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Abstract 21 

New composite materials are always subjected to non-destructive evaluation (NDE) prior to being placed 22 

on the market. This is to fully understand the reactions (i.e., development of defects) at the interface between 23 

two subsequent layers. Active infrared thermography (aIRT) can help in this regard, especially if anticipated 24 

by a simulation of the heat transfer from the exterior (lamp) to the interior (multilayer). Comsol 25 

Multiphysics® was used in this work as a tool by developing an innovative approach, which is designed – 26 



2 
 

on the one hand – to minimize the computational cost and – on the other hand – to optimize the radiation to 1 

be delivered. The innovation produced by our work also concerns the pre-processing step of the thermal 2 

images; in fact, the 2D Fast Iterative Filtering (FIF2) is here introduced, discussing its benefits in comparison 3 

to previously developed techniques. Pre-processed data were further analyzed during the post-processing 4 

step demonstrating the reliability of FIF2 in enhancing thermal imprints, which leads to an improved 5 

detection of subsurface features. In particular, enhanced thermal imprints highlight the shape of the grid of 6 

glass fibres present beneath an external coating of hemp fibres (and, in general, added to the whole specimen 7 

along the x-y vectors). This grid of glass fibres was recently introduced as an insulation material for buildings. 8 

A brief review of the use of the pre-processing step in aIRT allows the reader to better understand the 9 

decisive step forward provided by FIF2 combined with a clever numerical simulation in the applied thermal 10 

engineering field. Qualitative and quantitative IRT results are shown and discussed thoroughly. Finally, a 11 

validation among numerical and experimental (thermographic) data is provided thanks to the Parker (laser 12 

flash) method. 13 

 14 

Keywords: infrared thermography; pre- and -post processing; computational fluid dynamics; thermal 15 

insulation; applied thermal engineering; heat transfer; 2D Fast Iterative Filtering. 16 

1. Introduction 17 

Pre-processing in thermal imagery is a step not so common as one might think. Post-processing is 18 

instead a routine step put in practice by authors to improve the “significance”, i.e., the reading of nuances, 19 

of thermal images. On the one hand, pre-processing is generally used to correct some parts of thermal images, 20 

affected by, e.g., dead pixels, vignetting, etc. On the other hand, pre-processing of thermal images is 21 

generally applied in medicine to detect cancers and distinguish false positives from false negatives. 22 

As it is possible to see from the short review provided in the following (Diagram 1), the pre-processing 23 

step has rarely been used in heat transfer mechanisms when undetectable shapes to the naked eye (i.e., the 24 

so-called thermal imprints) need to be inversely retrieved. 25 



3 
 

 1 

Diagram 1: … continue to next page ... 2 
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 1 

Diagram 1: Short review (from 1986 to 2021) of the works based on pre-processing algorithms for thermal images per field of 2 

application. 3 
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 1 

In total, twenty-seven manuscripts have been described in Diagram 1. Taking into account the 35-year 2 

time-frame, this number is certainly a representative sample.  3 

It should be noticed that the present research falls into the renewable and clean-energy technologies 4 

theme that is strictly linked to the technical physics field mainly based on heat transfer concepts and 5 

thermodynamics. In fact, the authors studied an applied solution for improving energy efficiency and, 6 

therefore, for reducing emissions thanks to the use of natural fibres. As can be seen from Diag. 1, not much 7 

research has been conducted so far by considering the three cornerstones, (1) IRT – (2) pre- and post-8 

processing – (3) technical physics (i.e., applied thermal engineering). Also, only in the papers [13], [17], 9 

and [26] the applied numerical modelling was used as a mean to proceed further with experimental analyses. 10 

Readers can refer to the column on the right side in Diag. 1, which is marked with a red dot-dashed rectangle. 11 

Therefore, it is worth looking into this line of research. 12 

In this work the idea presented in [28] is further developed, by focusing the attention on a multilayer 13 

sample used in civil engineering as insulation. This multilayer sample has a coating of scattered hemp fibres, 14 

which has been recently developed and placed on the market [29-30]. The present work starts with a 15 

numerical modelling, which is used to study the behaviour of the heat flow inside the sample. This modelling, 16 

which is built step-by-step, is innovative since aimed at minimizing the computational cost without giving 17 

up on accuracy. Several tests were performed to choose the best heating time able to reach the deeper layer. 18 

The use of mathematical methods applied to raw thermal images explains how a useful and simple setup 19 

based on a thermal camera (working into the long-wave infrared spectrum) coupled with a PC and two lamps 20 

allows to obtain new and interesting results. Then, the innovative 2D Fast Iterative Filtering (FIF2), the 21 

generalization to 2D of the well-established Fast Iterative Filtering algorithm, e.g. [41] and [44], is presented 22 

in this work and compared with previously developed techniques. This technique is used in this work as a 23 

pre-processing algorithm, which allows to remove high frequency and low frequency oscillations from the 24 

thermal images. Pre-processed data were further analyzed in the post-processing step demonstrating the 25 
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reliability of FIF2 to minimize the negative impact of thermal variations at the border of the sample, as well 1 

as the high-frequency oscillations due to noise, therefore, providing clear and precise thermal imprints to be 2 

segmented. The results (supported by a quantitative evaluation of the Precision, Recall, and Accuracy 3 

parameters) confirm the high ability of the proposed pre-processing FIF2 method. Computational 4 

performance like this cannot be found in any of the works published in the technical physics field in the last 5 

35 years, which are summarized in the right most column of Diagram 1.  6 

Also, the high insulation performance in term of thermal diffusivity of the coating layer made by 7 

scattered hemp fibres (i.e., an anisotropic material) was confirmed using the Parker method (i.e., the so-8 

called laser flash method) [31], which has never been used, to the best of the authors knowledge, neither on 9 

this type of material nor applying the experimental setup here proposed. This is a direct validation of the 10 

numerical analyses performed in Comsol® environment, since it is centred on the material facing the heat 11 

source (i.e., the most important layer forming the multilayer specimen). 12 

 Therefore, the innovation brought to light from the current research with respect to Diag. 1 is based 13 

on three cornerstones: 14 

- The conceptualization of the modelling phase; 15 

- The output and performance provided by the innovative FIF2 pre-processing algorithm when 16 

applied on thermal images detecting thermal imprints (e.g., the so-called thermal bridges in civil 17 

engineering field); 18 

The modality of application of the Parker’s (laser flash) method (i.e., in reflection mode but focalized 19 

on a small thickness of an advanced insulation material).  20 

The rest of the manuscript is organized as follows. In Section 2, a description of the multilayer 21 

specimen is given, followed by the modality of acquisition of thermal images in Section 3. Section 4 22 

describes how the numerical model was built and the main results obtained, whereas in Section 5 the 23 

innovative FIF2 pre-processing tool is presented. Section 6 focuses on the description of the post-processing 24 

techniques, performance measurement procedure, and discussion of the experimental results. Section 7 25 
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validates the numerical part with an experimental procedure based on the Parker method. Finally, Section 8 1 

ends the paper with conclusions. 2 

2. Materials 3 

The multi-layer material studied in the following is similar to the so-called ETICS - External thermal 4 

insulation composite system, but, in the case presented in this work, contains a different kind of finishing 5 

coating that includes hemp fibres. Therefore, the name of the layers differs a bit with respect to the usual 6 

designations, i.e., expanded polystyrene (EPS), base coat reinforced with an embedded glass fibres mesh, 7 

finishing coating, to underline the evolution of the product. 8 

The specimen consists of a bearing base of styrofoam (insulating material), with a layer of cement 9 

milk superimposed on this surface. A fibreglass reinforcement mesh (thereafter called grid) is embedded in 10 

the cement milk layer. The latter aims to homogenize any mechanical stresses that may start on the styrofoam 11 

towards the finishing layers. Stresses of thermal nature also cause inevitable expansion effects, which 12 

determine deformations in materials containing different layers, like the one under investigation. The 13 

fibreglass grid allows to homogenize of surface tensions. The choice of this material is not only due to 14 

technical requirements (the grid is indeed very flexible and follows any irregularity during installation); in 15 

addition, it is not subject to oxidative phenomena. Superimposed to the grid there is a layer of cement mortar. 16 

This layer was not applied for the entire length of the specimen, leaving an area of the reinforcement grid 17 

not covered. This choice allows evaluating the thermal insulation effects offered by the cement mortar in 18 

addition to the remaining underlying stratigraphy of the specimen schematized by a numerical model. Above 19 

the cement mortar, there is the last layer of hemp fibres. This layer has an area of 7.5 × 11 cm. Similar to 20 

the construction solution designed for cement mortar, it allows highlighting the thermal insulation effect of 21 

the hemp fibres compared to the remaining underlying layers. The detailed description of the stratigraphy in 22 

terms of thickness and thermophysical properties is shown in Table 1, see [29] for more details. 23 

 24 
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Table 1 – Technical and thermophysical properties of the materials under analysis. The last column on the right side 1 

represents the porosity in terms of volume percentage. The number n. of each material, specified in the left most column, 2 

corresponds to the number shown in Fig 1a.  3 

n. Material Thickness 
 m  

Conductivity  
W/mK  

Density 
 kg/m3  

Specific heat 
 J/kgK  

Emissivity 
Ɛ 

Porosity 
[%] Vol. 

1 Scattered Hemp 
Fibres 

0.001 0.038 25 1700 0.9 0.120 

2 Cement mortar 0.0005 1.73 900 0.21 0.54 0.22 
3 Fibreglass 0.0002 0.035 21 1030 0.75 0.44 
4 Cement milk 0.0001 1.4 1540 0.87 0.92 0.147 
5 Expanded 

Styrofoam 
0.0286 0.03 30 1450 0.6 0.497 

In Fig. 1a, a picture of the specimen taken from different angles is shown, while in Fig. 1b an image 4 

of the numerical model of the whole specimen is depicted. The numerical model inherent to the specimen 5 

was numerically analyzed via the work-plane technique.  6 

 

 

a) b) 

Fig. 1: Specimen: a) photograph showing the five most important areas, and b) the numerical model representation of the 7 

whole specimen. In Fig. 1a, the red dash-dot rectangle highlights the grey area 2 (i.e., the acquamarine in Fig. 1b), where the grid 8 

is hidden under one layer of material. The yellow area 1 (hemp fibres – i.e., the dark blue in Fig. 1b) is where the grid is hidden 9 

under two layers of material. The centroids (subsequently explained) of each sub-area are highlighted with a red cross. 10 

With reference to Fig. 1a, it should be noted that the following numerical modelling part, Section 4, is 11 

focalized on the entire specimen surface constituted by four areas, while the experimental part, Sections 5 12 
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and 6, is focused only on areas 1 and 2 identified by a brace. Given the thickness of these two areas, they 1 

represent the worst-case to detect the subsurface grid.  2 

3. Acquisition of thermal images 3 

In order to study the behaviour of the specimen, the latter was placed on a wooden support at low 4 

thermal conductivity. This to avoid local conduction effects at the contact surface. Fig. 2 shows the testing 5 

scheme, including the thermal sources, which have a truncated cone shape. These devices generated a 6 

controlled thermal load on the surface of the specimen itself. The thermal camera (FLIR S65 HS, 320 × 240 7 

pixels, 7.5 – 13 μm) was placed in the middle of the headlamps to capture the trend of the thermal evolution, 8 

which develops on the surface shown in the left most panel of Fig. 1a, in the most homogeneous way possible. 9 

 

Fig. 2: Testing scheme in the laboratory. 10 

 11 

The projectors were equipped with Siccatherm® Osram 250 W lamps.  12 
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4. Numerical modelling 1 

4.1. Detail of the model 2 

Firstly, based on literature data [32], a numerical model of the lamps was reproduced. Through the 3 

Catia V5® software, the geometry of the lighting body was built in terms of bulb and filament. Subsequently, 4 

the geometric model was imported into Comsol Multiphysics® software. 5 

Starting from the electric power developed by the filament (known from the nameplate) and having 6 

selected tungsten as its constituent, the electric load was modelled. An electric power supply with known 7 

characteristics was numerically simulated, which generated heating of the lamp for a time of 120 s. The 8 

subsequent evolution without activated electric power lasted 510 s. The latter step was necessary for the 9 

analysis of the cooling thermal transient regime. This allowed mapping of the temperature range of the lamp 10 

