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Figure 3. Simulations performed with the Ganser settling velocity model without aggregation (NA,
blue), without aggregation but with the addition of external water (NAEW, orange), considering
a constant dry aggregation (AD, green), and a wet aggregation (AW, yellow) according to Ref. [9].
(a–m): grain size distributions the test sites of Figure 2 (numbers on each graph indicate distance
from vent in km); (n) ∆mm value considering both “dry” and “wet” aggregation models.
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are in kg/m2. Sampling points from [55]. (d) Total mass for each transect of Figure 2; (e) modeled 
versus observed mass loading for the sampling points of Figure 2. Solid black line is the perfect fit 
line, dotted lines are a factor of 5 (i.e., ±0.7 in Log10 scale). Isomass values are in kg/m2. Service Layer 
Credits, courtesy of: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, 
USGS, AeroGRID, IGN, and the GIS User Community. 

Figure 4. Simulations performed with no aggregation but considering the settling model of (a) Textor
(NAT), (b) Pfeiffer (NAP), and (c) Ganser (NA). Dispersal axis from [40]. Isomass line values [52]
are in kg/m2. Sampling points from [55]. (d) Total mass for each transect of Figure 2; (e) modeled
versus observed mass loading for the sampling points of Figure 2. Solid black line is the perfect fit
line, dotted lines are a factor of 5 (i.e., ±0.7 in Log10 scale). Isomass values are in kg/m2. Service
Layer Credits, courtesy of: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community.
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In Figure 4d, the modelled data provide a total mass value which is, on average, three
times greater than the total mass obtained considering the mass loading isolines from field
data. This latter (0.95 × 1011 kg) represents only a fraction of the total mass measured
for the eruptive phase (4.5 ± 1.0 × 1011 kg; see Section 2.1). With respect to the different
transects, up to 80 km from the vent (87% of the total mass from field data), the total mass of
the simulations are 2–5 times larger than those observed, while the situation is the opposite
beyond 80 km. We note that beyond 80 km from the vent, the number of sampling points
close to the axis is much lower than at <80 km. Differences among the total mass obtained
with the three settling models are lower than 8%. Among the simulations performed with
the three settling velocity models, the one performed using the Ganser model shows a peak
of mass accumulation in the 30–40 km transect, while those performed using Textor and
Pfeiffer have their peaks in the 20–30 km transect. The simulation performed using Pfeiffer
has total mass values within the highest peaks that are intermediate between the Ganser
and the Textor ones. If considered as a whole, however, differences in total mass among the
three settling velocity models are of second order importance compared to the differences
with field data.

Concerning the comparison with the mass loading at the sampling points of Ref. [56]
(Figure 4e), for the three settling models (Ganser, Pfeiffer, and Textor), the percentage of
sampling points within 5 times and 1/5 of the observed value are very similar (67%, 68%,
and 65%, respectively). We recall that having a good amount of sampling points that fall
within 5 times and 1/5 of the observed values (less than one order of magnitude each way)
is considered a proxy for good model/observation correlation (see, e.g., [20]).

The along-axis comparison of grain sizes and mass loadings (Figure 5, every 10 km)
shows instead, similarly to Figure 3, that differences among the three simulations are weak
up to 20 km with respect to the grain size distribution but are high with respect to mass
loading. For instance, at the vent location, the simulations give 400 kg/m2 for Ganser,
and 800 kg/m2 for Textor, with Pfeiffer’s being in between. From 20 km and beyond,
compared to the Ganser simulation, Textor and Pfeiffer simulations generally have (a) a
grain size distribution shifted toward more fine-grained values; (b) lower mass loading
values. Absolute differences in mass loading among the three simulations tend to be
negligible beyond 80 km.

4.3. Inversion from Field Data

The inversion procedure has been performed using the procedure described in Section 3.2
considering the simplest case with no aggregation. We have neither considered the aggre-
gation cases nor the addition of external water because for the former it is not possible to
recalculate the mass loading with disaggregated particles (and therefore compare it with
field data), while for the second this eruption does not show any sign of phreatomagmatism.

