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Abstract

A new decomposition method for nonstationary signals, named Adaptive Local Iterative Filtering
(ALIF), has been recently proposed in the literature. Given its similarity with the Empirical Mode
Decomposition (EMD) and its more rigorous mathematical structure, which makes feasible to study its
convergence compared to EMD, ALIF has really good potentiality to become a reference method in the
analysis of signals containing strong nonstationary components, like chirps, multipaths and whistles, in
many applications, like Physics, Engineering, Medicine and Finance, to name a few.

In [9], the authors analyzed the spectral properties of the matrices produced by the ALIF method,
in order to study its stability. Various results are achieved in that work through the use of Generalized
Locally Toeplitz (GLT) sequences theory, a powerful tool originally designed to extract information on
the asymptotic behavior of the spectra for PDE discretization matrices. In this manuscript we focus on
answering some of the open questions contained in [9], and in doing so, we also develop new theory and
results for the GLT sequences.

Mathematics Subject Classification: 94A12, 68W40, 15A18, 47B06, 15B05

Index terms— iterative filtering, adaptive local iterative filtering, empirical mode decomposition, con-
vergence analysis, eigenvalue distribution, generalized locally Toeplitz sequences, nonostationary signals,
signal decomposition

1 Introduction

The decomposition and subsequent time–frequency analysis of nonstationary signals is an important topic of
research which received a significant acceleration from the publication of the seminal work on the Empirical
Mode Decomposition (EMD) method by Huang et al. [23] in 1998. In particular, Huang and his collegues at
NASA proposed to iteratively decompose a given signal into a finite number of “simple components” called
Intrinsic Mode Functions (IMFs) which fulfil the following two properties:
• the number of zero crossings and the number of extrema must be either equal or differ at most by one;
• at any point, the mean value of the envelope connecting the local maxima and the envelope connecting

the local minima must be zero.
The decompositions produced using the EMD algorithm attracted the interest of a high number of

researchers and it proved to be successful for a wide range of applications, as testified by the number of
citations, more than 146001, that the paper [23] by itself has received so far. Nevertheless, the EMD
algorithm is based on the iterative calculation of envelopes which are taylored on the specific signal under
study. This makes really hard to analyze the EMD mathematically. Furthermore, this approach has also
stability problems in the presence of noise, as illustrated in [42]. Several variants of the EMD have been
recently proposed to address this last problem, e.g. the Ensemble Empirical Mode Decomposition (EEMD)
[42], the complementary EEMD [44], the complete EEMD [40], the partly EEMD [47], the noise assisted
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multivariate EMD (NA-MEMD) [41]. They all allow to address the EMD stability issue as well as to
reduce the so called mode mixing problem [47]. But their mathematical understanding, like the EMD
one, is far from be complete. Furthermore, from the prospective of nonstationarities handling, they pose
new challenges since they worsen the mode–splitting problem present in the EMD algorithm [44]. Over
the years many alternative approaches to the EMD have been proposed, like, for instance, the sparse TF
representation [20, 21], the Geometric mode decomposition [45], the Empirical wavelet transform [19], the
Variational mode decomposition [15], and similar techniques [34, 28, 33]. All these methods are based on
optimization with respect to an a priori chosen basis. The only alternative method proposed so far in the
literature which is based on iterations, and hence does not require any a priori assumption on the signal
under analysis, is named Iterative Filtering [26, 10]. This alternative iterative method, although published
only recently, has already been used effectively in a wide variety of applied fields, like, for instance, in
[46, 2, 3, 5, 1, 4, 24, 43, 11, 32, 36, 29, 25, 27, 35, 37, 38, 30, 31, 18, 17]. The IF algorithm structure
resembles the EMD one. Its key difference is in the way the signal moving average is computed, i.e., via
correlation of the signal with an a priori chosen filter function, whereas, in the EMD–based methods, it is
computed as average between two envelopes. This apparently simple difference opens the doors to a complete
mathematical analysis of the IF method [22, 10, 8, 7, 13, 14, 39]. The only problem in the IF method is
its limitation in the variability of the instantaneous frequency of each single IMF component. This becomes
an issue when we are dealing with signals which contain strong nonstationarities, like the so called chirps
and whistles. This is the mode–splitting problem which effects also EMD and derived algorithms [44]. To
solve this problem, the Adaptive Local Iterative Filtering (ALIF) algorithm has been recently proposed in
[10]. ALIF is a flexible generalization of IF which completely overcome the limitations of the IF method
by computing wisely chosen local and adaptive signal averages. This makes ALIF algorithm an extremely
promising and unique technique for the extraction of chirps from nonstationary signals. However, the ALIF
convergence cannot be guaranteed a priori yet. Some advances have been recently achieved in the literature
[9, 12], but the main questions are still open. In particular in [9] the authors propose two conjectures which
we discuss thoroughly in this work.

The rest of this work is organized as follows. In Section 2 we recall all the basic mathematical tools
required to analyze the ALIF iteration matrix asymptotic spectral properties. In Section 3 we recall the
ALIF methods and the conjectures originally proposed in [9]. Sections 4 and 5 are devoted to the analysis
of the two conjectures, for which we need some technical and auxiliary results reported and proved in the
appendix. In particular, Appendix A contains some novel contributions to the theory of GLT sequences and
spectral symbols.

2 Spectral analysis tools

We present in this section the tools for analyzing the asymptotic spectral properties of the ALIF iteration
matrix. Throughout this paper, a matrix-sequence is any sequence of the form {An}n, where An is a square
matrix of size n.

If A is an n × n matrix and 1 ≤ p ≤ ∞, we denote by ‖A‖p the Schatten p-norm of A, i.e., the p-norm
of the vector (σ1(A), . . . , σn(A)) formed by the singular values of A. The Schatten ∞-norm ‖A‖∞ is the
largest singular value of A and coincides with the spectral norm ‖A‖. The Schatten 2-norm ‖A‖2 coincides
with the Frobenius norm, i.e., ‖A‖2 = (

∑n
i,j=1 |aij |2)1/2.