– on the projective surface of the bulb – for both the heating and the cooling phases. In particular, the 11 

numerical simulation of the cooling phase allowed to evaluate the evolution of the surface temperature of 12 

the lamp bulb. This step allowed also to understand the effect of the thermal inertia of the lamp otherwise 13 

not determinable except by experiment. 14 

When the electrical load ends, in fact, the lamp leads to a decrease in its surface temperature as a 15 

function of the thermophysical conditions of the surrounding air. In our case, natural convection replicating 16 

the real thermophysical conditions of the test was modelled, i.e. T = 293.15 K, and relative humidity (RH) 17 

= 50 %. The latter values were established through a thermohygrometer. 18 

  
 

a) b) c) 
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Fig. 3: Images of the truncated cone lamp: a) photograph, b) model, c) trend of temperature field on three orthogonal slice 1 

planes along the filament for a generic temporal instant of the heating phase.  2 

 3 

Fig. 3a shows an image that highlights the geometry of the lamp. Fig. 3b presents the reconstructed 4 

geometric model. Finally, in Fig. 3c, a salient image of the numerical calculation model is depicted. 5 

In particular, the temperature field for a generic time instant of the heating phase is shown in Fig. 3c. 6 

The purpose of this figure is to show to the reader that the analysis of the surface thermal field was obtained, 7 

not only by evaluating the effects of radiation, but also by calculating the convection effects of the gas 8 

contained in the bulb of the lamp. 9 

Fig. 4 shows the trend of the temperature field on the projective surface of the bulb of the lamp. 10 

 11 

Fig. 4: Trend of the temperature field on the projective surface of the bulb of the lamp. 12 

 13 

The temperature profile of Fig. 4 is necessary as an input, saved in data format, to the final model for 14 

the study of the evolution of the temperature range of the specimen. 15 

The overall model, in fact, provides only for the insertion of the heat load law of the projectors, instead 16 

of the physical elements. This technique allows to reduce the computational cost for a couple of aspects, i.e.: 17 

- a mesh is not necessary for the discretization of the projectors; 18 
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- the multiphysics must deal only with the coupling between the input forcing (as data format) and 1 

the evolution of the energy transmitted in the form of heat into the specimen. 2 

By carefully observing the two aspects described above, it is evident, first of all, that the projectors do 3 

not require any further geometric representation/clarification, since they were studied in the previous model. 4 

Secondly, the multiphysics does not have to couple the energy conversion between electrical and thermal 5 

load at the same time, but it will only have to deal with the effect that the thermal forcing exerts on the 6 

specimen. 7 

From the modelling point of view, in the 3D geometric model, two projectors were considered as 8 

punctual elements in the space. The centroids of the projectors represent the absolute position, and the 9 

temperature law calculated with the previous model is imposed at these two points. 10 

Subsequently, the software calculated the view factor and the mutual effects between projectors and 11 

specimens. The overall model foresees the realization of the geometry using Catia V5®, faithfully replicating 12 

the real topology of the model. Then, the geometry was imported into Comsol Multiphysics® software as 13 

shown in Fig. 1b.  14 

The selection of the mesh of the specimen was particularly difficult in this case. In fact, even though 15 

the external dimensions (parallelepiped) and the thicknesses of the layers making up the model are regular, 16 

it was not possible to use of a swept mesh. The presence of a reinforcing grid which does not have contact 17 

with any upper layer for a certain extension of the specimen, in fact, made impossible the use of a swept 18 

mesh, since there was no correspondence in terms of the number of nodes between the top and bottom 19 

surfaces. The meshing procedure on the grid constrained the choice of a tetrahedral mesh. Given the 20 

geometric dimensions of the grid, a nodal thickening of 0.0001  m  and a resolution of narrow regions equal 21 

to 0.25 were necessary. These values were obtained through a series of iterations to evaluate the most 22 

efficient refinement while minimizing the computational cost. The meshing process was complex also for 23 

the cement milk layer. The insertion of the warp and weft of the fibreglass inside the cement milk resulted 24 

in the formation of a series of parallelepipeds having a square base which appeared to be the negative of the 25 
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footprint of the grid itself. The mesh of the cement milk, therefore, required the same degree of accuracy as 1 

fibreglass. Given the regularity of the bottom of the layer (single parallelepiped), it was possible to reduce 2 

the number of nodes by controlling the maximum element grow rate parameter along the x vector (i.e., the 3 

depth). For the remaining layers, the mesh was built thanks to the automatic process. The model as a whole 4 

has several nodal elements equal to 372346 element domain, 132258 boundary domain, and 28150 edge 5 

domain. Considering both the required multiphysics and the number of degree of freedom (DOF) to be 6 

solved, it was almost impossible to calculate the necessary numerical model with an ordinary personal 7 

computer (PC). Considering a storage capacity of 16 Gb, for the selected multiphysics it was necessary to 8 

reduce the number of nodes to a maximum of 3 × 106 as described in the graph titled Memory requirements 9 

(with a second-polynomial curve fit) with respect to degrees of freedom for various representative cases 10 

[33]. 11 

The problem could be solved through the specular surface geometry of the specimen with respect to 12 

the plane of symmetry xz, ref. Fig. 1b. At this point, it was necessary to make a “numerical” cut of the model 13 

by defining a work plane that virtually transects the geometry into two mirrored parts. Through the partition 14 

object controller, it was possible to separate the numerical part into two analysis parts. Two distinct 15 

approaches could be followed at this point:  16 

- the first approach is solving the first half-part of the model and, subsequently, the second half-part 17 

by coupling them;  18 

- the second approach is solving only one semi-part of the model, mirroring the solution. This second 19 

approach requires, however, an appropriate analysis of the boundary conditions. 20 

The latter approach was followed herein. Since the specimen was in contact with the environment, 21 

whose boundary conditions do not vary on its sides, it was possible to set natural convection and irradiation 22 

conditions on the whole model except for the virtual side named work plane. The material continuity 23 

boundary condition was set on the work plane. 24 
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This was necessary to obtain a homogeneous temperature field behaviour at the union interface 1 

between the two half-parts. In Comsol Multiphysics® software, the settings that allowed these conditions 2 

were the Continuity on Interior Boundary −𝒏𝒏 ∙ 𝒒𝒒 = 𝒒𝒒𝟎𝟎 on 𝜕𝜕Ω (where: q is the conductive heat flux vector 3 

(W/m2), n is the normal vector out at the surface under analysis, q0 is the inward heat flux (W/m2), and Ω is 4 

the frontier of the layer domain) for radiative effects (using the Rosseland approximation) and the thermal 5 

insulation 𝒏𝒏 ∙ (𝑘𝑘∇𝑇𝑇) = 0 for conductive effects. 6 

This allowed to obtain a continuity of the homogeneous thermal field before and after the work plane. 7 

The physics set both for the numerical solution of the projector and the overall model was the Heat Transfer 8 

with Radiation in Participating Media. Concerning the projector, the Heat Transfer in solids (which was 9 

responsible for evaluating the heat transfer on the materials in the solid-state of aggregation, e.g. the lamp 10 

bulb) was on the basis of the physics (Eq. 1). 11 

𝜌𝜌𝐶𝐶𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝐶𝐶𝑝𝑝𝒖𝒖 ∙ ∇T�������
1

= ∇ ∙ (𝑘𝑘∇𝑇𝑇) + 𝑄𝑄 + 𝑄𝑄𝑟𝑟 
(1) 

Where ρ, indicates the density in kg/m3, Cp the specific heat at constant pressure J/kgK, T the 12 

temperature in K, u represents the velocity field tensor m/s (here, the term 1 of Eq. 1 is null because the 13 

components are mutually immobile), Q indicates the source/sink of heat expressed in J, and Qr is the heat 14 

source / radiative sink of heat expressed in J. 15 

Regarding the aeriform (i.e., the internal protection gas of the bulb) the Heat Transfer in fluids function 16 

was used (Eq. 2). 17 

𝜌𝜌𝐶𝐶𝑝𝑝
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝐶𝐶𝑝𝑝𝒖𝒖 ∙ ∇T�������
1

= ∇ ∙ (𝑘𝑘∇𝑇𝑇) + 𝑄𝑄 + 𝑄𝑄𝑟𝑟 + 𝑄𝑄𝑣𝑣𝑣𝑣 + 𝑄𝑄𝑝𝑝 
(2) 

Eq. 2 differs from Eq. 1 for the term 1 which, in this case, is not null due to the convection effects of 18 

the fluid, as well as for the heat Qvd of the viscous dissipations J and, lastly, for the heat Qp due to the effects 19 

of the pressure load J. On the other hand, the overall model is governed not only by Eq. 1 and Eq. 2, but also 20 

by Eq. 3, which regulates the radiative effects coming from the projectors. 21 
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𝑆𝑆𝑖𝑖 ∙ ∇𝐼𝐼𝑖𝑖���
1

= 𝑘𝑘𝐼𝐼𝑏𝑏(𝑇𝑇)���
2

− 𝛽𝛽𝐼𝐼𝑖𝑖�
3

+
𝜎𝜎𝑠𝑠
4𝜋𝜋

�𝜔𝜔𝑗𝑗𝐼𝐼𝑗𝑗∅�𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗�
𝑁𝑁

𝑗𝑗=1�������������
4

 
(3) 

The term 4 of the Eq. 3 shows the presence of a discretization of the angular space; usually, the term 1 

4 is presented in the integral form extended from 0 → 4π to analyze all directions. In our case, since there 2 

were only two projectors that imposed the thermal load, the term 4 degenerated into numerical quadrature 3 

of discrete directions. In Eq. 3, the summation has upper term N, which corresponds in the present case to 4 

2. In particular, the term 1 of Eq. 3 represents the radiative intensity gradient I as the i-th component 5 

projected in the S direction. Regarding term 2 of Eq. 3, the letter k is the absorbed fraction of the radiative 6 

intensity evaluated for the black body Ib(T). In term 3 of Eq. 3, the fraction β indicates the radiant intensity 7 

Ii with respect to the generic i-th direction. The term 4 of Eq. 3 is inherent to the scattering coefficient σs 8 

divided by 4π as the function is spatial. The remaining part of Eq. 3 term 4, the summation, indicates the 9 

phase function, which evaluates the probability that a generic ray from the direction Si is projected in the 10 

direction Sj. The definition of the phase function depends on the material constituting the single layer, while 11 

the ωj term indicates the j-th direction. To allow the overall numerical model to incorporate the effects of 12 

the projectors and the surrounding air, which are not included in the model, the Rosseland approximation 13 

should be introduced. The Rosseland approximation assumes that the coupling medium (both the air 14 

surrounding the model, and the air between the lamp and the projector box) is optically dense. Calling τ the 15 

optical thickness, this must assume a value τ >> 1. More precisely, by defining the integral of the absorption 16 

coefficient, κ along a typical optical path S, Eq. 4 can be written: 17 

𝜏𝜏 = �𝜅𝜅𝜅𝜅𝜅𝜅
𝑆𝑆

0

 
(4) 

From the modelling point of view, this approximation has a very limited impact (in terms of 18 

computational cost). In fact, it does not introduce any further degrees of freedom into the heat equation. 19 

Conversely, it adds a non-linear contribution to thermal conductivity. Therefore, the method here explained 20 

is widely used. In fact, it avoids representing physically in the numerical model media whose optical 21 



16 
 

thickness is high. However, since it provides a simple approximation of heat transfer by radiative effects in 1 

coupling media, it must be used carefully. In particular, the fraction of radiative heat Qr coming from the 2 

interaction of the thermal beam and the coupling air medium is evaluated following the relationship shown 3 

in Eq. 5.  4 

𝑄𝑄𝑟𝑟 =
4𝜋𝜋
𝛽𝛽
∇𝐼𝐼𝑏𝑏 (5) 