As comparable parameters, we have considered (i) the mass loading measured at
the 75 sampling points of Ref. [56] and (ii) the two daily averaged plume height values
(one per each day of the eruptive phase considered) derived from Ref. [57]. In total, we
performed 250 simulations considering all 75 sampling points. Additionally, we performed
250 simulations considering only a subset of the sampling points. The distance of 80 km
from the vent divides the deposit in two zones where the total mass deposited by the
simulations is, respectively, higher (before 80 km) and lower (beyond 80 km) than the total
mass given by field data (see Figure 4). We have therefore considered only the sampling
points within 80 km from the vent where most of the tephra mass was deposited (87%) and
most of the field data points were collected (56 out of 75). The idea is to verify whether it is
possible to obtain a global improvement of the outputs (i.e., the total mass and the mass
for each transect, see Section 3.1 and Figure 4) by using a subset of the sampling points
that fall within an area of general overestimation of the simulation with respect to field
data. Table 4 reports the T2 values for the best two inversions (i.e., with the lowest T2) for
the whole sampling point dataset (Inv-NA) and the subset of sampling points < 80 km
(Inv-NAProx). For comparison, we also include the T2 values of the NA single simulation
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of Figure 4c which, among the three cases described in Section 4.2, is the one with the
lowest T2

Total value.
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in this study (Textor, Pfeiffer, and Ganser). (a–m): grain size distributions at the test sites of Figure 2
(numbers on each graph indicates distance from vent in km); (n) mass loading values at the test sites
of Figure 2. Color code for panels a-m is the same as that of panel n.
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Table 4. Values of the T2 minimization function from two simulations (Inv-NA (best) and Inv-NAProx
(best)) from the inversion procedure with the lowest T2 values. The T2 values of the NA simulation
(see Section 4.2 and Figure 4c) is reported for comparison. PH and ML subscripts refer to, respectively,
the T2 values with respect to plume height measurements and mass loading at sampling points, while
the subscript TOTAL refers to the sum between the former two.

Simulation Code T2
PH T2

ML T2
Total

NA 41 520 561
Inv-NA (best) 81 167 248

Inv-NAProx (best) 46 122 168

For the two simulations with the lowest T2 values of Table 3 (whose parameters are
listed in Table S2 from the Supplementary Material) we have calculated (Figure 6): (1) the to-
tal mass deposited in each transects defined in Section 3.1 (Figure 6a–c); (2) the comparison
simulated/observed mass loading values at the 75 sampling points of Ref. [56] for which
there is a mass loading measure (Figure 6d); and (3) the comparison simulated/observed
median grain size (MdΦ) at the 24 sampling points of Ref. [56] for which there is a grain
size analysis (Figure 6e).

The T2 values of Table 4 show that the inversion procedure allows us to significantly
improve the agreement between simulation results and observations, as shown by the large
decrease in T2

Total values (from 561 to 168, see Table 4), especially those related to mass
loading (ML). This is also reflected by the lower values of mass for each transects and in
total (Figure 6c) as compared to Figure 4d. The total mass overestimation with respect to
field data is still by a factor of 2 (2.26 and 1.93 for Inv-NA (best) and Inv-NAProx (best),
respectively). Regarding mass loading (Figure 6d), the number of sampling points falling
within the limits of a factor 5 of field observations are 68% for the whole dataset (Inv-NA,
75 data points) and as much as 85% for the subset of 56 sampling points within 80 km from
the vent (Inv-NAProx).

For the best inversion simulations we have also evaluated the modeled versus ob-
served median values of the grain size distribution (MdΦ) for all the sampling points
(Figure 6e), given the better results related to the reproduction of the total mass (Figure 6c).
For the best-fitting scenario, for 54% and 67% of the sampling points, respectively, within
120 km (13 out of 24, Inv-NA) and within 80 km (12 out of 18, Inv-NAProx), the simulated
median values are comprised within ±1 Φ with respect to those from field observations.