2.1 Singular value and eigenvalue distribution of a matrix-sequence

Let Cc(C) be the space of continuous complex-valued functions with bounded support defined on C and let
µp be the Lebesgue measure in Rp. If A is a square matrix of size n, the singular values and the eigenvalues
of A are denoted by σ1(A), . . . , σn(A) and λ1(A), . . . , λn(A), respectively.

Definition 1 Let {An}n be a matrix-sequence and let f : D ⊂ Rp → C be a measurable function defined on
a set D with 0 < µp(D) <∞.
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• We say that {An}n has a singular value distribution described by f , and we write {An}n ∼σ f , if for all
F ∈ Cc(C) we have

lim
n→∞

1

n

n∑
i=1

F (σi(An)) =
1

µp(D)

∫
D

F (|f(y1, . . . , yp)|)dy1 . . . dyp.

• We say that {An}n has an eigenvalue distribution described by f , and we write {An}n ∼λ f , if for all
F ∈ Cc(C) we have

lim
n→∞

1

n

n∑
i=1

F (λi(An)) =
1

µp(D)

∫
D

F (f(y1, . . . , yp))dy1 . . . dyp.

If {An}n has both a singular value and an eigenvalue distribution described by f , we write {An}n ∼σ,λ f .

2.2 Informal meaning of the singular value and eigenvalue distribution

Assuming f is Riemann-integrable, the eigenvalue distribution {An}n ∼λ f has the following informal
meaning [16, Section 3.1]: all the eigenvalues of An, except possibly for o(n) outliers, are approximately
equal to the samples of f over a uniform grid in D (for n large enough). For instance, if p = 1 and D = [a, b],
then, assuming we have no outliers, the eigenvalues of An are approximately equal to

f
(
a+ i

b− a
n

)
, i = 1, . . . , n,

for n large enough. Similarly, if p = 2, n = m2 and D = [a1, b1]× [a2, b2], then, assuming we have no outliers,
the eigenvalues of An are approximately equal to

f
(
a1 + i

b1 − a1
m

, a2 + j
b2 − a2
m

)
, i, j = 1, . . . ,m,

for n large enough. A completely analogous meaning can also be given for the singular value distribution
{An}n ∼σ f .

2.3 Zero-distributed sequences

A matrix-sequence {Zn}n such that {Zn}n ∼σ 0 is referred to as a zero-distributed sequence. In other words,
{Zn}n is zero-distributed if and only if limn→∞

1
n

∑n
i=1 F (σi(Zn)) = F (0) for all F ∈ Cc(C). Proposition 1 is

proved in [16, Section 3.4] and provides an important characterization of zero-distributed sequences together
with a useful sufficient condition for detecting such sequences. For convenience, throughout this paper we
use the natural convention 1/∞ = 0.

Proposition 1 Let {Zn}n be a matrix-sequence.
• {Zn}n is zero-distributed if and only if Zn = Rn +Nn with

lim
n→∞

n−1rank(Rn) = lim
n→∞

‖Nn‖ = 0.

• {Zn}n is zero-distributed if there is a p ∈ [1,∞] such that

lim
n→∞

n−1/p‖Zn‖p = 0.

2.4 Sequences of diagonal sampling matrices

If n ∈ N and a : [0, 1] → C, the nth diagonal sampling matrix generated by a is the n × n diagonal matrix
given by

Dn(a) = diag
i=1,...,n

a
( i
n

)
.

{Dn(a)}n is called the sequence of diagonal sampling matrices generated by a.
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2.5 Toeplitz sequences

If n ∈ N and f : [−π, π] → C is a function in L1([−π, π]), the nth Toeplitz matrix generated by f is the
n× n matrix

Tn(f) = [f̂i−j ]
n
i,j=1 =



f̂0 f̂−1 f̂−2 · · · · · · f̂−(n−1)

f̂1
. . .

. . .
. . .

...

f̂2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . f̂−2
...

. . .
. . .

. . . f̂−1
f̂n−1 · · · · · · f̂2 f̂1 f̂0


,

where the numbers f̂k are the Fourier coefficients of f ,

f̂k =
1

2π

∫ π

−π
f(θ)e−ikθdθ, k ∈ Z.

{Tn(f)}n is called the Toeplitz sequence generated by f .

2.6 Approximating classes of sequences

The notion of approximating classes of sequences (a.c.s.) is fundamental to the theory of Generalized Locally
Toeplitz (GLT) sequences and it is deeply studied in [16, Chapter 5].

Definition 2 Let {An}n be a matrix-sequence and let {{Bn,m}n}m be a sequence of matrix-sequences. We
say that {{Bn,m}n}m is an approximating class of sequences (a.c.s.) for {An}n if the following condition is
met: for every m there exists nm such that, for n ≥ nm,

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), ω(m) depend only on m, and lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

Roughly speaking, {{Bn,m}n}m is an a.c.s. for {An}n if, for large m, the sequence {Bn,m}n approximates
{An}n in the sense that An is eventually equal to Bn,m plus a small-rank matrix (with respect to the matrix

size n) plus a small-norm matrix. We will use the convergence notation {Bn,m}n
a.c.s.−→ {An}n to indicate

that {{Bn,m}n}m is an a.c.s. for {An}n. A useful criterion to test the a.c.s. convergence is provided in the
next theorem [16, Corollary 5.3].

Theorem 2.1 Let {An}n, {Bn,m}n be sequences of matrices, with An, Bn,m of size n, and let 1 ≤ p < ∞.
Suppose that for every m there exists nm such that, for n ≥ nm,

‖An −Bn,m‖pp ≤ ε(m,n)n,

where lim
m→∞

lim sup
n→∞

ε(m,n) = 0. Then {Bn,m}n
a.c.s.−→ {An}n.

2.7 GLT sequences

A GLT sequence {An}n is a special matrix-sequence equipped with a measurable function κ : [0, 1]×[−π, π]→
C, the so-called symbol (or kernel). We use the notation {An}n ∼GLT κ to indicate that {An}n is a GLT
sequence with symbol κ. The properties of GLT sequences that we shall need in this paper are listed below;
the corresponding proofs can be found in [6, 16].