Where the symbols of Eq. 5 have been described previously. 5 

Also, the fluid dynamic model for the coupled analysis of radiative and convective phenomena requires a 6 

specific package of Comsol®, i.e. the laminar flow, integrated with a dedicated multi-physics. The latter 7 

deals with correlating the radiative effects with the convective ones. The set of governing equations of this 8 

package includes the conservation mass equation in the conservative form (Eq. 6) and the compressible flow 9 

equation (Eq. 7), respectively. 10 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝒖𝒖) = 0 
 

(6) 

𝜌𝜌
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝒖𝒖 ∙ ∇𝒖𝒖 = −∇𝒑𝒑 + ∇ ∙ �𝜇𝜇(∇𝒖𝒖+ (∇𝒖𝒖)𝑻𝑻) −
𝟐𝟐
𝟑𝟑
𝜇𝜇(∇ ∙ 𝒖𝒖)𝑰𝑰� + 𝑭𝑭 (7) 

 11 

Where ρ is the density in kg/m3, μ is the dynamic viscosity in Pa·s, u is the velocity in m/s, p is the pressure 12 

in Pa, F is the volume force vector N/m3. 13 

In the following, a spherical integration domain – for the fluid dynamics part only – was selected. This 14 

choice was dictated by the lower computational cost that a sphere requires with respect to the cube domain. 15 

This was made possible by the geometry of the multilayer that has the measurements of the same order of 16 

magnitude. The cubic domain – used in the case of thermal analysis of the specimen only – is larger respect 17 

to the fluid dynamics domain of the air medium representing the spherical domain. The spherical domain, 18 

in fact, is a subdomain of the cubic one. Therefore, the calculation of the number of nodal elements for the 19 

mesh is simplified and, at the same time, the spacing of the nodal elements near to the boundary domain is 20 

optimized. Also in this case, the lamps were not considered because, as mentioned previously, they were 21 



17 
 

useful to the modeller only for the forcing as well as for the thermal inertia in the form of external body (i.e., 1 

not as a Dirichlet condition on the surface of the multilayer). 2 

The real complexity of the convective calculation lies exclusively in the evaluation of the coefficient h. In 3 

fact, a functional relationship that links the convective exchange coefficient to some physical quantities 4 

related to the analysis already exists. The relationship of interest is reported in Eq. 8.  5 

ℎ = 𝑓𝑓�𝜆𝜆,𝜌𝜌,𝐶𝐶𝑝𝑝, 𝜇𝜇, 𝐿𝐿,𝑤𝑤∞� (8) 

where λ is the thermal conductivity W/m2K, ρ is the density kg/m3, Cp is the specific heat kJ/kgK, μ is the 6 

dynamic viscosity kg/ms, L is a geometric parameter dependent to the geometry and expressed in m, and w∞ 7 

is the velocity of the fluid in undisturbed conditions in m/s. Bearing in mind the multitude of parameters on 8 

which h strictly depends, its determination is complex. To reduce the independent variables to be analyzed, 9 

dimensionless groups are introduced (including Nusselt, Grashof and Reynolds) to study the fluid 10 

distribution in space. The Nusselt and Reynolds numbers are of particular interest for this study. The first is 11 

a ratio between the amount of heat exchanged by conduction and the amount of heat exchanged by 12 

convection, while the second is the ratio between the forces of inertia and the viscous forces. The former 13 

can also be determined through other dimensionless groups through empirical relationships among which 14 

the famous Mc Adams’s relation for vertical flat surfaces that functionalizes Nusselt as follows. 15 

𝑁𝑁𝑁𝑁 = 𝐶𝐶 𝐺𝐺𝐺𝐺𝑎𝑎 𝑃𝑃𝐺𝐺𝑏𝑏 (9) 

Where for Re < 109, the terms C, Gr and Pr represent a constant value depending on the geometry of the 16 

problem under analysis, the Grashof number and the Prandtl number, respectively. The exponents a and b 17 

are empirical coefficients related to the system under analysis. However, having a modelling software it is 18 

possible to express the Nusselt number differently by purifying it from the empirical coefficients, which are 19 

certainly more suitable for a generic problem than for a specific case. For this, a specific variable was created 20 

in Comsol® Nusselt Variable that calculates the trend in the integration domain thanks to Eq. 10. 21 

�
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 1 

In this way, thanks to the variables inside the code, it is possible to go back to the Nusselt value without the 2 

use of empirical coefficients. As for Prandtl, there is already a variable implemented in the code. Thanks to 3 

the Number and Prandtl numbers it is possible to have a whole scenario of the influence of convection on 4 

the model under analysis. To show the trend of the Reynolds and Prandtl numbers, the readers may refer to 5 

Fig. 5. 6 

  
a) b) 

  
c) d) 

  
e) f) 
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g) h) 

Fig. 5: Calculated trend of the dimensionless Reynolds and Nusselt numbers: a) Nusselt at 100 s, b) Reynolds at 100 s, c) Nusselt 1 

at 300 s, d) Reynolds at 200 s, e) Nusselt at 300 s, f) Reynolds at 300 s, g) magnification in the proximity of the specimen with 2 

respect to a generic instant of time for the calculation of the Nusselt number, and h) magnification in the proximity of the specimen 3 

with respect to a generic instant of time for the calculation of the Reynolds number. 4 

In the spherical domain shown in Fig. 5, the trends of both the Reynolds number and the Nusselt number 5 

were calculated for some instants of time of interest. In particular, the Figs. 5a, c and e, show low Nusselt 6 

values centered around zero. Bearing in mind that the thermophysical properties of the experimental test 7 

have infinitesimal variations – except for the surface temperature of the specimen –, the heat transfer 8 

coefficient has a direct proportionality to the Nusselt number. It is obvious that for an energy transfer 9 

coefficient in the form of negative heat, the Nusselt number will be negative accordingly. The fact that the 10 

Nusselt number is perfectly centered with respect to zero, it agrees with Figs. 5b, d and f that show a very 11 

low Reynold number typical of natural convection in still air. Figs. 5g and h show magnifications in the 12 

proximity of the specimen, while the blank area shows that the computation domain is only on the fluid, and 13 

this underlines the numerical correctness of the model. 14 

4.2. Results and Discussion of the numerical part 15 

The heated specimen is shown both in Fig. 6 and in Fig. 7 for the heating up and cooling down phase, 16 

respectively. 17 
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a) b) c) 

   

d) e) f) 

Fig. 6: Trend of the heating phase of the specimen registered after: a) 10 s of heating, b) 20 s of heating, c) 30 s of heating, 1 

d) 40 s of heating, e) 80 s of heating, f) 120 s of heating. 2 

 3 

Fig. 6a shows how the thermal field is characterized by a temperature range of 1.2 K on the surface of 4 

the specimen. In particular, the area less sensitive to thermal load is the one inherent to the hemp fibres (i.e., 5 

the yellow area in Fig. 1). The insulating effect of this layer compared to the layer of cement mortar near to 6 

it is evident. It is possible to notice the presence of the grid under the layers of the cement mortar. It is 7 

interesting to see how the correct setting of the boundary condition of the numerical model can be verified 8 

precisely from the corners at the top right and the top left. The right approach undertaken is made evident 9 

both by the symmetry of the temperature field and by the non-homogeneous trend of the temperature field 10 

near the right and left vertices. 11 

In Fig. 6b, it is possible to notice a homogenization of the temperature field on the front surface, while 12 

the thermal gradient between the points of it goes up to 1.8 K. The grid beneath the cement mortar gradually 13 

becomes less evident; this fact is due to the homogenization of the temperature value between the surface 14 

layer and the remaining subsequent layers. 15 
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In Fig. 6c the homogenization of the temperature field on the surface is shown. The temperature 1 

gradient on the surface is ~1 K, and the reinforcement grid inside the cement mortar layer becomes less and 2 

less evident. On the other hand, it is interesting to note how the thermal diffusion of the fibreglass is such 3 

that its surface temperature value does not quickly adapt to the temperature value of the layer that contains 4 

it. Although the latter is particularly thin (the thickness of the fibreglass is 0.0002 m), the texture of the grid 5 

appears clearly both inside the layer of cement milk, and beneath the layers of cement mortar.  6 

In Fig. 6d, it is possible to notice a further homogenization of the surface temperature field, with a 7 

surface gradient of ~1.5 K. The reinforcement grid is less and less visible beneath the layers of cement 8 

mortar. It is evident that the homogenization tends to occur also for the reinforcing grid inside the cement 9 

milk. 10 

Fig. 6e shows that the homogenization process of the thermal field completes its process of diffusion 11 

over the entire surface layer. The surface temperature gradient between the points at the greatest difference 12 

is ~1.1 K, while through the thickness there is a maximum gradient of 4.46 K. It is still possible to distinguish 13 

the position of the reinforcement grid for the cement mortar layers. 14 

In Fig. 6f, the reinforcement grid is almost completely homogenized in the cement milk layer. The 15 

temperature gradient between the points of the surface layer at the greatest difference is ~1.3 K. The trend 16 

along the x vector, which appears homogeneous and uniform despite having an additional layer of hemp 17 

fibres (i.e., the yellow area (1) in Fig. 1a), is of particular interest. Regarding the trend of temperature 18 

gradient through the thickness, a value of ~5.2 K can be detected. 19 

As previously said, Fig. 7 shows the trend of the cooling phase of the specimen. 20 
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a) b) 

  

c) d) 

  

e) f) 
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g) h) 

 

i) 

Fig. 7: Trend of the cooling phase of the specimen registered after: a) 10 s of cooling (130 s from the beginning of the 1 

experiment), b) 20 s of cooling, c) 30 s  of cooling, d) 80 s of cooling, e) 180 s of cooling, f) 280 s of cooling, g) 330 s cooling, 2 

h) 380 s  cooling, i) 390 s cooling. 3 

 4 

Fig. 7a shows how the numerical model also calculates the effects of thermal inertia due to the cooling 5 

of the projector plus the thermal release that the material making up the specimen undergoes. The 6 

considerable reduction of the thermal load when the projector turned off led to a lowering of the surface 7 

temperature of the specimen. This condition highlighted the reinforcement grid beneath the mortar layers 8 

which was not visible at maximum heating (Fig. 6f).  9 

The area of the specimen not covered by cement mortar also makes the grid more evident than in Fig. 10 

6f. In Fig. 7b the thermal imprint of the reinforcing grid appears slightly detectable also on the hemp fibres 11 
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layer, above all for the area proximal to the cement mortar. This is of great interest by considering the 1 

experimental results described in sub-section 6.2.  2 

It is possible to observe that the temperature gradient equal to ~1.3 K remained unchanged on the 3 

frontal plane. Even after 20 s of cooling, the temperature difference on the surface was almost like during 4 

the heating phase. This is due to the strong characteristics of insulation on which the specimen is based on. 5 

In Fig. 7c the reinforcing grid in the upper zone of the hemp fibres layer is imperceptible. In addition, 6 

the grid beneath the cement mortar layer is difficult to distinguish, while its shape is clear on the cement 7 

milk layer. 8 

In Fig. 7d the presence of the reinforcement grid in the cement milk layer remains evident. As the 9 

cooling time increased, the layers were homogenized in terms of temperature gradient on the surface; in 10 

addition, the grid became less and less visible even on the cement milk (Fig. 7e). Finally, through the 11 

thickness a very homogeneous stratigraphy of the temperature field can be seen (Figs. 7f, g). By seeing the 12 

upper layer of the cement mortar (Figs. 7f, g), an ellipsoidal shape of the temperature field with higher values 13 

than the rest of the layer itself appears at the center. The slight difference is attributable to the edge effects 14 

responsible for the further decrease in temperature at the perimeter while maintaining the conditions of the 15 

central area at the same temperature (Fig. 7h). A further effect is the presence of the reinforcing grid only at 16 

the interface between cement mortar and cement milk. This is linked to the local convective effects 17 

responsible for the temperature gradients that one has at the interface of the materials. The same effects are 18 

also visible in Fig. 7i. To evaluate the trends of the temperature field through the thickness of the specimen, 19 

four directions were identified on the numerical model along the x-axis of Fig. 1b. These directions were 20 

selected one for each centroid of the areas shown in the same figure (i.e., areas 1, 2, 3, 4). They highlight 21 

the virtual probes with respect to which the temperature trends shown in Figs. 8 and 9 were evaluated. 22 