4.4. Parametric Analysis

In addition to the simulations studied for the inversion procedure (see Section 4.3), we
performed a total of 900 simulations (S-Dak—see Table 3) to study the sensitivity of mass
loading at the 75 sampling sites to the different parameters of Table 2. For this analysis, we
have used the open source DAKOTA toolkit [69]. At each iteration, the Latin hypercube
sampling method has been adopted to properly cover the parameter space [70]. In this
method, the range of each variable is divided into segments of equal probability, and a
sample is selected randomly from each of these equal probability partitions. As discussed
in Ref. [49], this approach has the advantage that, through the subdivision of the parameter
space in equal probability partitions, the samples generated are uniformly distributed over
each marginal distribution, and it requires a smaller number of samples than a classical
Monte Carlo approach to cover the entire parameter space with the desired accuracy.
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The results obtained from this set of simulations are presented with correlation plots
(Figures 7 and 8), which are helpful to investigate the dependence between multiple
variables at the same time and to highlight the most correlated variables in a data table.
In our case, we are investigating the dependency between the T2 minimization function
and (a) the three settling velocity models and the eight continuous parameters related to
particle properties and eruption features (Figure 7a), (b) the four meteorological datasets
and the eight continuous parameters related to particle and eruption features (Figure 7b),
and (c) the five parameters that control diffusion in HYSPLIT (Figure 8).
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Figure 7. Correlation plots of two discrete parameters (settling velocity model and meteorological
file dataset) and eight continuous parameters (initial water content, mass eruption rate, exit velocity,
initial temperature, initial/final values of the density profile of the particles, heat capacity, and
particle shape factor) with respect to the T2 minimization function (see Sections 3.2 and 3.3). In (a),
the sensitivity is analyzed with respect to the different settling velocity models while in (b) with
respect to the different meteorological datasets. In each panel: on the left, the T2 function is shown
with respect to the discrete variables, colored boxes contain values between the 25th and 75th
quantiles, and horizontal dashed lines represent the median and vertical solid black lines extends up
to the minimum and maximum values; central graphs show the variation of T2 with respect to the
continuous parameters (color code is the same as in the left panel, grey dashed lines are the overall
trends of the distributions); and the graph on the right is the distribution of the T2 function values for
the 900 simulations.
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Figure 8. Correlation plots of the five discrete parameters that controls turbulence in HYSPLIT:
(a) Kblt, (b) Kzmix, (c) Kdef, (d) Kbls, and (e) Kmix0. For all graphs, colored boxes contain values
between the 25th and 75th quantiles, horizontal dashed lines represent the median, and vertical solid
black lines extends up to the minimum and maximum values.

From these plots (Figure 7a,b), it can be seen how mass eruption rate exerts a primary
control on the T2 function, as all outputs line up on a quasi-linear decay trend (from 105.5

down to 106.3–106.8, depending on parameter) followed abruptly by a quasi-vertical increase
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in the minimization function. This suggests a most likely value of the mass eruption rate in
the range 2.0–6.3 × 106 kg/s. This value is comparable but slightly lower than the average
estimate of Ref. [57] (see Section 2.1). The simulation outputs of the other parameters
(Figure 7) are generally scattered without any obvious trend, therefore indicating that their
control on the T2 function, if any, is secondary with respect to mass eruption rate.

Regarding instead the two sets of discrete parameters that compose Figure 7 (i.e.,
settling velocity model and meteorological dataset): (1) the Ganser settling velocity model
provides the smallest range of variation of the T2

Total values up to ~4000, while the other
two reach similar higher values up to ~8000; (2) the NCEP/NCAR meteorological dataset
provides the greatest T2

Total values, while the other three (GDAS, ERA-Interim, and ERA5)
have the same range of variation of T2

Total values.
The correlation plots between the T2 function and the parameters that control diffusion

in HYSPLIT (Figure 8) show instead that all of these parameters provide a very similar
range of variations of the T2 function.