GLT 1. If {An}n ∼GLT κ then {An}n ∼σ κ. If {An}n ∼GLT κ and the matrices An are Hermitian then
{An}n ∼λ κ.
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GLT 2. If {An}n ∼GLT κ and An = Xn + Yn, where

• every Xn is Hermitian,

• n−1/2‖Yn‖2 → 0,

then {An}n ∼λ κ.

GLT 3. We have

• {Tn(f)}n ∼GLT κ(x, θ) = f(θ) if f ∈ L1([−π, π]),
• {Dn(a)}n ∼GLT κ(x, θ) = a(x) if a : [0, 1]→ C is Riemann-integrable,
• {Zn}n ∼GLT κ(x, θ) = 0 if and only if {Zn}n ∼σ 0.

GLT 4. If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then

• {A∗n}n ∼GLT κ,
• {αAn + βBn}n ∼GLT ακ+ βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ.

GLT 5. {An}n ∼GLT κ if and only if there exist GLT sequences {Bn,m}n ∼GLT κm such that {Bn,m}n
a.c.s.−→

{An}n and κm → κ in measure over [0, 1]× [−π, π].

If {An}n has singular value, eigenvalue distribution and GLT symbol described by a single function κ, we
write {An}n ∼GLT,σ,λ κ.

3 The ALIF method

3.1 Terminology

Throughout this paper, any real function g : R→ R is also referred to as a signal. Without loss of generality,
we assume that the domain on which every signal g is studied is the reference interval [0, 1]. Outside the
reference interval, the signal is usually not known and so, whenever necessary, we have to make assumptions,
that is, we have to impose boundary conditions. The extrema of a signal g are the points belonging to (0, 1)
where g attains its local maxima and minima. If g = [g0, . . . ,gn−1] is a vector in Rn, the extrema of g
are the indices belonging to {1, . . . , n − 2} where g attains its local maxima and minima, i.e., the indices
j ∈ {1, . . . , n−2} such that gj > max(gj−1,gj+1) or gj < min(gj−1,gj+1). A filter k is an even, nonnegative,
bounded, measurable,2 and compactly supported function from R to R satisfying the normalization condition∫
R k(y)dy = 1. We refer to ` = sup{y > 0 : k(y) > 0} as the length of the filter k. Note that 0 < ` <∞ and

the support of k is contained in [−`, `].

3.2 The ALIF method

As mentioned in Section 1, the ALIF method is an iterative procedure whose purpose is to decompose
a signal g into a finite number of “simple components”, the so-called IMFs of g. Algorithm 1 shows the
pseudocode of the ALIF method, in which the input is a signal g and the output is the set of the IMFs of g.
The ALIF algorithm contains two loops. The inner loop captures a single IMF, while the outer loop produces
all the IMFs embedded in g. Considering the first iteration of the ALIF outer loop in which g1 = g, we see
that the key idea to extract the first IMF consists in computing the moving average of gm and subtract it
from gm itself so as to capture the fluctuation part Sm(gm) = gm − fm = gm+1. This is repeated iteratively
and, assuming convergence, the first IMF is obtained as IMF1 = limm→∞ S(gm). In practice, however, we
cannot let m go to ∞ and we have to use a stopping criterion, as indicated in Algorithm 1. Assuming
convergence, one can stop the inner loop at the first index m such that the difference gm+1 − gm is small in
some norm (possibly, a norm for which the convergence is known). A safer stopping criterion also imposes

2Throughout this paper, the word “measurable” always means “Lebesgue measurable”.
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Algorithm 1 (ALIF Algorithm) IMFs = ALIF(g)

IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

for each x ∈ [0, 1] compute the filter kx, whose length `(x) changes from x to x based on r itself
g1 = r
m = 1
while the stopping criterion is not satisfied do

compute the moving average fm of the signal gm as
fm(x) =

∫
R gm(y)kx(x− y)dy

gm+1 = gm − fm
m = m+ 1

end while
IMFs = IMFs ∪ {gm}
r = r − gm

end while

a limit on the maximum number of iterations. This method of IMF extraction is shared with the EMD
and IF algorithms and the only difference consists in the computation of the moving average. In the ALIF
method, it is computed through the convolution with a filter kx, that can depend on the point x. In practical
applications of the ALIF method, first a length function `(x) is computed based on the signal g1, and then
kx is chosen as 3

kx(y) =
k
(

y
`(x)

)
`(x)

, (1)

where k is an a priori fixed filter with length 1, so that the length of kx is `(x). Once the first IMF is
obtained, to produce the second IMF we apply the previous process to the remaining signal r = g − IMF1.
We then iterate this procedure to obtain all the IMFs of g, and we stop as soon as the remaining signal
becomes a trend signal, meaning that it possesses at most one extremum. Clearly, the sum of all the IMFs
of g produced by the ALIF method with the final trend signal r is equal to g.

Remark 1 In the case where `(x) is chosen at each iteration of the outer loop as a constant `, depending
on the remaining signal r but not on x, the ALIF method reduces to the IF method, whose convergence has
been studied in [9, 22].

3.3 The Discrete ALIF method

In practice, we usually do not know a signal g on the whole reference interval [0, 1]. What we actually know
are the samples of g over a fine grid in [0, 1]. We therefore need a discrete version of the ALIF algorithm,
which is able to (approximately) capture the IMFs of g by exploiting this sole information. From now on,
we make the following assumptions.
• For any signal g, no other information about g is available except for its samples at the n points xi = i

n−1 ,
i = 0, . . . , n − 1. Moreover, g = 0 outside [0, 1] (so we are imposing homogeneous Dirichlet boundary
conditions).