 23 
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a) b) 

  

c) d) 

  

e) f) 

Fig. 8: Temperature trends through the thickness of the specimen during the heating phase after: a) 10 s of heating, b) 20 1 

s of heating, c) 30 s of heating, d) 40 s of heating, e) 80 s of heating, f) 120 s of heating. 2 

 3 

As it can be seen in Fig. 8a, the surface temperatures subjected to the same heating (10 s) are not 4 

identical for all the materials being analyzed. It is evident that, for the cement mortar, the difference of ~0.05 5 

K is given by the convective effect evaluated by the numerical model. The position of the specimen 6 

generated an upward trim tabs effect resulting in a lower surface temperature in the upper part of the model 7 
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while, in the most central part of the model itself, it is less affected by the convective effects. As for the 1 

other layers, they have lower surface temperatures than cement mortar. By carefully seeing the temperature 2 

trend of Fig. 8, the maximum surface temperature is reached by the cement mortar directly exposed to the 3 

air (see the lowest part of the specimen), followed by the face of the same material at the highest part of the 4 

specimen. 5 

The remaining materials facing the lamps, namely, the cement milk embedded in the glass fibres 6 

reinforcement grid and the hemp fibres layer were at lower surface temperatures. Hemp is the material that 7 

has a lower capacity to undergo an increase in surface temperature, with the same external thermal load 8 

imposed. What appears particularly interesting in the temperature trend is the abrupt variation of the first 9 

derivative that all the temperature curves have at a depth of 0.0018 m. This thickness is obtained from the 10 

sum of the layers of hemp fibres, plus the cement mortar, plus the cement milk, plus the glass fibres grid. 11 

Beneath the latter layers, only the styrofoam is present. The temperature trends show differences only for 12 

the surface layers. Regarding the trends inherent to the directions of the cement mortar, a uniformity of all 13 

the curves can be noticed at the depth of 0.0018 m. Regarding, instead, the temperature trend inherent to the 14 

direction of the cement milk, the same slope (slightly out of phase forwards) can be noticed if compared to 15 

the remaining layers; this was due to the lower insulating effect of the upper layers. The knee of the curve 16 

inherent to the hemp fibres is of great interest. The re-increase in temperature (starting from 289 K drops to 17 

289.98 K to return at 289 K) was due to the thermal inertia of the styrofoam. In fact, the styrofoam layer 18 

transfers energy in the form of heat to the area where the hemp fibres layer is to re-balance the temperature. 19 

This effect is here visible due to the insulating effect of the hemp fibres. The same effect has occurred for 20 

the cement milk, but, since the latter had a higher thermal diffusion than the hemp fibres, it was unable to 21 

retain the heat energy. This determined that the green curve in Fig. 8a has followed, without overlapping, 22 

the remaining temperature trends. From a thickness of ~0.006 m, all the curves were uniform, which made 23 

it impossible to distinguish the various trends. 24 
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In Fig. 8b, the trends of the temperature field are very similar to the previous ones, but with a higher 1 

surface temperature value. The effect of the temperature knee is always present, but, in this case, a decreasing 2 

temperature gradient, with two visible passages with zero derivatives for temperatures 289.62 K and 289.6 3 

K, exists. Since the surface temperature of the styrofoam is higher than the previous case, there is an effect 4 

of energy transfer in the form of heat from the external surface towards the styrofoam layer without any 5 

reversal. 6 

In Fig. 8c, the effect is similar to the previous case, but the leveling of the temperature curves occurred 7 

for a thickness of 0.01 m instead of 0.006 m. Therefore, the temperature equilibrium between the different 8 

layers cannot be seen at the interface styrofoam – cement milk, but inside the styrofoam itself. 9 

Fig. 8d shows a trend of the curves like the previous one, but two differences can be highlighted: the 10 

surface temperature of the hemp fibres is higher than that of the cement milk; the temperature equilibrium 11 

occurred at a depth of 0.012 m within the layer of styrofoam.  12 

In Fig. 8e a change in the temperature field is evident with an alignment of the surface temperatures 13 

to a similar value between layers (~291.8 – 292.8 K). The absence of knee is evident for the hemp fibres 14 

curve, while the distance between the temperature profiles for the depth between 0.0018 m – 0.01 m stands 15 

out. Instead, in the previous case, a more compact trend was found. Furthermore, up to a thickness of 0.016 16 

m there was no equilibrium between the temperature trends. In particular, the thermal equilibrium was not 17 

recorded except for the second half of the thickness of the styrofoam layer. 18 

In Fig. 8f, a behavior similar to the previous case can be seen, but it is evident that the surface 19 

temperature of the hemp fibres exceeds the other trends. The temperature curves up to a thickness of ~0.02 20 

m have a different slope. Starting from 0.016 m and for the entire remaining thickness, a perfectly equivalent 21 

temperature trend is observed on all the different materials included in the specimen.  22 

Fig. 8f is inherent to the maximum heating, whereas Fig. 9 presents the behavior of the specimen 23 

during the cooling phase. Fig. 9a shows the trend of the temperature range after 10 s of cooling, i.e., after 24 

130 s since the beginning of the analysis. The trend of the curves is like that of Fig. 8f, but it is possible to 25 
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notice a difference in the surface temperature of the hemp fibres. The latter grows further by ~0.1 K, even 1 

though the heating phase is completed. This is attributable to the thermal conductivity which is lower than 2 

that of the materials present on the surface exposed to the thermal load. Therefore, this surface had a reduced 3 

propensity for dissipation and the thermal inertia caused here a slight increase in the surface temperature. In 4 

addition, all curves tended to maintain the temperature values as in Fig. 8f, but shifted of ~0.001 m towards 5 

the face not directly exposed to the thermal load. This effect starts at depth 0.002 m and continuous up to 6 

0.018 m, and it can be attributed to the thermal displacement. Both in Fig. 9b and Fig. 9c, the effects are 7 

similar to the previous case with an increase of 0.1 K for every 10 s of cooling. 8 

Also, for the depth temperature trend, the same behavior occurred. These effects are attributed to 9 

thermal conductivity, thermal inertia, and typical effects of the phase shift particularly high in materials for 10 

thermal insulation. 11 

In Fig. 9d a change in thermal behavior for both the hemp fibres and the cement mortar exists. The 12 

surface temperature increased for all the materials by ~0.1 K; however, of particular interest are the curves 13 

exploring the thickness of the specimen. These trends are preserved in terms of first derivative and 14 

temperature. However, a translation (from 0.018 m to 0.023 m) with respect to the depth that passes from 15 

the temperature limit (never modified previously) can be noticed. 16 

In Fig. 9e it is possible to see a change of derivative in the analyzed curves. In particular, through the 17 

thickness of the specimen, there is a lower slope of the curves that leads the undisturbed limit of the 18 

temperature from 0.018 m (depth) to 0.025 m. This effect balances all temperature trends inherent to the 19 

specimen by also increasing the surface temperature by ~0.3 K. In fact, from this moment on, a change in 20 

the thermal behavior of the specimen is present.  21 

Subsequently, a progressive linearization of the temperature profiles can be noticed. Obviously, since 22 

the specimen has a little thickness, the end of the thermal load starting from 180 s, leads the entire object to 23 

thermal equilibrium. It is understandable that the internal energy of the specimen increased during the 24 
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heating phase, causing, in the cooling phase, an increase in the surface temperatures, which was proportional 1 

to the thermal conductivity of the materials constituting it. 2 

In Fig. 9f and 9g, the aforementioned linearization of the temperature curves can be seen, which brings 3 

the evolution of the temperature field of the insulating specimen closer over time to generic building material. 4 

In Figs. 9h and 9i, it is possible to notice the cooling conditions at 380 s and 390 s, respectively. Here, 5 

the surface temperature tends to become similar for all the layers analyzed and, in particular, there is a 6 

difference between the hemp fibres and the cement milk of only 0.5 K. The equilibrium temperature for the 7 

face not exposed to the thermal load remained unchanged throughout the test, although it moved to a depth 8 

of ~0.029 m. During the analysis of the curves for the entire depth of the styrofoam layer, the trends of the 9 

first derivatives changed the modulus of the angular coefficient but never its sign. 10 

  

a) b) 

  

c) d) 
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e) f) 

  

g) h) 

 

i) 

Fig. 9: Temperature trends through the thickness of the specimen during the cooling phase after: a) 10 s of cooling (130 s 1 

from the beginning of the experiment), b) 20 s of cooling, c) 30 s of cooling, d) 80 s of cooling, e) 180 s of cooling, f) 280 s of 2 

cooling, g) 330 s of cooling, h) 380 s of cooling, i) 390 s of cooling. 3 

 4 

Since the calculated temperature differences here presented are very small, mostly less than 1 K, a 5 

sensitivity analysis (Fig. 10) is provided. 6 
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a) 

 

b) 
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c) 

Fig. 10: Sensitivity analysis: a) The red hatch shows the analysis area of the numerical model on which the sensitivity 

analysis is performed; b) Totality of the temperature trends for all the analyzed thermal conductivity. The red arrow indicates 

the compaction direction of the temperature trends during the time evolution of the numerical model. The reader, by observing 

the overcrowding of the curves, may note as the calculated time instants increase, the model tends to numerical stability; c) 

Magnification of the first five temporal moments (Fig. 10b) to evaluate the differences in the temperature field trend for the 

analyzed thermal conductivity. 

 

It allows to test the response of the numerical model to changes of the input variables. For 1 

completeness, the analysis took place on an area of the model having a full stratigraphy (i.e., the dash-dot 2 

red highlighted area shown in Fig. 10a). Since, in this case, the thermal load applied predominantly on the 3 
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expanded styrofoam layer, the sensitivity analysis was carried out by assigning different thermal 1 

conductivity values to it, leaving the values of the remaining materials unchanged.  2 

The different values provided in input to the model (only for expanded styrofoam) were: 0.038, 0.04, 3 

0.05, 0.06, 0.07, 0.08 W/mK. The first value (0.038 W/mK) is the real value, while the next five values were 4 

selected to test the sensitivity of the model with a variation (in the order of one hundredth) of the thermal 5 

conductivity at the input.  6 

In Fig. 10b, the curves obtained for the entire evolution over time of the calculation (i.e., 510 s) are 7 

shown. They refer to all the different thermal conductivity values assigned to the first layer, leaving the 8 

values of the remaining layers unchanged. The trends do not have the respective legend and, therefore, they 9 

are only identifiable in term of general trend and not as a single answer. This choice has two particular 10 

reasons, namely: a) trying to explain the behaviors of six different thermal conductivities related to each 11 

time instant evaluated in the entire model with an appropriate legend would have required a large number 12 

of figures. Just think that the model under analysis, for this figure, contains six curves for 510 time instants 13 

(i.e., 3060 curves); b) this graph must serve to understand the stability of the numerical model. In fact, by 14 

grouping all the trends into a single graph, the reader may note that the behavior of each single series of 15 

curves (generated for each time instant of the respective six thermal conductivities) thickens starting from 16 

the base of the red arrow up to the vertex. This ensures that, during the calculated time evolution, the model 17 

tends to a stability as visible from the increasingly close temperature trends. 18 

In Fig. 10c, the trends of only the first five time instants have been extrapolated. This in order to show 19 

the trends of the curves for the single time instants and, therefore, to understand a little deeper the logic of 20 

calculation-comparison used for the study of stability and sensitivity of the numerical model.  21 

It should be noted that the curve at lower temperature is linked with the thermal conductivity having 22 

the lower modulus value. In addition, the model appears immediately stable starting from the depth of the 23 

second layer. It is evident that the angular coefficients of the temperature curves remain almost unchanged 24 

for the layers subsequent to the first, guaranteeing the stability of the response to the calculation of the model. 25 
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Furthermore, changes in the first layer of thermal conductivity in the order of one hundredth of a W/mK 1 

lead to changes in the calculated temperature below 0.25 K. This ensures that the perturbations of the 2 

calculated temperature propagate themselves for less than 1/4 K in terms of model response. 3 