5. Discussion
5.1. Effect of Initial Water, Dry/Wet Aggregation, and Different Settling Models

In this study, we have performed simulations with an amount of added external water
of 10 wt% of the initial erupted mass, a quantity consistent with the simulations performed
by Refs. [33,71]. The low differences between GSDs of the NA and NAEW simulations of
Figure 3 suggest that the sole addition of external water into the eruptive column, without
further trigger of aggregation, does not modify the spatial distribution of particle sizes in
the deposits. This is explained because external water is an input parameter for PLUME-
MoM, and the main outputs of this model are the plume height and the amount of particles
released along the plume, which in turn influence particle transport and deposition. Small
variation in particle deposition is therefore caused by small variations of plume height as
a result of external water addition; this latter is consistent with Figure C1 from Ref. [33].
In fact, this figure shows the effects on plume dynamics (for PLUME-MoM-TSM) of the
addition of different amounts of external water (10, 20, 30, and 40 wt%) for constant mass
eruption rates. For 10 wt% of external water and for a mass eruption rate comparable to
the ones we used in this study (~107 kg/s), a “wet” plume is 1–2 km lower in elevation
with respect to a “dry” plume. This variation in plume height is maintained for all the
amounts of external water tested by Ref. [33]. Overall, we can assume that, for a mass
flow rate of 107 kg/s, the small variation in plume height due to the addition of different
amounts of external water does not alter the dynamics of particle deposition. Indeed, the
column remains sustained despite the addition of different amounts of external water. More
important differences in the spatial distribution of particles are, however, expected for mass
eruption rates > ~107.5 kg/s. In Ref. [33] it is in fact shown that, above such a value, a “dry”
plume collapses, while “wet” plumes are still sustained up to ~109–1010 kg/s.

Our tests, performed considering two models of aggregation, confirm that in both
cases the final deposits have quite different grain size distributions as compared to simula-
tions without aggregation (see Figure 3). As a general consideration, we observe that, with
the chosen atmospheric conditions and the chosen eruptive source parameters (see Table S1
from the Supplementary information), the aggregates are formed mostly for grain sizes >
−2 Φ (0.25 mm) and > 0 Φ (1 mm) for the “wet” and the “dry” aggregation models, respec-
tively (see maroon bars in Figure S2 from the Supplementary Information). Consistently,
most of the differences in grain size between the aggregation models are concentrated in
the sampling points between 20 and 70 km from the vent (see Figure 3), where most of
the particles > 0 Φ are deposited. Farther than 70 km, grain size distributions are mostly
limited to two bins (see Figure 3) with fewer aggregates, explaining the small differences
observed also in the ∆mm (inset of Figure 3). The lower amount of aggregates formed
in our simulations with the model of Ref. [9] is also explained with the low amount of
liquid water available compared to ice (see [33] and Figure S4 from the Supplementary
Information), which reduces the sticking efficiency. However, as noted in Section 4.1, farther
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than 70 km from vent the relative differences between aggregation and no aggregation are
proportionally higher than in ultra-proximal sites. This could be linked to the fact that
the chosen parameters of the aggregates (density and shape factor, see Table S1 from the
Supplementary Information) are considerably different with respect to the non-aggregated
particles (in terms of their density and shape factor), and therefore they are able to travel
much further thanks to their aerodynamic properties. Therefore, the choice of the parame-
ters of the aggregates is crucial in influencing the final deposits, and should be carefully
evaluated. We also remind readers that, presently, (i) the grain sizes calculated by HYSPLIT
for the deposit do not “disaggregate” the aggregates according to the amount of parent
particles that compose each aggregate and (ii) the calculated GSDs describe the relative
proportions of the different grain sizes, but not those absolute values. For these reasons,
the total mass loading at each site has not been shown as it is influenced by the density
of the aggregates. Our preliminary observations therefore call for new studies, aimed
at evaluating the real grain size distribution when aggregation is also accounted by the
transport/dispersal model. Field observations are in fact concordant in saying that, once
settled, most of the aggregates tend to break down in particles of smaller sizes [30].