• The filter kx is defined as in (1) in terms of an a priori fixed filter k with length 1.
Under these hypotheses, what we may ask to a discrete version of the ALIF algorithm is to compute the
(approximated) samples of the IMFs of g at the sampling points xi, i = 0, . . . , n − 1. This is done by
approximating the moving average at the points xi through the rectangle formula or any other quadrature

3Note that kx in (1) is indeed a filter according to the terminology introduced in Section 3.1.
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rule. Setting for convenience xj = j
n−1 for all j ∈ Z, the rectangle formula yields the approximation

fm(xi) =

∫
R
gm(y)kxi(xi − y)dy ≈ 1

n− 1

∑
j∈Z

gm(xj)kxi(xi − xj), i = 0, . . . , n− 1,

where we note that the sum is finite because kxi is compactly supported. Assuming that, at each iteration
of the ALIF inner loop, the signal gm is set to zero outside the reference interval [0, 1], the previous equation
becomes

fm(xi) ≈
1

n− 1

n−1∑
j=0

gm(xj)kxi(xi − xj), i = 0, . . . , n− 1.

We then obtain

gm+1(xi) = gm(xi)− fm(xi)

≈ gm(xi)−
1

n− 1

n−1∑
j=0

gm(xj)kxi(xi − xj), i = 0, . . . , n− 1. (2)

Denoting by g = [g(x0), . . . , g(xn−1)]T the vector containing the samples of the signal g at the sampling
points xi, we can rewrite (2) in matrix form as follows:

gm+1 ≈ (In −Kn)gm, (3)

where In is the n× n identity matrix and

Kn =

[
1

n− 1
kxi(xi − xj)

]n−1
i,j=0

=

[
k
(xi−xj
`(xi)

)
(n− 1)`(xi)

]n−1
i,j=0

=

[
k
(

i−j
(n−1)`(xi)

)
(n− 1)`(xi)

]n−1
i,j=0

.

Algorithm 2 (Discrete ALIF Algorithm) IMFs = ALIF(g)

IMFs = {}
initialize the remaining signal r = g
while the number of extrema of r is ≥ 2 do

for each xi = x0, . . . , xn−1 compute the filter kxi , whose length `(xi) changes from xi to xi based on r
itself
g1 = r
m = 1
while the stopping criterion is not satisfied do

extend gm to Z by setting (gm)j = 0 for j 6∈ {0, . . . , n− 1}
compute the moving average fm of gm as
(fm)i = 1

n−1
∑
j∈Z(gm)jkxi(xi − xj), i = 0, . . . , n− 1

gm+1 = gm − fm
m = m+ 1

end while
IMFs = IMFs ∪ {gm}
r = r− gm

end while

The pseudocode for the Discrete ALIF method 4 is reported in Algorithm 2. The input is a vector
g = [g0, . . . ,gn−1]T = [g(x0), . . . , g(xn−1)]T containing the samples of a signal g at the sampling points

4Available at www.cicone.com.
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xi = i
n−1 , i = 0, . . . , n − 1, while the output is the set of vectors containing the (approximated) samples

of the IMFs of g at the same points xi. Note that the first four lines inside the inner loop of Algorithm 2
can be replaced by the sole equation gm+1 = (In −Kn)gm, which is obtained from (3) by turning “≈ ” into
“ = ”. Assuming convergence, the vector IMF1 containing the (approximated) samples of the first IMF is
obtained as IMF1 = (In − Kn)mr with r = g and m large enough so that the stopping criterion is met.
Similarly, IMF2 = (In − Kn)mr with r = g − IMF1 and m large enough, IMF3 = (In − Kn)mr with
r = g − IMF1 − IMF2 and m large enough, etc. Note that the matrix Kn used to compute IMFi is
different in general from the matrix Kn used to compute IMFj if i 6= j. Indeed, the matrix Kn changes
at every iteration of the outer loop because, although the filter k is fixed, the length `(xi) depends on the
remaining signal r and changes with it.

Remark 2 A necessary condition for the convergence of the Discrete ALIF method is that

|1− λi(Kn)| ≤ 1, i = 1, . . . , n. (4)

Indeed, if (4) is violated then ρ(In −Kn) > 1 and (In −Kn)mr diverges to ∞ (with respect to any norm of
Rn) for almost every vector r ∈ Rn.

3.4 Conjectures

The ALIF iteration matrix Kn is thus described by

Kn =
1

n− 1

[
k((xi − xj)/ln(xi))

ln(xi)

]n−1
i,j=0

where xi = i
n−1 and k, ln are real-valued functions. Moreover k is an even, non-negative, bounded, compactly

supported measurable function with ‖k‖1 = 1. We always consider k of length 1, meaning that it is supported
on [−1, 1], and we take ln(x) strictly positive on [0, 1]. From now on, we always suppose that L(x) :=
(n− 1)ln(x) is independent of n, so that we can rewrite Kn as

Kn =

[
k((i− j)/L(xi))

L(xi)

]n−1
i,j=0

.

In this case, it is possible to analyze the asymptotic spectral properties of the sequence {Kn}n through the
use of GLT theory introduced in Section 2. If we denote

κ(x, θ) :=
1

L(x)

∑
j∈Z

k

(
j

L(x)

)
eijθ,

then it is possible to come up with the following result.

Lemma 1 ([9]) Suppose that one of the following hypotheses is satisfied:

• L(x) is a step function,

• k(x), L(x) are continuous functions with L(x) ≥ L∗ > 0.

In this case,
{Kn}n ∼GLT,σ,λ κ(x, θ).

Notice that κ(x, θ) is a real valued function, since k is an even function. From Remark 2, the necessary
condition for the convergence of the Discrete ALIF method can be written as follows:

0 ≤ κ(x, θ) ≤ 2, (x, θ) ∈ [0, 1]× [−π, π]. (5)

Here we report the two conjectures from [9] that suggest how to generalize Lemma 1 and that (5) may be
actually a sufficient condition for the convergence of the ALIF method.
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Conjecture 1 Suppose that

fj(x) :=
k(j/L(x))

L(x)
is Riemann-integrable over [0, 1] ∀ j ∈ Z.

Then, for the sequence of ALIF iteration matrices {Kn}n,

{Kn}n ∼GLT,σ,λ κ(x, θ).

Conjecture 2 Assuming the hypotheses of Lemma 1, and (5), the Discrete ALIF converges.

In the next sections we discuss both the conjectures, developing new tools to answer and analyze the
questions.