 4 

5. The 2D Fast Iterative Filtering method as a pre-processing tool  5 

In this section, the authors present a new 2D version of the so-called Fast Iterative Filtering (FIF) 6 

method to pre-process the signals under investigation to reduce their noise content and to detrend it. 7 

One of the alternative algorithms to the well-known Empirical Mode Decomposition (EMD) [34] for 8 

the decomposition of nonstationary and nonlinear signals is the basic Iterative Filtering (IF) algorithm 9 

initially introduced by Lin et al. in 2009 [35]. The properties and characteristics of this technique, also in 10 

comparison with the EMD, have been already extensively presented and discussed in previous works, e.g. 11 

[28, 36-40, 73-76]. The mathematical analysis of the IF method [36, 41-44, 70-72] allows both to guarantee 12 

a priori its convergence and to accelerate the algorithm via the Fast Fourier Transform producing the 13 

aforementioned FIF technique [41, 44]. 14 

The IF method has been extended in [45] to deal with 2D and higher dimensional signals. In this work, 15 

the FIF algorithm is extended, introducing the 2D Fast Iterative Filtering (FIF2) (Tab. S1 – see the 16 

‘Supplementary Material’ section). A Matlab version of the proposed FIF2 algorithm is available at 17 

www.cicone.com. 18 

FIF has been also extended to deal with multivariate signals, which are multichannel signals which 19 

are varying over time [46].  The proposed method, instead, considers signals which are varying over space, 20 

but not over time. 21 

In FIF2 the input 𝜅𝜅 is an image and the FFT and iFFT represent the 2D Fast Fourier Transform and 22 

inverse Fast Fourier Transform, respectively. As for the 1D version, the filter function 𝑤𝑤 is chosen to be a 23 

positive, compactly supported bidimensional function with unitary volume, which has been convolved with 24 

itself to guarantee the convergence of the method [36, 45].  25 
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The authors point out that in Eq. 11 (see the ‘Supplementary Material’ section) the products as well 1 

as powers are all entry-wise. They are the so-called Hadamard products and powers. Working in the 2 

frequency domain still allows to check the classical stopping criterion for the IF scheme, thanks to the 3 

isometry property of the FFT. 4 

In Figures 11 and 12, the authors show examples of a 2D thermal image pre-processing (PreP) by 5 

means of the proposed FIF2 algorithm compared with a Discrete Wavelet Transform (DWT) and 6 

Multidimensional Ensemble EMD (MEEMD) pre-processing [77,78]. The original thermal image is shown 7 

in the left panels of the first rows. The filtered mesh produced using DWT, MEEMD, and FIF2 are shown 8 

in the right panel of the first rows and the left and right panels of the second rows, respectively. To produce 9 

the MEEMD, an ensemble of 100 elements is considered, as suggested in the papers [77,78]. For the DWT, 10 

the Daubechies wavelet ‘db45’ were used. 11 

 12 

  13 

Fig. 11: First row: left panel, original thermal image of the grey area 2 of the specimen, ref. Fig. 1a. Right panel, after PreP using 14 

DWT. Second row: left panel, MEEMD PreP. Right panel, FIF2 PreP. 15 

 16 
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  1 

  2 

Fig. 12:  First row: left panel, original signal, the yellow area 1 of the specimen, ref. Fig. 1a. Right panel, after PreP using DWT. 3 

Second row: left panel, MEEMD PreP. Right panel, FIF2 PreP. 4 

 5 
The computational time of these three PreP techniques applied to a dataset containing 500 images is 6 

listed in Tab. 2. The algorithms were run on a PC (Intel(R) Core (TM) i7-8550U CPU, 1.80GHz, RAM 7 

16.00GB, 64 bit Operating System) and the processing was conducted using MATLAB R2020a. The authors 8 

point out that, for the MEEMD, they opted for one of the smallest ensemble sizes. For the MEEMD the 9 

authors considered only one image out of 500 because the computational time was prohibitive. For one 10 

image, in fact, the MEEMD method required 1537 seconds to decompose the grey area 2 (Fig. 1a), which is 11 

a 55×101 pixels image, and 1304 seconds to decompose the yellow area 1 (Fig. 1a), which is instead a 12 

36×101 pixels image. This means that MEEMD PreP of 500 images would cost more than 8 days of 13 

calculations for the grey area, and more than 7 days of calculations for the yellow one, if the ensemble of 14 

100 elements per image is used. To make things even more difficult, with the MEEMD technique, in order 15 

to guarantee the proper stability of this method, it is usually advisable to use at least 200-800 elements for 16 

each ensemble, like for its 1D version of this algorithm, called EEMD [77,78]. Furthermore, considering 17 
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that in the literature it has been extensively observed that FIF, EEMD, and their extensions which handle 1 

multidimensional and multivariate signals, produce comparable results [37,45,46,72], from now on the 2 

authors focus on the comparison of PreP performance of the DWT and FIF2 methods.  3 

Table 2 – Computational time, in seconds, for the PreP of the 500 images corresponding to two areas of the specimen (i.e., area 4 

1 in Fig. 1a and area 2 in Fig. 1a). The PreP has been done using MEEMD, DWT, and FIF2 techniques. 5 

PreP time MEEMD DWT FIF2 

Grey area (area 2 – Fig. 1a) 1537×500 42 s 76 s 

Yellow area (area 1 – Fig. 1a) 1304×500 37 s 59 s 

6. Post-processing techniques 6 

Once the data have been pre-processed using DWT and FIF2, the authors proceed to post-process 7 

(PostP) them using several approaches.  8 

Principal component analysis (PCA) [46,48] in thermography (PCT) [49] given an important influence 9 

on post-analysis of thermal images, such as detection of defects for infrared non-destructive testing (IR-10 

NDT) [50-54], art and archeological investigations [55,56], and it is also used for dimension reduction, noise 11 

elimination, classification, etc. PCT calculation can be performed by using covariance matrix calculation, 12 

singular value decomposition (SVD), which is used often in IR-NDT, or candid covariance-free incremental 13 

principal component thermography (CCIPCT) [56,58]. The decomposition process conducts using 𝑋𝑋 =14 

𝑈𝑈Γ𝑉𝑉𝑇𝑇 where X is a matrix with p×n, dimension where n is the vectorized thermal image in every sequence 15 

and p corresponds to the number of observations, p > n and 𝚪𝚪 is a diagonal matrix with a dimension of n×n 16 

and either zero or positive elements. It is considered as the singular value of matrix X and 𝑽𝑽𝑻𝑻 denotes the 17 

transpose of the n×n matrix (eigenvector or basis matrix) and U is the p×n matrix (n observations and p 18 

spatial variations). The columns of matrix U represent the input matrix (frame here) [49]. The basis matrix 19 

carries the orthonormal characteristic that also maximizes the variance of projected data, which leads to the 20 

principal components (PCs) of the input matrix (X) extracted from the basis 𝑽𝑽𝑻𝑻).  21 
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Another important observation regarding PCA based methods is that they cannot impose constraints 1 

for the non-negative basis of matrix X. Sparse non-negative matrix factorization (NMF) provided such 2 

constraint [67] and it is currently used in IR-NDT. The authors applied NMF using also two alternative 3 

approaches: gradient descent (GD), and non-negative least square (NNLS) [68-70].  4 

These PostP methods enabled appropriate approximation selection among the component images. 5 

Furthermore, they allowed applying a threshold to separate the defects from the background and compare 6 

them to reference images. 7 

6.1. Performance measurement procedure adopted in this study 8 

To evaluate the performance of the combination of the different PreP and PostP methods applied to 9 

thermal images, the authors applied the following procedure. 10 

First, to calculate the quantitative accuracy, the authors employed a binary image as ground truth (GT) 11 

as a reference for the calculation. The GTs were labeled the pixels in defects and background of the 12 

specimens by 0 intensity. 13 

Then, the authors computed for each of the 10 images, produced by different PostP techniques of the 14 

PreP data, the area under the curve (AUC), based on the receiver operating characteristic (ROC) curve. The 15 

authors selected the image to be further analyzed the one corresponding to the maximal AUC value.  16 

It is important to remind that the ROC curves are commonly used to quantify the performance of a 17 

classifier [79]. In particular, the ROC curve is plotted in a Cartesian plane where the vertical axis represents 18 

the ratio of the true positive to the total number of pixels that do correspond to the ground truth, called the 19 

true positive rate (Eq. 12), and on the horizontal axis the ratio of the false positive to the total number of 20 

pixels that do not contain the ground truth, called the false positive rate (Eq. 13). Both the true positive and 21 

false-positive rates are computed for different values of the threshold τ 22 

true positive rate (TPr) =  true positive
actual ground truth pixels

                                                                            (12) 23 

false positive rate (FPr) =  false positive
actual ground truth pixels

                                                                            (13) 24 
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 1 

The ROC curve is a non-decreasing curve that goes from (0, 0) to (1, 1) as the threshold τ varies. The 2 

classification produced using a random guess has a corresponding ROC curve which is the straight line 3 

connecting (0, 0) and (1, 1). The larger the area under the ROC curve (AUC), the better the performance of 4 

the classifier. For more details on ROC curves, the interested reader can refer to [79]. 5 

Subsequently, the authors computed the Precision, Recall, and Accuracy indices of the selected post-6 

processed image, and computed, as the threshold, the one determining the maximal Accuracy value.  7 

These three indices are defined as follows: 8 

Precision = TP/(TP+FP) 9 

Recall = TP / (TP+FN) 10 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 11 

where TP stands for True Positive, FP for False Positive, TN for True Negative, and FN for False Negative. 12 

Sometimes the maximum Accuracy value is achieved for the minimal or maximal value in the 13 

threshold range. In the present case, the authors opted for using a threshold value the one associated with 14 

the maximum of the Precision curve.  15 

6.2. Results and discussion of the experimental part 16 

The authors applied the previously described approach to the thermal images based on the main data 17 

presented in Sections 2 and 3. Figures 13, 14, and 15 present qualitative results of the grid detection using 18 

the state-of-the-art approaches of matrix decomposition algorithms. The qualitative results of CCIPCT, PCT, 19 

NMF, NMF-gd, and NMF-nnls indicated significant accuracy to detect the grid inside the specimen using 20 

the PreP approach. Also, the results before PreP approaches (Fig. 13) indicates much lesser visibility of the 21 

grid structure in the infrared images and hence less highlighted in the results of the decomposition algorithms.  22 
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 1 
Fig. 13: The results of PostP applied to raw thermal data. CCIPCT (a), PCT (b), NMF (c), NMF-gd (d), and NMF-nnls (e) show 2 

the grid structure in the specimen, but each of them presents some noise. (f) represents the GT. 3 

 4 

 5 
Fig. 14: The PostP results for DWT pre-processed thermal data. CCIPCT (a), NMF (c), NMF-gd (d), and NMF-nnls (e) show 6 

with significant accuracy the grid structure in the specimen. PCT (b) presents the lowest quality. (f) represents the GT. 7 

 8 

 9 
Fig. 15: The PostP results for FIF2 pre-processed thermal data. CCIPCT (a), NMF (c), NMF-gd (d), and NMF-nnls (e) show with 10 

good accuracy the grid structure in the specimen. PCT (b) in this case has clear problems. (f) represents the GT. 11 

 12 
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In Table 3, Precision, Recall, and Accuracy quantitative values are shown; they were evaluated for the 1 

grey area, one layer case (see area 2 of Fig. 1a), of the data without PreP, during the heating phase of the 2 

surface (i.e., the first 120 seconds of the test).  3 

The performance inherent to DWT and FIF2 used as PreP is reported, instead, in Tables 4 and 5, 4 

respectively. 5 

Table 3 – Performance of the PostP techniques when applied to the raw data for the grey area of the specimen (i.e., area 6 

2 of Fig. 1a), one layer case, during the heating of the surface, first 120 seconds. 7 