On the contrary, mass loading variations have been evaluated with respect to the
different settling velocity models tested (see Figure 4). An important parameter that we
used for comparing field and modelled data is the total mass deposited within transects
drawn along the main dispersal axis. Although several limitations of this approach should
be considered (isomass lines used for such calculations are drawn after human or automatic
interpolations from a limited amount of data points, for both field data and simulations),
the comparison is still interesting to highlight the accuracy of the model in reproducing
the observed deposit. In general, for simulations NA, NAP, and NAT where default values
from the literature are used (Table S1; [40,53,56,57]), the total deposited mass up to 120 km
from the vent is much higher in the simulations compared to observations (Figure 4d).
Between the simulations performed with the three settling velocity models (NA, NAP, and
NAT) and field data, we observe a difference of a factor of 3, with a slightly better value
considering the Textor model. Such large differences between field and modelled data
cannot be ignored, and highlight that model calibration and evaluation should also consider
this parameter (i.e., total mass deposited) to have a clear understanding of the capabilities
and to identify how to improve the model itself. Differences in total mass between model
and deposit are especially high between 20 and 60 km from vent. An explanation for such
a difference (in addition to human/automatic inaccuracies in isomass drawing) could be
linked to the non-consideration (in HYSPLIT) of near-vent sedimentation mechanisms
(e.g., sediment waves [39]; two-way coupling effect [7]; and settling-driven gravitational
instabilities [72]). In this view, an increase in particle sedimentation in the surrounding of
the vent (i.e., up to 1 km, where field data are also possibly underestimated) by considering
such phenomena within the model could reduce the amount of particles deposited in the
subsequent transects. Calculating the total mass deposited is also an important complement
with respect to the comparison of mass loading from sampling sites (Figures 4e and 6d)
that are normally considered (see, e.g., [20]). For instance, in our case, the amount of sites
within a factor of 5 with respect to the perfect fit line in Figure 4e could indicate that,
with the parameters employed, the model works fairly well. However, this conclusion is
challenged after deep analysis considering the total deposited mass, and differences could
only be reduced with the inversion procedure (see following sections). Among the three
models, it is important to highlight that most of the differences along the axis in terms of
mass loading (Figure 5) are appreciable up to 70–80 km from vent, while they tend to be
negligible in the more distal sites. This latter fact is correlated with the larger differences
in settling velocities that the three models have for particles > 0Φ (see Figure S3 from the
Supplementary Information) as compared to finer ones. The models of Textor and Pfeiffer
provide higher values for settling velocities in general, and markedly for coarser particles,
which therefore tend to settle closer to the vent with respect to the simulation using Ganser.
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5.2. Inversion

We have used a slightly different formulation of the classic T2 function in this paper, for
example with respect to Ref. [65]. The availability of plume heights, both as measurements
during the eruption and as output values from the model [40], allowed us to overcome the
problem linked to the presence of a limit in the increase in the T2 function in case of no
deposition. This could produce several cases in which, for example, a set of parameters
which causes almost no deposition at the sampling sites, gives as output a relatively low T2

value, as sampling points could not obviously assume negative values of mass loading.
The results of our inversion are important in terms of minimizing the T2 function,