4 Conjecture 1

In Section 2.4 and 2.5, we have introduced the fundamental GLT sequences {Dn(a)}n referred to a Riemann-
integrable function a, and Tn(f) referred to an L1 function f . From

Kn =

[
k((i− j)/L(xi))

L(xi)

]n−1
i,j=0

, fp(x) :=
k(p/L(x))

L(x)
, D′n(fp) := diag([fp(xi)]i=0,...,n−1)

one can easily verify that the ALIF iteration matrix Kn can be rewritten as

Kn =
∑
p∈Z

D′n(fp)Tn(eipθ).

The diagonal matrix D′n(fp) differs from Dn(fp) only because we are considering a different regular grid of
points where to evaluate the function fp. Anyway, it is possible to prove that the sequence {Dn(fp)−D′n(fp)}n
is zero-distributed whenever fp is Riemann-Integrable, so, thanks to GLT 3 and GLT 4, we can say that
{D′n(fp)}n ∼GLT fp and

Kn,m :=

m∑
p=−m

D′n(fp)Tn(eipθ) =⇒ {Kn,m}n ∼GLT κm :=

m∑
p=−m

fp(x)eipθ.

An argument similar to the one used for Lemma 1 tells us that κm is also a spectral symbol for {Kn,m}n.
Since κm → κ almost everywhere, and Kn,m is a truncation of Kn, it is natural to wonder whether a result
like GLT 5 is applicable in this situation to conclude that {Kn}n ∼GLT,σ,λ κ, as reported in Conjecture 1.

It turns out that the result actually holds. The proof relies on several technical lemmata on a.c.s.
convergence of certain matrix sequences, and some new results on spectral symbols: in order to improve the
readability of the paper, these are collected in Appendix A.

Theorem 4.1 Let

Kn =

[
k((i− j)/L(xi))

L(xi)

]n−1
i,j=0

,

where xi = i
n−1 and

• k : R→ R is an even, non-negative, bounded measurable function, supported on [−1, 1],

• L : [0, 1]→ R is a non-negative function.

9



Suppose that

fp(x) :=
k(p/L(x))

L(x)

is Riemann-Integrable for every p ∈ Z. Then,

{Kn}n ∼GLT,σ,λ κ(x, θ) :=
1

L(x)

∑
p∈Z

k

(
p

L(x)

)
eipθ =

∑
p∈Z

fp(x)eipθ.

Proof. Observe that the matrix Kn can be rewritten as

Kn =
∑
p∈Z

D′n(fp)Tn(eipθ),

where
D′n(fp) := diag([fp(xi)]i=0,...,n−1).

From Lemma 3 and GLT 3,4 we know that

Kn,m :=

m∑
p=−m

D′n(fp)Tn(eipθ) =⇒ {Kn,m}n ∼GLT κm :=

m∑
p=−m

fp(x)eipθ.

Notice that κm → κ in measure, since it converges pointwise. As a consequence, if we prove that

lim
m→∞

lim sup
n→∞

1

n
‖Kn −Kn,m‖22 = 0,

then Theorem 2.1 guarantees us that {Kn,m}
a.c.s.−−−→ {Kn}n and GLT 5 says that {Kn}n ∼GLT κ. Eventually,

since fj = f−j are real valued functions, Kn,m can be written as

Kn,m = D′n(f0) +

m∑
p=1

[
D′n(fp)Tn(eipθ) +D′n(fp)

∗Tn(eipθ)∗
]
.

so we can use, in order, Theorem A.1, Lemma 6 and Lemma 4 to conclude that

{Kn}n ∼GLT,σ,λ κ(x, θ).

Let us then estimate ‖Kn −Kn,m‖22. Notice that if p 6= 0, then k(p/L(x)) 6= 0 =⇒ L(x) ≥ p, so

‖Kn −Kn,m‖22 =
∑
i,j

(fi−j(xi−1)− fi−j(xi−1)χ|i−j|≤m)2

=
∑
i,j

k((i− j)/L(xi−1))2

L(xi−1)2
χ|i−j|>m

≤ ‖k‖2∞
∑
i,j

χ|i−j|>m

(i− j)2

≤ 2‖k‖2∞n
∞∑

p=m+1

1

p2

As a consequence, we conclude that

lim
m→∞

lim sup
n→∞

1

n
‖Kn −Kn,m‖22 ≤ lim

m→∞
lim sup
n→∞

2‖k‖2∞
∞∑

p=m+1

1

p2
= 2‖k‖2∞ lim

m→∞

∞∑
p=m+1

1

p2
= 0.

With an analogous proof one can see that conjecture is true even if fp are just continuous a.e.
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5 Conjecture 2

The statement of Conjecture 2 in itself is ambiguous, since in the ALIF method it has never been specified
a way to choose the length function `(x) that is needed to build the filter and the iteration matrix Kn. This
step is fundamental for the convergence of the method, and it is easy to build examples where a poor choice
of `(x) lead to an infinite loop, for almost any initial input r (in particular, for any r with more than two
extrema).

Example 1 If we require that k(0) = 1, k(±1) = 0 (for example, k(x) = χ[−1/2,1/2] or k(x) = 1− |x|), and
take L(x) ≡ 1, then it is evident that Kn = In and κ(x, θ) ≡ 1, so the conditions of Conjecture 5.4 are met.
In this case, the Discrete ALIF iteration yields g2 = (In −Kn)r = 0 for every initial signal r, so it can’t
converge, since the number of extrema of r never changes.

The example shows that the knowledge of κ(x, θ) is not enough to conclude whether the method converges.
Nonetheless, as shown in Theorem 4.1, it provides some information on the convergence of the inner loop,
since it begets an approximation of the eigenvalues of Kn. In fact, we can observe that in Example 1, the
inner loop always converges. As a consequence, we can reinterpret the Conjecture as follows:

Conjecture 2’ Assuming the hypotheses of Lemma 1, and (5), the inner loop of Discrete ALIF converges.