Method Precision Recall Accuracy Threshold 
based on 

CCIPCT 0.66314 
 

0.43465 
 

0.71413 
 

Acc 

NMF 0.62548 
 

0.48614 
 

0.70729 
 

Acc 

PCT 0.72547 
 

0.36238 
 

0.71827 
 

Acc 

NMF-gd 0.71983 
 

0.41337 
 

0.72817 
 

Acc 

NMF-nnls 0.64773 
 

0.53069 
 

0.72439 
 

Acc 

Table 4 – Performance of the PostP techniques when applied to the DWT pre-processed data for the grey area of the 8 

specimen (i.e., area 2 of Fig. 1a), one layer case, during the heating of the surface, first 120 seconds.  9 

Method Precision Recall Accuracy Threshold 
based on 

CCIPCT 0.69574 
 

0.69505 
 

0.77858 
 

Acc 

NMF 0.70445 
 

0.65842 
 

0.77534 
 

Acc 

PCT 0.65471 
 

0.5604 
 

0.73267 
 

Acc 

NMF-gd 0.68357 
 

0.66733 
 

0.7667 
 

Acc 

NMF-nnls 0.71387 
 

0.72871 
 

0.79514 
 

Acc 

Table 5 – Performance of the PostP techniques when applied to the FIF2 pre-processed data for the grey area of the 10 

specimen (i.e., area 2 of Fig. 1a), one layer case, during the heating of the surface, first 120 seconds.  11 

Method Precision Recall Accuracy Threshold 
based on 

CCIPCT 0.85742 
 

0.87525 
 

0.90171 
 

Acc 
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NMF 0.82969 
 

0.80792 
 

0.86985 
 

Acc 

PCT 0.53386 
 

0.13267 
 

0.64248 
 

Acc 

NMF-gd 0.86603 
 

0.80644 
 

0.88425 
 

Acc 

NMF-nnls 0.83387 
 

0.8896 
 

0.89541 
 

Acc 

 1 

From the comparison of the performance values of the different PostP techniques applied to the raw 2 

thermal data (see Fig. 13 and Tab. 3) with the ones obtained after PreP the data with DWT and FIF2 methods 3 

(see Figs. 14, 15, and Tabs. 5, 6, respectively), it is evident that the performance after FIF2 PreP is always 4 

better than the other cases. The only exception is when PCT is used for PostP the data. In this case, the DWT 5 

proves to be better than FIF2 for PreP. This is true for the heating stage (first 120 seconds) of the grey area 6 

(i.e., area 2 in Fig. 1a). 7 

Similar results are obtained during the cooling phase of the data (i.e., the last 380 seconds) and for the 8 

heating and cooling time window of the yellow area (i.e., the scattered hemp fibres layer – see area 1 in Fig. 9 

1a), where the specimen has two layers of material covering the reinforcing grid. In these last three cases, 10 

the FIF2 PreP approach allowed to outperform the results obtained with raw and DWT pre-processed data 11 

for all PostP methods, even the PCT algorithm. 12 

The corresponding Tables (i.e., Tables S2-S10), that contain the quantitative results, are reported in 13 

the supplementary material of this manuscript. 14 

7. Validation of the numerical analysis for a specific material via the Parker method 15 

The characterization of the thermal diffusivity of the coating layer (i.e., the most important part of the 16 

specimen: see the area called 1 in Fig. 1a) follows the in-depth study previously described, which validates 17 

our analyses. The interest was focused on a local behavior and, fortunately, the thickness of the layer made 18 

by scattered hemp fibres is both very thin (Tab. 1) and exposed to air (Fig. 16). An extremely dense swept 19 

mesh was used to ensure that the diffusivity calculation was effectively linked to a discretization having 20 

stratified nodal elements. The stratification took place onto defined levels, which started from the front face 21 
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and ended on the rear face of the specimen. The authors verified that the Biot number was within the range 1 

(0-1). This verification formally allowed to treat the surface layer as a coating and, therefore, calculating its 2 

diffusivity via the Parker method. Concerning this method, the duration of the pulse was adjusted from a 3 

few seconds to several seconds to achieve the desired temperature rise depending on both the thickness of 4 

the material and its thermal properties. 5 

In Eq. 14, the Biot number is shown. 6 

𝐵𝐵𝑚𝑚 =
ℎ ∙ 𝐿𝐿
𝜆𝜆

 (14) 

where h is the convective coefficient expressed in W/m2K, L is the thickness of the layer under analysis 7 

in [m], and λ is the thermal conductivity in W/mK. A value of Bi = 0.5263157 was obtained allowing us to 8 

use the Parker method. By considering the low value found, the vacuum bell with reflecting walls (that is 9 

able to reduce both the exchanging heat by convection and radiation) was not used.  10 

The thermal diffusivity can be interpreted as a measure of thermal inertia (e.g., heat propagates slowly 11 

where the thermal diffusivity is low). The components of the thermal diffusivity α, when given on tensor 12 

form (i.e., αxx, αyy, and so on, representing an anisotropic thermal diffusivity), are available as specific 13 

Comsol® functions. The single scalar mean thermal diffusivity is the mean value of the diagonal elements 14 

αxx, αyy, and αzz [80]. 15 

It should be noted that for isotropic materials, the diffusivity value may be calculated through the 16 

single scalar diagonal elements according to the well-known Eq. 15. 17 

𝛼𝛼 =
𝜆𝜆
𝜌𝜌𝑠𝑠𝑝𝑝

=
0.038

25 ∙ 1700
= 8.94 ∙ 10−7

𝑚𝑚2

𝜅𝜅
 

(15) 

In our case, the material is anisotropic. Therefore, it is not correct to calculate α via Eq. 15. For this 18 

reason, the Parker equation suitable for the calculation of α also for anisotropic materials is reported as Eq. 19 

16. 20 

𝛼𝛼 =
0.139 ∙ 𝐿𝐿2

𝜕𝜕0.5
 

(16) 

where, L2 is the thickness of the scattered hemp fibres layer in [cm], and t0.5 represents the time 21 

necessary for the thermal load imposed by a laser source on the layer 1 (Fig. 1a) to propagate for a specific 22 
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value of the normalized temperature, Tn. Particular attention was paid to the term t0.5 expressed in [s]. In fact, 1 

t0.5 corresponds to the time in [s] when Tn is equal to 0.5. Obviously, the trend of Tn was calculated only for 2 

the scattered hemp fibres layer. In this regard, by adding a Comsol® virtual probe on the scattered hemp 3 

fibres layer (see, for reference, Fig. 16), the temperature evolution in the form of heat was analyzed for its 4 

entire thickness. The experimental test involved the use of a laser working into 445–450 nm (blue color) 5 

that thermally charged a specific part of the specimen according to the setup shown in Fig. 16. 6 

 7 

Fig. 16: Experimental setup for the evaluation of the thermal diffusivity of the scattered hemp fibres layer (area 1, Fig. 1a); PWM 8 

= pulse-width modulation. The red asterisk on the panel indicates the position of the Comsol® virtual probe. 9 

 10 

In order to correctly replicate the experimental test in the numerical one, the laser power was set as a 11 

heat point load equal to 0.5 W by leaving this source to act for several seconds. The temperature was 12 

normalized in the numerical model obtaining the trend shown in Fig. 17. 13 
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 1 

Fig. 17: Time course of the normalized temperature calculated for the scattered hemp fibres layer only. The magnification 2 

in the figure helps the reader to identify the instant of time t0.5 necessary for the calculation of α. 3 

 4 

Since the numerical model is especially designed for this calculation, it can be assumed that the value 5 

of α (calculated starting from t0.5 – see the red arrow added along the y-axis of Fig. 17) is actually adiabatic. 6 

Therefore, by completing Eq. 16 with the time value t0.5 shown in Fig. 17, the following value of α is obtained 7 

(Eq. 17). 8 

𝛼𝛼 =
0.139 ∙ 0.12

37.46
= 0.0000371 �

𝑠𝑠𝑚𝑚2

𝜅𝜅
� 

(17) 

Following the test whose layout is shown in Fig. 16, the normalized curve of the Tn trend was obtained 9 

from the thermographic test. Fig. 18 shows both the numerical and experimental trends. In this way, the 10 

reader is able to estimate the two different trends. In addition, it also allows to understand the percentage 11 

error existing between the theoretical trend (blue dotted line) and the experimental one (red solid line). 12 
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 1 

Fig. 18: Time course of the normalized temperature. Adiabatic (dashed blue): numerical test; Bi = 0.5263157 (dashed 2 

red): thermographic test. 3 

Finally, the value of α for the experimental test was calculated by Eq. 18. 4 

𝛼𝛼 =
0.139 ∙ 0.12

40.86
= 0.0000340207 �

𝑠𝑠𝑚𝑚2

𝜅𝜅
� 

(18) 

The difference between the data reported in Eqs. 17 and 18 show that the experimental value of α is 5 

~8.3% lower than the modeled one, and that the response times of the thermal load on the surface opposite 6 

to the heated one were 37.46 s (see the red arrow added along the x-axis of Fig. 17) for the numerical case 7 

and 40.86 s (see the x-axis of Fig. 18) for the experimental one. 8 

8. Conclusions 9 

The numerical model, albeit with a high computational cost, highlighted the opportunity to work 10 

without the use of a high performance computing device, thanks to the use of the work plane procedure. 11 

This technique allowed to conduct the whole processing on a personal computer, showing the results of the 12 

model both for the temperature field in the volumetric form and along the lines set for the directions of 13 

interest. In particular, through volumetric graphics, it is possible to understand the spatial temperature field 14 

that the model undergoes in its temporal evolution for each point in space. On the other hand, the use of the 15 

directrices helps the reader to follow the evolution of the temperature field within the model itself. This idea 16 
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is useful to understand the mutual interactions between different materials in the contact areas, that followed 1 

an advanced mechanical treatment [81]. Finally, the model showed the presence of a phase shift, typical of 2 

thermal insulation materials, also for the layers made with mortars. This can certainly be attributed to the 3 

styrofoam support, which is known to have excellent thermo-insulating properties, but also to the layer of 4 

hemp fibres. The latter has shown good thermal-insulating characteristics albeit with only a thin layer 5 

applied as an external coating. This initial result was confirmed by applying advanced algorithms to 6 

thermographic (experimental) data [82–85]. 7 

In fact, in this work, a new 2D fast algorithm for the thermal data pre-processing is developed, called 8 

2D Fast Iterative Filtering (FIF2), and its pseudo-code is presented. This newly developed algorithm proves 9 

to be extremely faster than previously developed methods, like the MEEMD, and to be comparable, from a 10 

computational time perspective to the DWT technique.   11 

Subsequently, pre-processed thermal images have been post-processed using several methods 12 

available in the literature. In particular, the authors considered the CCIPCT, PCT, NMF, NMF-gd, and 13 

NMF-nnls methods, to identify the grid localization inside the specimen. For each post-processing algorithm, 14 

ten images have been produced, and the one corresponding to the maximal area under the curve (AUC) 15 

value, based on the receiver operating characteristic (ROC) curve, has been selected. Then, the performance 16 

of the different post-processing techniques has been studied and compared using Precision, Recall, and 17 

Accuracy metrics.  18 

From these results, it becomes evident that all thermal images post-processing approaches increase 19 

their performance when FIF2 pre-processing is applied, versus the DWT pre-processing, or versus using 20 

raw thermal images. The only exception is for PCT post-processing of the data in the heating phase of the 21 

grey area of the specimen (one layer case). In that case, the DWT pre-processed data produce better 22 

performance than FIF2 pre-processed ones. Nevertheless, during the cooling phase of the grey area 2, as 23 

well as for the heating and cooling time window of the yellow area 1 (i.e., the hemp fibres layer), where the 24 

specimen has two layers of material covering the reinforcing grid, the FIF2 pre-processing approach allowed 25 
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to outperform the results obtained with raw and DWT pre-processed data for all post-processing methods, 1 

even the PCT algorithm. 2 

Finally, the good agreement among the numerical test and the thermographic one was verified by 3 

applying the Parker method on the most important part of the specimen (i.e., the scattered hemp fibres layer), 4 

by finding a low Biot number that allowed simplifications in the experimental setup. 5 