especially if compared to the NA simulation (see Table 4): the T2 value of this latter is
in fact more than two times larger than the best inversion considering all the sampling
points (Inv-NA) and more than three times larger than the best inversion considering
only proximal points (Inv-NAProx). Mass overestimation of the model in the different
transects is now reduced up to two times more than field data, but is still considerable
(Figure 6c). In the absence of similar comparison with other models, this discrepancy
should be therefore considered if PLUME-MoM/HYSPLIT is used to derive, for instance,
hazard maps. Among the inverted parameters, we highlight that for the two simulations
with the lowest T2 values in Table 4 the corresponding settling velocity model is that of
Ganser, while the meteorological datasets are ERA-Interim and ERA5, respectively. The
former is consistent with experimental data where the Ganser settling velocity model has
been considered a good approximation for real particles (see, for instance, [36]). Regarding
the meteorological datasets, ECMWF products (i.e., ERA-Interim and ERA5) appear to
provide a better reproduction of the real deposit. However, we note that such datasets
are more difficult to be employed in HYSPLIT (due to conversion issues from a different
file format) and do not systematically provide the best results for all eruption types (see
Section 5.3 and [40,51]). The employment of a subset of sampling site (Inv-NAProx) is also
useful to produce an overall improvement of the total mass deposited (see Table 4 and
Figure 6c,d). Due to the better reproduction of the total mass deposited, for only these
two simulations (Inv-NA and Inv-NAProx) we have also evaluated the difference with
respect of field data of the median of the grain sizes (MdΦ, Figure 6e). This parameter
is the most difficult to be reproduced by numerical model [40], and in our case there is a
slightly better reproduction of the best simulation of the Inv-NAProx set (although there is
a lower amount of sampling points). For our simulations, we relied on the TGSD calculated
by Ref. [53], as they considered a good amount of single grain size analyses even from
ultra-distal sites (being therefore highly representative of the whole deposit). However,
future developments could also evaluate whether the overall reproduction of the deposit is
improved by also varying the TGSD in the inversion procedure.

5.3. Parametric Analysis

The PLUME-MoM/HYSPLIT coupled models have a quite large number of parameters
that could be varied (see Table 2), and it is important to quantify the contribution of each
parameter in influencing the final result (in this case the plume height and the total mass
deposited, see Section 3.3). In this way it is possible to identify whether or not a parameter
could be used with a default value, therefore reducing the complexity of model initialization.
In our parametric analysis (see Section 3.3) it is important to highlight some important
trends (see Figures 7 and 8). Firstly, it is evident that mass eruption rate exerts a primary
control on the variation of the T2

Total function due to the distribution of points along
a narrow area next to the trend line (from 105.5 up to ~106.8 kg/s—see Figure 7). All
the other parameters instead have a much wider vertical spreading, therefore exerting a
second order control on the final result. An important observation is related to two of the
discrete variables considered (settling velocity model and meteorological dataset) and to
the parameters that control diffusion in HYSPLIT (Figure 8). For the former;

• Ganser is recommended as the best choice for modelling settling velocity, as the
variation of the T2 function is lower compared to Textor and Pfeiffer (Figure 7a). A
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possible explanation for the best results obtained using the Ganser model is related to
the amount of particles with regular and rounded shapes which, as shown by Ref. [56],
make up 72 to 93 wt% of the particles within the deposit of Unit I (see Section 2.1). This
type of particle has been shown by Ref. [36] as being well described by the sphericity
(i.e., the shape factor ψ, see Appendix B). In turn, this parameter is considered to be
well suited for the accuracy of the Ganser equation (see [73]);

• the NCEP/NCAR meteorological dataset is less accurate in reproducing the plume
height and final deposit as compared to the other datasets, which instead produce a
more or less equal variability (Figure 7b), and a high degree of uncertainty should be
therefore considered if it is employed. A possible explanation for the lower accuracy of
the NCEP/NCAR dataset is linked to the lower number of vertical pressure levels and
by its low spatial (and temporal) resolution (see Table 1). Such low-quality features, as
compared to the other datasets, do not allow for an optimal representation of small-
scale atmospheric variability and therefore for good tephra dispersal representation.

Finally, considering the five parameters that control diffusion in HYSPLIT (see Figure 8),
the quasi-similar variability of the T2 function for all the possible configurations of such
parameters suggest that it is possible to use the default values proposed in the user’s guide
(https://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf, accessed on 11
May 2018).