Sadly, it is possible to build a counterexample where ρ(In − Kn) > 1, that leads to a diverging inner
loop. Consider the matrix

Kn =

 0.7 0.48 0.15
0.34 0.38 0.34
0.24 0.41 0.49

 , (6)

that has negative determinant −0.00081, and thus it has a negative eigenvalue λ ∼ −0.0018 and ρ(In−Kn) ∼
1.0018 > 1. Every row can be seen as the coefficients of a nonnegative trigonometric polynomial, bounded
by 2. In particular,

• f1(θ) = 0.7 + 0.96 cos(θ) + 0.3 cos(2θ)

• f2(θ) = 0.38 + 0.68 cos(θ) + 0.496 cos(2θ) + 0.288 cos(3θ) + 0.124 cos(4θ) + 0.032 cos(5θ)

• f3(θ) = 0.49 + 0.82 cos(θ) + 0.48 cos(2θ) + 0.18 cos(3θ) + 0.03 cos(4θ)

In fact, the maximum of each function is attained at θ = 0, where

f1(0) = 1.96, f2(0) = 2, f3(0) = 2.

Moreover, if we substitute y = cos(θ), then

f1(θ) = 0.7 + 0.96 cos(θ) + 0.3 cos(2θ)

= (225y2 + 360y + 150)/375

= (15y + 12)2/375 + 6/375 ≥ 6/375 > 0,

f2(θ) = 0.38 + 0.68 cos(θ) + 0.496 cos(2θ) + 0.288 cos(3θ) + 0.124 cos(4θ) + 0.032 cos(5θ)

= (64y5 + 124y4 + 64y3 − 3y + 1)/125

= (y + 1)(64y4 + 60y3 + 4y2 − 4y + 1)/125

= (y + 1)((32y2 + 15y − 3)2 + (31y2 + 26y + 7))/2000 ≥ 0,

f3(θ) = 0.49 + 0.82 cos(θ) + 0.48 cos(2θ) + 0.18 cos(3θ) + 0.03 cos(4θ)

= (6y4 + 18y3 + 18y2 + 7y + 1)/25

= (y + 1)((y + 1/3)2(6y + 8) + 1/9)/25 ≥ 0,

11



where 31y2 + 26y + 7 > 0 for every y, and −1 ≤ y ≤ 1 implies that y + 1 ≥ 0 and 6y + 8 ≥ 2 > 0.

We want to find k(x) and L(x) that induce the matrix Kn. Recall that k(x) must be an even, non-
negative, bounded, measurable function with ‖k‖1 = 1, and compactly supported on [−1, 1] and the function
L(x) must be strictly positive on [0, 1].

In this case, n = 3 and x0 = 0, x1 = 1/2, x2 = 1, so if we impose L(x) to be a step function that takes
only three values L(x0), L(x1), L(x2), then for every x ∈ [0, 1], the symbol

κ(x, θ) :=
1

L(x)

∑
j∈Z

k

(
j

L(x)

)
eijθ.

is equal to κ(xi, θ) for some i = 0, 1, 2. Notice that, from the definition of Kn

Kn =

[
k((i− j)/L(xi))

L(xi)

]n−1
i,j=0

,

if we impose
κ(xi, θ) = fi+1(θ), i = 0, 1, 2, (7)

then automatically

κ(x, θ) = κ(xi, θ) = fi+1(θ) =⇒ 0 ≤ κ(x, θ) ≤ 2, (x, θ) ∈ [0, 1]× [−π, π]

and Kn takes the form in (6). Moreover, since L(x) is a step function, the hypotheses of Conjecture 2’ hold.
From (7), we need to equate the Fourier coefficients in θ, and since k needs to be an even function, it is
sufficient to impose

1

L(xi)
k

(
j

L(xi)

)
= (fi+1)j , i = 0, 1, 2, j ∈ N,

where (fi+1)j is the j-th Fourier coefficient of fi+1. Taking the values

L(0) = 3, L(1/2) =
105

19
, L(1) =

30

7

and k(0) = 21/10, we have

1

L(0)
k

(
j

L(0)

)
= (f1)j = 0, j > 2,

1

L(1/2)
k

(
j

L(1/2)

)
= (f2)j = 0, j > 5,

1

L(1)
k

(
j

L(1)

)
= (f3)j = 0, j > 4,

since k has support on (−1, 1), and

k(0)/L(0) = (f1)0 = 7/10, k(0)/L(1/2) = (f2)0 = 19/50, k(0)/L(1) = (f3)0 = 49/100.

The remaining conditions are reported in the following table:

x 19/105 7/30 1/3 38/105 7/15 19/35 2/3 7/10 76/105 19/21 14/15

k(x) 357/190 123/70 36/25 651/475 36/35 378/475 9/20 27/70 651/1900 42/475 9/140

Table 1: Conditions on the filter k(x).

Since all the points where k is evaluated are distinct, we can find an even, non-negative, bounded and
continuous measurable function k supported on (−1, 1), that respects all conditions. The most simple
example is a piecewise linear function connecting all the conditions shown in Figure 1. In this case, ‖k‖1 >
1, but notice that the filter k′(x) := k(x)/‖k‖1 and the same length function L(x) produce the matrix
K ′n = Kn/‖k‖1, that is still a counterexample to Conjecture 2’, since it has a negative eigenvalue, and
0 ≤ κ′(x, θ) = κ(x, θ)/‖k‖1 ≤ 2/‖k‖1 < 2.
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Figure 1: On the left, the conditions on the filter k(x). On the right, the step-function L(x).

6 Conclusions

In this work we tackle the open problems and conjectures left unsolved in [9], which regard the convergence
of the ALIF method.

In particular, we first review basic and fundamental properties of sequences of matrices, with particular
emphasis on the GLT sequences, approximating classes of sequences of matrices and their spectral properties.
Then we recall the ALIF method, its known properties and the two conjectures proposed in [9]. In Theorem
4.1 we prove that Conjecture 1 actually holds true. To achieve this result, we rely on several new technical
lemmata on approximating classes of sequences convergence of certain matrix sequences, namely the Almost-
Hermitian Sequences and Almost-Hermitian GLT Sequences, and some new results on spectral symbols. On
the other hand, we show by counterexample that Conjecture 2 cannot hold as it is. In particular we are able
to show that the current formulation of the conjecture is too loose. We propose, then, a tighter formulation
as Conjecture 2’. However, even in this case we are able to find a counterexample to the statement.