Acknowledgments 6 

A. Cicone and L. Robol are member of the Italian “Gruppo Nazionale di Calcolo Scientifico” (GNCS) 7 

of the Istituto Nazionale di Alta Matematica "Francesco Severi" (INdAM). A. Cicone work was partially 8 

supported through the CSES-Limadou project of the Istituto di Astrofisica e Planetologia Spaziali (IAPS) 9 

of the Istituto Nazionale di Astrofisica (INAF).  10 

The authors would like to thank Eng. Massimo Cretarola who helped to build part of the experimental 11 

setup shown in Fig. 16. 12 

References 13 

[1] Seed, L., Houghton, A., Heron, A., Hobson, G.S., Powell, A.R., Tozer, R.C.: 'Real time processing of infrared 14 

images from road traffic'. In: Proceedings of SPIE – The International Society for Optical Engineering, 590, 15 

1986, p. 233–240. 16 

[2] Cremer, F., De Jong, W., Schutte, K.: 'Processing of polarimetric infrared images for landmine detection'. In: 17 

Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar, 2003, p. 216–221. 18 

[3] Rainieri, S., Bozzoli, F., Pagliarini, G.: 'Wiener filtering technique applied to thermographic data reduction 19 

intended for the estimation of plate fins performance', Experimental Thermal and Fluid Science, 28, 2004, pp. 20 

179–183. 21 

[4] Vardasca, R., Bajwa, U.: 'Segmentation and noise removal on thermographic images of hands', Thermology 22 

International, 18, 2008, pp. 89–94. 23 

[5] San Martín, C., Meza, P., Torres, S., Carrillo, R.: 'Improved infrared face identification performance using 24 

nonuniformity correction techniques', Lectures Notes in Computer Science (including subseries Lecture Notes in 25 



49 
 

Artificial Intelligence and Lecture Notes in Bioinformatics), 5259, 2008, pp. 1115–1123. 1 

[6] Liu, Z.-Y., Zhou, F.-G., Bai, X.-Z.: 'Target location for IR image based on IR/visual image registration'. In: 2 

Proceedings of SPIE – The International Society for Optical Engineering, 7383, 2009, article number 738336. 3 

[7] Liu, Z., Jiang, Y., Lv, J., Zhu, H.: 'Adaptive NUC algorithm for uncooled IRFPA based on neural networks'. In: 4 

Proceedings of SPIE – The International Society for Optical Engineering, 5th International Symposium on 5 

Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Detector, 6 

Imager, Display, and Energy Conversion Technology, Dalian (China) 7658, 2010, article number: 76582W. 7 

[8] Hidalgo-Gato, R., Mingo, P., López-Higuera, J.M., Madruga, F.J.: 'Pre-processing techniques of thermal 8 

sequences applied to online welding monitoring', Quantitative InfraRed Thermography Journal, 9, 2012, pp. 69–9 

78. 10 

[9] Peng, Z., Wang, X., Lu, J.: 'A heating window effect imaging experiment and its analysis'. In: Proceedings of 11 

SPIE – The International Society for Optical Engineering, 5th International Symposium on Photoelectronic 12 

Detection and Imaging (ISPDI), Beijing (China) 8907, 2013, article number: 890715. 13 

[10] Wang, P., Gao, L., Chen, G.-Q., Ding, R.-J.: 'Design of real-time image processing system for IRFPA based on 14 

FPGA'. In: Proceedings of SPIE – The International Society for Optical Engineering, 5th International Symposium 15 

on Photoelectronic Detection and Imaging (ISPDI), Beijing (China) 8907, 2013, article number: 89071B. 16 

[11] Murariu, A.C., Crasteti, S.: 'Nondestructive assessment of anticorrosive aluminium coatings by active infrared 17 

thermography', Advanced Materials Research, 814, 2013, pp. 235–243. 18 

[12] Hidalgo-Gato, R., González De Ulloa, L., Andrés, J.R., Martínez, S., Pérez, A., Madruga, F.J., López-Higuera, 19 

J.M.: 'A thermographic step-heating technique for metallic pollutant detection in soils', Infrared Physics and 20 

Technology, 69, 2015, pp. 191–197. 21 

[13] Halloua, H., Elhassnaoui, A., Saifi, A., Elamiri, A., Obbadi, A., Errami, Y., Sahnoun, S.: 'Neural networks and 22 

genetic algorithms for the evaluation of coatings thicknesses in thermal barriers by infrared thermography data', 23 

Procedia Structural Integrity, 5, 2017, pp. 997–1004. 24 

[14] Li, X., Gao, B., Woo, W.L., Tian, G.Y., Qiu, X., Gu, L.: 'Quantitative surface crack evaluation based on eddy 25 

current pulsed thermography', IEEE Sensors Journal, 17, 2017, pp. 412–421. 26 

[15] Kurpinski, M., Fidali, M.: 'Improvement of bonded joint defects visibility by use of selected infrared image 27 

processing methods', Applied Condition Monitoring, 10, 2018, pp. 169–180. 28 



50 
 

[16] Zhang, H., Avdelidis, N.P., Osman, A., Ibarra-Castanedo, C., Sfarra, S., Fernandes, H., Matikas, T.E., Maldague, 1 

X.P.V.: 'Enhanced infrared image processing for impacted carbon/glass fiber-reinforced composite evaluation', 2 

Sensors, 18, 2018, article number: 45. 3 

[17] Moustakidis, S., Anagnostis, A., Chondronasios, A., Karlsson, P., Hrissagis, K.: 'Excitation-invariant pre-4 

processing of thermographic data', Proceedings of the Institution of Mechanical Engineers, Part O: Journal of 5 

Risk and Reliability, 232, 2018, pp. 435–446. 6 

[18] Shanmugan, C., Chandira Sekaran, E.: 'IRT image segmentation and enhancement using FCM-MALO approach', 7 

Infrared Physics and Technology, 97, 2019, pp. 187–196. 8 

[19] Wang, D., Wang, Z., Zhu, J., Ciampa, F.: 'Enhanced pre-processing of thermal data in long pulse thermography 9 

using the Levenberg-Marquardt algorithm', Infrared Physics and Technology, 99, 2019, pp. 158–166. 10 

[20] Wang, Q., Hu, Q., Qiu, J., Pei, C., Li, X., Zhou, H., Xia, R., Liu, J.: 'Image enhancement method for laser infrared 11 

thermography defect detection in aviation composites', Optical Engineering, 58, 2019, article number: 103104. 12 

[21] Kaur, K., Mulaveesala, R.: 'An efficient data processing approach for frequency modulated thermal wave imaging 13 

for inspection of streel material', Infrared Physics and Technology, 103, 2019, article number: 103083. 14 

[22] Maskuri, N.L., Abu Bakar, M.H., Ismail, A.K.: 'The image processing technique of defect detection in metal 15 

materials using active infrared thermography', Advanced Structured Materials, 131, 2020, pp. 151–160. 16 

[23] Barreira, E., Almeida, R.M.S.F., Simões, M.L., Rebelo, D.: 'Quantitative infrared thermography to evaluate the 17 

humidification of lightweight concrete', Sensors, 20, 2020, article number: 1664. 18 

[24] Ratsakou, A., Reboud, C., Skarlatos, A., Lesselier, D.: 'Model based characterisation of delamination by means 19 

of thermographic inspection', Journal of Phsics: Conference Series, 1476, 2020, article number: 012005. 20 

[25] Díaz, J.J.L., Vlaminck, M., Lefkaditis, D., Vargas, S.A.O., Luong, H.: 'Solar panel detection within complex 21 

backgrounds using thermal images acquired by uavs', Sensors, 20, 2020, pp. 1–16. 22 

[26] Castellini, P., Martarelli, M., D’Antuono, A., Paone, N.: 'Soft-sensing reconstruction of in-depth defect geometry 23 

fron active IR-thermography data', Measurement Science and Technology, 31, 2020, article number: 125902. 24 

[27] Hu, J., Zhang, H., Sfarra, S., Sergi, C., Perilli, S., Ibarra-Castanedo, C., Tian, G., Maldague, X.: 'Enhanced 25 

infrared sparse pattern extraction and usage for impact evaluation of basalt-carbon hybrid composites by pulsed 26 

thermography', Sensors, 20, 2020, pp. 1–18. 27 

[28] Sfarra, S., Cicone, A., Yousefi, B., Ibarra-Castanedo, C., Perilli, S., Maldague, X.: 'Improving the detection of 28 



51 
 

thermal bridges in buildings via on-site infrared thermography: the potentialities of innovative mathematical 1 

tools', Energy & Buildings, 128, 2019, pp. 159–171. 2 

[29] Perilli, S., Regi, M., Sfarra, S., Nardi, I.: 'Comparative analysis of heat transfer for an advanced composite 3 

material used as insulation in the building field by means of Comsol Multiphysics® and Matlab® computer 4 

programs', Romanian Journal of Materials, 46, 2016, pp. 185–195. 5 

[30] Liu, K., Perilli, S., Chulkov, A.O., Yao, Y., Omar, M., Vavilov, V., Liu, Y., Sfarra, S.: 'Defining the thermal 6 

features of sub-surface reinforcing fibres in non-polluting thermo-acoustic insulating panels: a numerical-7 

thermographic-segmentation approach', Infrastructures, 6, 2021, pp. 1–30. 8 

[31] Parker, W.J., Jenkins, R.J., Butter, C.P., Abbot, G.L.: 'Flash method of determining thermal diffusivity, heat 9 

capacity and thermal conductivity', J. Appl. Phys, 32, 1961, pp. 1679–1684. 10 

[32] Data sheet of the OSRAM lamps. 11 

 http://www.osram.com/media/resource/hires/333561/theratherm_siccatherm_infrared-en.pdf. Accessed 04 12 

January 2021. 13 

[33] Comsol. https://www.comsol.com/blogs/much-memory-needed-solve-large-comsol-models/. Accessed 04 14 

January 2021. 15 

[34] Huang, N.E., Shen, Z.,Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q.,Yen, N.C., Tung, C.C., Liu, H.H.: 'The 16 

empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis'. 17 

Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 18 

1998, pp. 903. 19 

[35] Lin, L., Wang, Y., Zhou, H.: 'Iterative filtering as an alternative algorithm for empirical mode decomposition', 20 

Adv. Adapt. Data Anal., 1, 2009, pp. 543–560. 21 

[36] Cicone, A., Liu, J., Zhou, H.: 'Adaptive local iterative filtering for signal decomposition and instantaneous 22 

frequency analysis', Appl. Comput. Harmon. Anal., 41, 2016, pp. 384–411.  23 

[37] Cicone, A.: 'Nonstationary signal decomposition for dummies', Advances in Mathematical Methods and High 24 

Performance Computing, Advances in Mechanics and Mathematics 41, Chapter 3, Springer Nature, 2019.  25 

[38] Piersanti, M. , Materassi, M. , Cicone, A. , Spogli, L., Zhou, H., Ezquer, R. G.: 'Adaptive Local Iterative Filtering: 26 

a promising technique for the analysis of non-stationary signals'. Journal of Geophysical Research - Space 27 

Physics, 123 (1), 2018, pp. 1031-1046.  28 

http://www.osram.com/media/resource/hires/333561/theratherm_siccatherm_infrared-en.pdf
https://www.comsol.com/blogs/much-memory-needed-solve-large-comsol-models/


52 
 

[39] Cicone, A., Liu, J., Zhou, H.: 'Hyperspectral chemical plume detection algorithms based on multidimensional 1 

iterative filtering decomposition', Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., 374, 2016, pp. 20150196. 2 

[40] Spogli, L., Piersanti, M., Cesaroni, C., Materassi, M., Cicone, A., Alfonsi, L., Romano, V., Ezquer, R.G.: 'Role 3 

of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis'. 4 

Journal of Space Weather and Space Climate, 9 (4), 2019, A35. 5 

[41] Cicone, A., Zhou, H.: 'Numerical Analysis for Iterative Filtering with New Efficient Implementations Based on 6 