6. Conclusions

In this paper, we tested the coupled PLUME-MoM/HYSPLIT models by reproducing
the Puyehue-Cordon Caulle 2011 sub-Plinian eruption. Particularly: (i) we tested the
model by using different configurations (wet/dry aggregation, addition of external water
to the magma, and different settling velocity models); (ii) we implemented an inversion
procedure aimed at minimizing a specific function by varying different parameters linked
to eruptive source conditions, particle properties, and atmospheric turbulence computation;
and (iii) we conducted a parametric analysis to highlight the different contribution of each
model parameter in defining the value of the minimization function. The main results are:

• The amount of external water added (10 wt%) does not significantly influence the
final deposited mass, while the effect of considering both a wet/dry aggregation
model is considerable. For the three settling velocity models tested, the Ganser
model [61] produces slightly better results when compared to field data. For all
of these latter simulations (performed using eruptive source parameters from the
literature), however, the amount of deposited mass by the model in the first 120 km
from the vent is more than 3 times higher than the deposited mass;

• Our inversion procedure (minimization through sets of 250 simulations of a function
that consider, at the same time, the differences between observed/modelled values
of plume height and deposited mass) reduced the overestimation of the model with
respect of the deposited mass, which remains, however, two times higher than the
deposited mass resulting from observations. While surely an improvement, more
studies are necessary to explain such a discrepancy. For the current usage of this
model, such an uncertainty should be considered for applied studies (i.e., hazard
maps production);

• The parametric analysis (performed with additional 900 simulations with the same
minimization function) highlighted a primary control exerted by the mass eruption
rate on the model outputs, while the other parameters influence the outputs to a
lesser degree. The Ganser settling velocity model produced a lower variability in
the minimization function, and is therefore more indicated as a default option. On
the other hand, the meteorological dataset that produced the largest variability in
the minimization function is the NCEP/NCAR Reanalysis (which therefore has a
large impact in the final outputs of the model and is not suggested to be employed),
while the others produced similar variability. The parameters that control diffusion in

https://www.arl.noaa.gov/documents/reports/hysplit_user_guide.pdf
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HYSPLIT have instead a limited influence on the final outputs, and default values can
be utilized.

While our results derive only from one (although well documented) eruption, more
studies with the same approach would be advisable to extend the validity of our study.
Moreover, additional tests with other models could be used to provide a benchmark
validation case.
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Appendix A. Description of Aggregation Models of PLUME-MoM-TSM

In PLUME-MoM-TSM, two models are used to describe aggregation. The first is
from Ref. [9], and it computes the aggregation kernel as the product of two main factors,
i.e., collision frequency and sticking efficiency (due to the presence of liquid water). The
former is given by the sum of three contributions, a Brownian frequency function; a fluid
shear frequency function, and a differential sedimentation frequency function. These
contributions are summarized within the aggregation kernel β (m3/s), which describes the
rate at which a particle of volume v aggregates with a particle of volume v0. In the model
of Ref. [9], the rate of formation of the aggregates of a specific volume (or mass) is therefore
proportional to such a kernel and to the number of particles of lower volumes (or mass). In
PLUME-MoM, it is also possible to consider a constant value for the aggregation kernel (to
be used without necessarily considering the atmospheric humidity, as instead necessary for
the model of Ref. [9]). From a computational point of view, newly formed aggregates could
be considered either as a separate group of particles with different density/shape factor or
within the same group of the parent particles.

Appendix B. Settling Velocity Models

In this paper, we have used three different formulations to calculate the settling
velocities of each particle. These latter have been included in PLUME-MoM by Ref. [33]
and in HYSPLIT within this paper.

https://www.mdpi.com/article/10.3390/atmos13050784/s1
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For the first model [61], an initial value of settling velocity (wST) is calculated for the
Stokes regime (Reynolds number Re << 0.005)

wST =
g
(
ρp − ρatm

)
D2

18µ

with g being the gravitational acceleration (9.81 m/s2), ρp the particle density (kg/m3), ρatm
the atmospheric density (kg/m3), D the particle diameter (m), µ the atmospheric dynamic
viscosity (Pa•s), and Re the Reynolds number.