It remains an open problem if the ALIF algorithm can be proved to be convergent at all. We plan to
study this problem in a future work.
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A Appendix: Technical results

In this appendix, we provide the full details on some technical steps that are necessary for our analysis.
For convenience, we have split the appendix into various subsections, according to the specific nature of the
results contained therein. Note that in the following, if A is any subset of [0, 1], then AC is its complement
set in [0, 1].

A.1 Auxiliary Result

Lemma 2 Let a : [0, 1]→ C be a bounded function and call α-oscillation of a the function

ωα(x) := sup
z∈Bα(x)∩[0,1]

|a(z)| − inf
z∈Bα(x)∩[0,1]

|a(z)|,

where Bα(x) is the open ball with centre x and radius α. If a is continuous a.e., then also ωα is continuous
a.e.

Proof. Let E be the set of discontinuity points for a, and define

Z := {x ∈ [0, 1] | x− α ∈ E or x+ α ∈ E } .

Note that the measure of Z is at most two times the measure of E, so it is zero. Let now x ∈ ZC and
a(x) = b. We know that both x − α and x + α (when they are inside [0, 1]) are continuity points for a, so
given any ε > 0, there exists δ > 0 such that

|a(x− α)− a(x− α+ y)| ≤ ε, |a(x+ α)− a(x+ α+ y)| ≤ ε ∀|y| < δ.

As a consequence, for every 0 < y < δ the following holds

sup
z∈Bα(x+y)∩[0,1]

|a(z)| = max

{
sup

z∈(x+y−α,x+α)∩[0,1]
|a(z)|, sup

z∈[x+α,x+α+y)∩[0,1]
|a(z)|

}

=⇒ sup
z∈Bα(x+y)∩[0,1]

|a(z)| ≤ max

{
sup

z∈Bα(x)∩[0,1]
|a(z)|, |a(x+ α)|+ ε

}
≤ sup
z∈Bα(x)∩[0,1]

|a(z)|+ ε,

sup
z∈Bα(x+y)∩[0,1]

|a(z)| ≥ sup
z∈(x+y−α,x+α)∩[0,1]

|a(z)| ≥ sup
z∈Bα(x)∩[0,1]

|a(z)| − ε,

inf
z∈Bα(x+y)∩[0,1]

|a(z)| = min

{
inf

z∈(x+y−α,x+α)∩[0,1]
|a(z)|, inf

z∈[x+α,x+α+y)∩[0,1]
|a(z)|

}
=⇒ inf

z∈Bα(x+y)∩[0,1]
|a(z)| ≥ min

{
inf

z∈Bα(x)∩[0,1]
|a(z)|, |a(x+ α)| − ε

}
≥ inf
z∈Bα(x)∩[0,1]

|a(z)| − ε,

inf
z∈Bα(x+y)∩[0,1]

|a(z)| ≤ inf
z∈(x+y−α,x+α)∩[0,1]

|a(z)| ≤ inf
z∈Bα(x)∩[0,1]

|a(z)|+ ε.

∣∣∣∣∣ sup
z∈Bα(x+y)∩[0,1]

|a(z)| − sup
z∈Bα(x)∩[0,1]

|a(z)|

∣∣∣∣∣ ≤ ε,
∣∣∣∣ inf
z∈Bα(x+y)∩[0,1]

|a(z)| − inf
z∈Bα(x)∩[0,1]

|a(z)|
∣∣∣∣ ≤ ε. (8)

With an analogous argument we can show that (8) holds also for −δ < y < 0 and even if x+ α or x− α are
not inside [0, 1], so

|ωα(x)−ωα(x+y)| ≤

∣∣∣∣∣ sup
z∈Bα(x)∩[0,1]

|a(z)| − sup
z∈Bα(x+y)∩[0,1]

|a(z)|

∣∣∣∣∣+
∣∣∣∣ inf
z∈Bα(x+y)∩[0,1]

|a(z)| − inf
z∈Bα(x)∩[0,1]

|a(z)|
∣∣∣∣ ≤ 2ε.

This is enough to prove that ωα is continuous at every point of ZC , meaning it is continuous a.e.
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Lemma 3 Let xi = i
n−1 and

D′n(a) := diag([a(xi)]i=0,...,n−1)

for any Riemann-Integrable function a : [0, 1]→ C. Then

{D′n(a)}n ∼GLT a(x).

Proof. First of all, let us prove it in the case a(x) continuous. Notice that∣∣∣[D′n(a)−Dn(a)]i,i

∣∣∣ = |a(xi−1)− a(i/n)| ≤ ωa
(∣∣∣∣ i− 1

n− 1
− i

n

∣∣∣∣) = ωa

(∣∣∣∣ n− i
n(n− 1)

∣∣∣∣) ≤ ωa(1/n)

where ωa is the continuity modulus of a(x). Since ωa(x)
x→0−−−→ 0, we obtain that ‖D′n(a)−Dn(a)‖ n→∞−−−−→ 0

and in particular, from Proposition 1, we know that {Dn(a)−D′n(a)}n is zero-distributed. The thesis follows
from GLT 3 and GLT 4.

Suppose now that a(x) is Riemann-Integrable. From the density of the continuous function in L1([0, 1]),
we know that there exists a sequence of continuous functions am(x) converging in L1([0, 1]) to a(x). Notice
that a− am is Riemann-Integrable for any m.

lim
m→∞

lim sup
n→∞

1

n
‖D′n(am)−D′n(a)‖1 = lim

m→∞
lim sup
n→∞

1

n

n−1∑
i=0

|am(xi)− a(xi)|

= lim
m→∞

∫ 1

0

|am(x)− a(x)|dx = 0,

and Theorem 2.1 shows that
{D′n(am)}n

a.c.s.−−−→ {D′n(a)}n.

The thesis follows from GLT 5.