FFT', Numerische Mathematik 147, 2021, pp.1-28. 7 

[42] Cicone, A., Dell'Acqua, P.: 'Study of boundary conditions in the Iterative Filtering method for the decomposition 8 

of nonstationary signals'. Journal of Computational and Applied Mathematics, 373, 2019, 112248.  9 

[43] Cicone, A., Garoni, C., S. Serra-Capizzano, S.: 'Spectral and convergence analysis of the Discrete ALIF method'. 10 

Linear Algebra and its Applications, 580, 2019, pp. 62-95.  11 

[44] Cicone, A.: 'Iterative Filtering as a direct method for the decomposition of non-stationary signals'. Numerical 12 

Algorithms, 85 (3) , 2020, pp. 811-827.  13 

[45] Cicone, A., Zhou, H.: 'Multidimensional iterative filtering method for the decomposition of high-dimensional 14 

non-stationary signals', Numer. Math. Theory Methods Appl., 10, 2017, pp. 278–298.  15 

[46] Cicone, A., Pellegrino, E.: 'Multivariate Fast Iterative Filtering for the decomposition of nonstationary signals'. 16 

Submitted 17 

[47] Pearson, K.: 'On Lines and Planes of Closest Fit to Systems of Points in Space' (PDF). Philosophical Magazine, 18 

2(11), 1901, pp. 559–572. 19 

[48] Hotelling, H.: 'Analysis of a complex of statistical variables into principal components'. Journal of Educational 20 

Psychology, 24, 1933, pp. 417–441, and pp. 498–520. 21 

[49] Rajic, N.: 'Principal component thermography for flaw contrast enhancement and flaw depth characterization in 22 

composite structures', Composite Structures, 58, 2002,pp. 521–528. 23 

[50] H. Zhang et al.: 'Optical and Mechanical Excitation Thermography for Impact Response in Basalt-Carbon Hybrid 24 

Fiber-Reinforced Composite Laminates', IEEE Transactions on Industrial Informatics,  14(2), 2018, pp. 514–25 

522. 26 

[51] H. Zhang et al.: 'Optical excitation thermography for twill/plain weaves and stitched fabric dry carbon fiber 27 

preform inspection', Composites Part A: Applied Science and Manufacturing, 107, 2018, pp. 282-293. 28 



53 
 

[52] Fernandes, H., Zhang, H., Figueiredo, A., Malheiros, F., Ignacio, L. H., Sfarra, S., Ibarra-Castanedo, C., 1 

Guimaraes, G., Maldague, X.: 'Machine Learning and Infrared Thermography for Fiber Orientation Assessment 2 

on Randomly-Oriented Strands Parts', Sensors, 18(1), 2018, 288. 3 

[53] Ahi, K.: 'Mathematical modeling of THz point spread function and simulation of THz imaging systems', IEEE 4 

Transactions on Terahertz Science and Technology, 7(6), 2017,pp. 747–754. 5 

[54] Yousefi, B., Sharifipour, H.M., Ibarra-Castanedo, C., Maldague, X.P.: 'Automatic IRNDT inspection applying 6 

sparse PCA-based clustering'. In: Electrical and Computer Engineering (CCECE), 2017 IEEE 30th Canadian 7 

Conference on (pp. 1-4), 2017. 8 

[55] Yousefi, B., Sfarra, S., Maldague, X.P.: 'Quantitative assessment in thermal image segmentation for artistic 9 

objects'. Optics for Arts, Architecture, and Archaeology VI, 10331, 2017, 1033108. 10 

[56] Sfarra, S., Ibarra-Castanedo, C., Paoletti, D., Maldague, X.: 'Infrared vision inspection of cultural heritage objects 11 

from the city of L’Aquila, Italy and its surroundings', Materials Evaluation, 71(5), 2013, pp. 561–570. 12 

[57] Yousefi, B., Sfarra, S., Ibarra-Castanedo, C., Maldague, X.P.: 'Comparative analysis on thermal non-destructive 13 

testing imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT)', 14 

Infrared Physics & Technology, 85, 2017, pp. 163–169. 15 

[58] Yousefi, B., Sfarra, S., Ibarra-Castanedo, C., Maldague, X.P.: 'Thermal ndt applying candid covariance-free 16 

incremental principal component thermography (ccipct)'. In: Thermosense: Thermal Infrared Applications 17 

XXXIX,  10214, 2017, p. 102141I. 18 

[59] Tillmann, A.M., Pfetsch, M.E.: 'The computational complexity of the restricted isometry property, the nullspace 19 

property, and related concepts in compressed sensing', IEEE Transactions on Information Theory, 60(2), 2014, 20 

pp. 1248–1259. 21 

[60] Tibshirani, R.: 'Regression shrinkage and selection via the lasso', Journal of the Royal Statistical Society. Series 22 

B (Methodological), 1996, pp. 267–288. 23 

[61] Tibshirani, R.: 'The lasso method for variable selection in the cox model', Statistics in Medicine, 16(4), 1997, pp. 24 

385–395. 25 

[62] Zou, H., Hastie, T.: 'Regularization and variable selection via the elastic net', Journal of the Royal Statistical 26 

Society: Series B (Statistical Methodology), 67(2), 2005, pp. 301–320. 27 

[63] Zou, H., Hastie, T., Tibshirani, R.: 'Sparse principal component analysis', Journal of Computational and graphical 28 



54 
 

statistics, 15(2), 2006, pp. 265–286. 1 

[64] Yousefi, B., Sfarra, S., Sarasini, F., & Maldague, X. P.: 'IRNDT Inspection via Sparse Principal Component 2 

Thermography'. In 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE) (pp. 1-4). 3 

IEEE, 2018. 4 

[65] Yousefi, B., Sfarra, S., Sarasini, F., Castanedo, C. I., & Maldague, X. P.: 'Low-rank sparse principal component 5 

thermography (sparse-pct): Comparative assessment on detection of subsurface defects'. Infrared Physics & 6 

Technology, 98, 2019, pp. 278-284. 7 

[66] Lee, D. D., & Seung, H. S.: 'Algorithms for non-negative matrix factorization'. In Advances in neural information 8 

processing systems, 2001, pp. 556-562. 9 

[67] Kim, H., & Park, H.: 'Sparse non-negative matrix factorizations via alternating non-negativity-constrained least 10 

squares for microarray data analysis'. Bioinformatics, 23(12), 2007, pp. 1495-1502. 11 

[68] Yousefi, B., Sfarra, S., Ibarra-Castanedo, C., Avdelidis, N. P., & Maldague, X. P.: 'Thermography data fusion 12 

and nonnegative matrix factorization for the evaluation of cultural heritage objects and buildings'. Journal of 13 

Thermal Analysis and Calorimetry, 136(2), 2019, 943-955. 14 

[69] Yousefi, B., Ibarra-Castanedo, C., & Maldague, X. P.: 'Infrared Non-Destructive Testing via Semi-Nonnegative 15 

Matrix Factorization'. In Multidisciplinary Digital Publishing Institute Proceedings,  27(1), 2019, pp. 13. 16 

[70] Cicone, A., Barbarino, G.: 'Conjectures on spectral properties of ALIF algorithm'. Submitted 17 

[71] Cicone, A., Wu, H.-T.: 'Convergence analysis of Adaptive Locally Iterative Filtering and SIFT method'. 18 

Submitted 19 

[72] Stallone, A., Cicone, A., Materassi, M.: 'New insights and best practices for the successful use of Empirical Mode 20 

Decomposition, Iterative Filtering and derived algorithms'. Scientific Reports, 10(1), 2020, 15161. 21 

[73] Materassi, M., Piersanti, M., Consolini, G., Diego, P., D’angelo, G., Bertello, I., Cicone, A.: 'Stepping into the 22 

equatorward boundary of the auroral oval: Preliminary results of multi scale statistical analysis'. Annals of 23 

Geophysics, 61, 2018. 24 

[74] Piersanti, G., Piersanti, M., Cicone, A., Canofari, P., Di Domizio, M.: 'An inquiry into the structure and dynamics 25 

of crude oil price using the fast iterative filtering algorithm', Energy Economics, 92, 2020, 104952 26 

[75] Spogli, L., Piersanti, M., Cesaroni, C., Materassi, M., Cicone, A., Alfonsi, L., Romano, V., Ezquer, R.G.: 'Role 27 

of the external drivers in the occurrence of low-latitude ionospheric scintillation revealed by multi-scale analysis', 28 



55 
 

2019 URSI Asia-Pacific Radio Science Conference, AP-RASC 2019, 2019, 8738254 1 

[76] Ghobadi, H., Spogli, L., Alfonsi, L., Cesaroni, C., Cicone, A., Linty, N., Romano, V., Cafaro, M.: 'Disentangling 2 

ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique', GPS 3 

Solutions, 24(3), 2020, 85. 4 

[77] Wu, Z., Huang, N. E., Chen, X.: 'The Multi-Dimensional Ensemble Empirical Mode Decomposition Method', 5 

Advances in Adaptive Data Analysis, 1(3), 2009, pp. 339–372. 6 

[78] Wu, Z., Huang, N.E.: 'Ensemble empirical mode decomposition: A noise-assisted data analysis method', 7 

Advances in Adaptive Data Analysis, 1, 2009, pp. 1–41. 8 

[79] Fawcett T. 'An introduction to ROC analysis'. Pattern Recogn. Lett., 27, 2006, pp. 861–874. 9 

[80] https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf,  accessed on 11 10 

November 2021. 11 

[81] Avci, E., Mollamahmutoǧlu, M.: 'UCS Properties of superfine coment-grounted sand'. Journal of Materials in 12 

Civil Engineering, 28(12), 2016, 06016015. 13 

[82] Sfarra, S., Ibarra-Castanedo, C., Theodorakeas, P., …, Maldague, X.P.V.: 'Evaluation of the state of conservation 14 

of mosaics: simulations and thermographic signal processing', International Journal of Thermal Sciences, 117, 15 

2017, pp. 287–315. 16 

[83] Yao, Y., Sfarra, S., Lagüela, S., …, Ambrosini, D.: 'Active thermography testing and data analysis for the state 17 

of conservation of panel paintings', International Journal of Thermal Sciences, 126, 2018, pp. 1143–151. 18 

[84] Chrysafi, A.P., Athanasopoulos, N., Siakavellas, N.J.: 'Damage detection on composite materials with active 19 

thermography and digital image processing', International Journal of Thermal Sciences, 116, 2017, pp. 242–253. 20 

[85] Liu, K., Huang, K.-L., Sfarra, S., Yang, J., Liu, Y., Yao, Y.: 'Factor analysis thermography for defect detection 21 

of panel paintings', Quantitative InfraRed Thermography Journal, accepted for publication, 2022, DOI: 22 

10.1080/17686733.2021.2019658. 23 

https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf,%20%20accessed%20on%2011%20November%202021
https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf,%20%20accessed%20on%2011%20November%202021
https://doi.org/10.1080/17686733.2021.2019658

	1. Introduction
	2. Materials
	The multi-layer material studied in the following is similar to the so-called ETICS - External thermal insulation composite system, but, in the case presented in this work, contains a different kind of finishing coating that includes hemp fibres. Ther...
	In Fig. 1a, a picture of the specimen taken from different angles is shown, while in Fig. 1b an image of the numerical model of the whole specimen is depicted. The numerical model inherent to the specimen was numerically analyzed via the work-plane te...
	Fig. 1: Specimen: a) photograph showing the five most important areas, and b) the numerical model representation of the whole specimen. In Fig. 1a, the red dash-dot rectangle highlights the grey area 2 (i.e., the acquamarine in Fig. 1b), where the gri...
	With reference to Fig. 1a, it should be noted that the following numerical modelling part, Section 4, is focalized on the entire specimen surface constituted by four areas, while the experimental part, Sections 5 and 6, is focused only on areas 1 and ...
	3. Acquisition of thermal images
	4. Numerical modelling
	4.1. Detail of the model
	4.2. Results and Discussion of the numerical part
	6. Post-processing techniques
	6.1. Performance measurement procedure adopted in this study
	6.2. Results and discussion of the experimental part
	7. Validation of the numerical analysis for a specific material via the Parker method
	8. Conclusions
	Acknowledgments
	References