Re =
ρatmwST D

µ

The final settling velocity (wip) is calculated as

wip =

√
4gD

(
ρp − ρatm

)
3CDρatm

with drag coefficient (CD) calculated as

CD =
24

ReK1

(
1 + 0.1118(ReK1K2)

0.6567
)
+

0.4305K2

1 + 3305
ReK1K2

and the Stokes’ (K1) and Newton’s (K2) shape factors calculated as

K1(STOKESSF) =
3

1 + 2ψ−0.5 K2(NEWTONSF) = 101.8148(−logψ)0.5743

with ψ being the particle shape factor.
The second model is instead taken from Ref. [62] and references therein.

wi,p =


k1ρp

√
ρatm0
ρatm

(
D
2

)2
, D ≤ 100µm

k2ρp

√
ρatm0
ρatm

(
D
2

)
, 100µm ≤ D ≤ 1000µm

k3

√
ρp
CD

√
ρatm0
ρatm

√
D
2 , D > 1000µm

where k1 = 1.19 × 105 m2kg−1s−1, k2 = 8 m3kg−1s−1, k3 = 4.833 m2kg−1/2s−1, and CD is
the drag coefficient set equal to 0.75.

Finally, the settling velocity model proposed by Ref. [63] calculates wip as

wip =

√
2mg

CDρatm Acs

where m is the particle mass (kg) and Acs is the cross-sectional area of the particle (m2). In
this model, the drag coefficient (CD) is calculated differently according to Re through the
relation defined by Ref. [74] for Re ≤ 100, a fixed CD = 1 for Re > 1000, and an interpolation
for 100 ≤ Re ≤ 1000.

CD =


24
Re ψ−0.828 + 2

√
1.07 − ψ, Re ≤ 100

CDRe100 +
(Re−100)
1000−100 (CDRe1000 − CDRe100), 100 ≤ Re ≤ 1000

1, Re > 1000

We report in Figure S3 from the Supporting Information the calculated settling veloc-
ities with the three models for the whole particles in the computational domain for the
simulation with no aggregation case.
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Appendix C. Modifications Introduced in HYSPLIT

In this version of HYSPLIT, we have used two important modifications introduced in
Ref. [40]. First, in Ref. [40] there is a formulation where each Φ bin does not have a fixed
representative size for all of its particles but rather the size of each particle is sampled within
the size range of the bin. In this way, it is possible to describe the full spectrum of sizes
as a continuum, and not just with fixed specific sizes. This has been applied because, in
numerical simulations, it is common to have simulated deposits with multiple peaks in the
loading, and these peaks are due to the fact that there is not a continuous size distribution.

The second important change is in the way the mass in each computational cell/point
is computed by HYSPLIT. When using horizontal gaussian puffs, the original HYSPLIT
procedure partitions the mass of a puff and assigns it only to the point within a certain
distance from the center of the puff. This means that if the puff is small, the mass may not
be assigned to any point. Thus, the total mass would not be equal to that released from the
column. This is a crucial problem for larger clasts, for which the terminal velocity is large
and the residence time in the atmosphere is not sufficient for the puffs to grow enough. For
this reason, in Ref. [40] the procedure has been modified to associate the mass of each puff
to the grid points. The authors considered a horizontal grid of “squares”, around each grid
point and analytically computed the contribution of each puff to the mass in the square.
In this way, there is a perfect match between the mass released and that in the HYSPLIT
output files.

Appendix D. Parameters That Control Diffusion in HYSPLIT

In our inversion procedure, we have considered five parameters that control particle
diffusion in the HYSPLIT model. We report here a summary of such parameters, as
described in the HYSPLIT user guide.

• Kmix0 sets the minimum mixing depth, which has been varied between 100 and 500 m
discretely every 50 m;

• Kzmix determines if any additional processing is to be performed on the vertical mixing
profile. We have considered either that (a) vertical diffusivity in planetary boundary
layer varies with height or (b) one average layer of vertical diffusivity in planetary
boundary layer;

• Kdef defines the way the horizontal turbulence is computed. Two approaches are used
here, computing the horizontal mixing in proportion to the vertical mixing or from the
deformation of the horizontal wind field;

• Kbls determines how the boundary layer stability is computed, either from atmospheric
heat and momentum fluxes or from wind and temperature profiles;

• Kblt controls the vertical turbulence computational method. In this study, we have
considered the Beljaars/Holtslag [75] and Kantha/Clayson [76] methods, or we have
calculated turbulence from velocity variances from the input meteorological file.
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