A.2 Almost-Hermitian Sequences

From now on, we say that a sequence {An}n is almost-Hermitian if there exists an Hermitian sequence {Ãn}n
such that ‖An − Ãn‖2 = o(

√
n).

Lemma 4 Suppose {An}n ∼GLT k is an almost-Hermitian sequence. In this case, k is real valued and

{An}n ∼GLT,σ,λ k.

Proof. Since An = Ãn + (An − Ãn) where Ãn is Hermitian and ‖An − Ãn‖2 = o(
√
n), from GLT 2 we

conclude that {An}n ∼λ k.

Lemma 5 The set of almost-Hermitian sequences is a real vectorial space.

Proof. If {An}n is an almost-Hermitian sequence and c ∈ R, then

‖cAn − cÃn‖2 = |c|‖An − Ãn‖2 = o(
√
n).

If {Bn}n is also almost-Hermitian, then

‖An +Bn − Ãn − B̃n‖2 ≤ ‖An − Ãn‖2 + ‖Bn − B̃n‖2 = o(
√
n).
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Lemma 6 Given a sequence of almost-Hermitian sequences {Bn,m}n suppose that there exists a sequence
{Bn}n with

lim
m→∞

lim sup
n→∞

1

n
‖Bn,m −Bn‖22 = 0.

In this case, {Bn}n is almost-Hermitian.

Proof. From the definition of almost-Hermitian sequences, we can find B̃n,m Hermitian matrices with

‖Bn,m − B̃n,m‖2 = o(
√
n). Let us now estimate the norm of the imaginary part of {Bn}n.

‖=(Bn)‖2 =
1

2
‖Bn −B∗n‖2

≤ 1

2

(
‖Bn −Bn,m‖2 + ‖Bn,m − B̃n,m‖2 + ‖B̃n,m −B∗n,m‖2 + ‖B∗n,m −B∗n‖2

)
= ‖Bn −Bn,m‖2 + ‖Bn,m − B̃n,m‖2

=⇒ lim sup
n→∞

1√
n
‖=(Bn)‖2 = lim

m→∞
lim sup
n→∞

1√
n
‖=(Bn)‖2

≤ lim
m→∞

lim sup
n→∞

1√
n
‖Bn −Bn,m‖2 +

1√
n
‖Bn,m − B̃n,m‖2 = 0

=⇒ ‖=(Bn)‖2 = o(
√
n).

Since Bn = <(Bn)+i=(Bn), the sequence {Bn}n is an Hermitian sequence {<(Bn)}n plus a o(
√
n) correction,

thus it is an almost-Hermitian sequence.

A.3 Almost-Hermitian GLT Sequences

The following result is formulated so that it can be applied to the problem at hand, but the same argument
works also with Dn(fp) instead of D′n(fp).

Theorem A.1 Given any Riemann Integrable function a : [0, 1]→ C and any natural number m, denote

An(a,m) := D′n(a)Tn(eimθ) +D′n(a)∗Tn(eimθ)∗,

where
D′n(a) := diag([a(xi)]i=0,...,n−1)

and xi = i
n−1 . In this case, if a0, a1, . . . , ap−1 are Riemann Integrable functions, then{

1

2
An(a0, 0) +

p−1∑
m=1

An(am,m)

}
n

is an almost-Hermitian sequence for every positive number p.

Proof. First of all, from GLT 3,4 and Lemma 3, we know that

{An(a,m)}n ∼GLT 2<(a(x)eimθ).

If m = 0, then An(a,m) is Hermitian for every n, so the thesis follows. Suppose now that m > 0 and define

the Hermitian matrix Ãn(a,m) as

[Ãn(a,m)]i,j =


a(xj−1), i− j = m,

a(xi−1), i− j = −m,
0, otherwise.

19



Let Zn = An(a,m)− Ãn(a,m), and notice that

[Zn]i,j =

{
a(xi−1)− a(xj−1), i− j = m,

0, otherwise.

Notice that if ωα is the α-oscillation relative to a, defined as

ωα(x) := sup
z∈Bα(x)∩[0,1]

|a(z)| − inf
z∈Bα(x)∩[0,1]

|a(z)|,

then ωα
α→0−−−→ 0 a.e. since

a continuous on x =⇒ ωα(x)
α→0−−−→ 0.

We can thus fix ε > 0 and find αε (that we call α for simplicity) such that

E := {x ∈ [0, 1] : ωα(x) ≥ ε } , µ(E) < ε/2.

Notice that a is bounded and continuous a.e., so by Lemma 2, ωα is also continuous a.e. and thus EC is an
open set up to a negligible set. Every open set can be approximated from the inside by a finite union of open
intervals, so we can take G ⊆ EC a finite union of open intervals with measure µ(G) > µ(EC)− ε/2 > 1− ε.
We can approximate the measure of G as

lim
n→∞

1

n
# { i | 0 ≤ i ≤ n− 1, xi ∈ G } = µ(G) > 1− ε.

Let N be an index such that m/N < α and

1

n
# { i | 0 ≤ i ≤ n− 1, xi ∈ G } > 1− 2ε ∀n > N.

If ‖a‖∞ = M and n > N , we have

‖Zn‖22 =

n−m∑
j=1

|a(xj+m−1)− a(xj−1)|2

=

xj−1 6∈G∑
j≤n−m

|a(xj+m−1)− a(xj−1)|2 +

xj−1∈G∑
j≤n−m

|a(xj+m−1)− a(xj−1)|2

≤ # { i | 0 ≤ i ≤ n− 1, xi ∈ GC } · 4M2 +

xj−1∈EC∑
j≤n−m

ωα(xj−1)2

≤ 8εnM2 + nε2.

As a consequence

lim sup
n→∞

1

n
‖Zn‖22 ≤ 8εM2 + ε2

for every ε > 0, so

lim sup
n→∞

1

n
‖Zn‖22 = 0.

We have thus shown that {An(a,m)}n is almost-Hermitian, and Lemma 5 let us conclude that{
1

2
An(a0, 0) +

p−1∑
m=1

An(am,m)

}
n

is also an almost-Hermitian sequence for every positive number p.
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