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ABSTRACT

We use the tidal deformations of the Moon induced by the Earth and the Sun as a tool for studying

the inner structure of our satellite. Based on measurements of the degree-two tidal Love numbers k2
and h2 and dissipation coefficients from the GRAIL mission, Lunar Laser Ranging and Laser Altimetry

on board of the LRO spacecraft, we perform Monte Carlo samplings for 120,000 possible combinations

of thicknesses and viscosities for two classes of the lunar models. The first one includes a uniform core,

a low viscosity zone (LVZ) at the core-mantle boundary, a mantle and a crust. The second one has

an additional inner core. All models are consistent with the lunar total mass as well as its moment of

inertia. By comparing predicted and observed parameters for the tidal deformations we find that the

existence of an inner core cannot be ruled out. Furthermore, by deducing temperature profiles for the

LVZ and an Earth-like mantle, we obtain stringent constraints on the radius (500 ± 1) km, viscosity,

(4.5±0.8)×1016 Pa·s and the density (3400 ± 10) kg/m3 of the LVZ. We also infer the first estimation

for the outer core viscosity, (2.07 ± 1.03) × 1017 Pa·s, for two different possible structures: a Moon

with a 70 km thick outer core and large inner core (290 km radius with a density of 6000 kg/m3), and

a Moon with a thicker outer core (169 km thick) but a denser and smaller inner core (219 km radius

for 8000 kg/m3).
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1. INTRODUCTION

The Moon is the most well-known extraterrestrial planetary body thanks to observations from ground-based and

space-borne instruments as well as lunar surface missions (see Lognonné et al. (2003); Williams et al. (2009); Mazarico

et al. (2010); Wieczorek et al. (2013); Viswanathan et al. (2018); Viswanathan et al. (2019)). Data from Lunar

Laser Ranging (LLR), magnetic, gravity, surface observations and seismic Apollo ground stations help us to quantify

the deformation undergone by the Moon due to body tides. These observations provide one of the most significant

constraints that can be employed to unravel the deep interior (Williams et al. (2014); Williams & Boggs (2015)).

Besides, gravity and LLR measurements provide good constraints on the moment of inertia as well as the total mass

of the Moon (Viswanathan et al. (2019)). The uncertainty on the gravity field and the total mass, measurements have

been significantly reduced by the Gravity Recovery and Interior Laboratory (GRAIL) mission.

The Moon deforms in response to tidal forcing exerted by, to first order, the Earth, the Sun and, by a lesser

extent, by other planetary bodies. The forcing generates periodic variations of the degree-2 shape and gravity that

depend on the internal composition and structure of the Moon. These changes in shape and gravity of the Moon are
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described by three geodetic parameters, called Tidal Love numbers (TLNs). The degree-two harmonic components

of tidal deformation can be expressed by Love numbers k2 (potential perturbation), h2 (vertical displacement) and

l2 (horizontal displacement). These low-degree TLNs are sensitive to the structure of the deep interior (e.g. Khan

et al. (2004)). Among them, the potential perturbation of TLN k2 is related to the tidal changes of the moment of

inertia and gravitational potential, and therefore is obtained from the precise measurement of the gravity field (e.g.

Konopliv et al. (2001)) and rotation (e.g. Dickey et al. (1994); Viswanathan et al. (2017)). Apart from k2, the vertical

displacement LN h2 has been estimated from LLR data (Williams & Boggs (2015); Viswanathan et al. (2019)), and

independently, by the Laser Altimeter on board the Lunar Reconnaissance Orbiter (LRO) missions (Mazarico et al.

(2014); Thor et al. (2021)). These observations lead to a dichotomy of the TLN h2 of 0.04394±0.0002 for LLR and

h2=0.0386±0.0022 for analysis of Lunar Orbiter Laser Altimeter (LOLA) data (Viswanathan et al. (2018); Thor et al.

(2021)). These TLNs have uncertainties that have been significantly improved by the analysis of the GRAIL, LLR

and LOLA data (Williams et al. (2014); Mazarico et al. (2014); Williams & Boggs (2015); Viswanathan et al. (2019)).

The horizontal displacement l2 TLN will not be discussed here because it has not been estimated by any geodetic

observation so far.

Apart from the geodetic constraints, the Moon and Mars (e.g. Zweifel et al. (2021)) are the only other bodies besides

the Earth for which seismic data are available. Seismic studies using the Apollo Passive Seismic Experiment (PSE)

constrain the seismic wave velocity distribution and therefore give a glimpse of the lunar interior structure (Garcia et al.

(2011); Weber et al. (2011)). In principle, seismic data are the most informative data for deriving the density, rigidity

and structure of any planetary interior. However, Moon-quakes are much weaker than earthquakes due to the lack of

plate tectonics (Shapiro et al. (2021); Zhao & Ohtani (2009)), and therefore they do not provide sufficient resolution

on the deep interior of the Moon to detect all internal boundaries. The seismic wave velocities have been shown to be

highly attenuated at a radius of ≈400km (P-waves) and ≈600km (S-waves) leaving the near-center structure uncertain

(Nakamura (1983); Khan et al. (2000); Lognonné et al. (2003)).

Evidence from rotational dissipation (Williams et al. (2001)) and seismic velocity modeling (Garcia et al. (2011);

Weber et al. (2011)) suggest the presence of a fluid and dense core but do not reject the hypothesis of a differentiated core

structure with a solid inner and an outer core. Other studies based upon geophysical constraints (Khan et al. (2004);

Matsumoto et al. (2015)) and the re-analysis of the Apollo seismic data suggested the existence of an attenuated region

called the low-viscosity zone (LVZ) originating from a melting layer at the core-mantle boundary (Khan & Mosegaard

(2001); Weber et al. (2011); Harada et al. (2014); Rambaux et al. (2014)). This layer has a reduction in viscosity

that can satisfy the seismic profiles, tidal parameters and dissipation coefficient (e.g. Weber et al. (2011)). Several

hypotheses exist about the present status of such a partially molten layer in the lunar mantle, inferring different levels

of hydration in the lowest part of the mantle (Nimmo et al. (2012)). Such hydration if demonstrated will be crucial

for a better understanding of mantle evolution and its exchange with the crust. The existence of a Moon inner core

cannot be completely justified with only the Apollo seismic records. Even if most of the evolution scenarios are in

favor of a differentiated core, the disappearance of the lunar magnetic field a few hundred thousand years after its

formation addresses the question of the past lunar dynamo (e.g. Le Bars et al. (2011)). The presence of an inner core

will favor a dynamo mechanism while a pure fluid core will favor a strong convecting scenario (Mighani et al. (2020)).

In this paper, we aim at establishing new constraints on the lunar internal structure by generating a random ensemble

of models and testing their compatibility with a range of observational constraints. In Sect. 2 we describe the semi-

analytical approach used to estimate TLNs for a given scenario of interior structure. Models that are compatible with

geodetic observations are identified and classified in homogeneous categories according to the procedure described in

Sect. 3. The result of this statistical selection is presented in Sect. 4, while in Sect. 5 we test the compatibility of

our models with plausible hypotheses about the internal temperature profile of the Moon. In Sect. 6 we discuss the

insights emerging from our analysis, before drawing our conclusions in Sect. 7.
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2. NUMERICAL APPROACH AND MODEL SETUP

We investigate the visco-elastic tidal deformation of the Moon by generating an ensemble of models and comparing

their predicted tidal response with the most recent observational constraints (Williams et al. (2005); Williams & Boggs

(2015); Matsumoto et al. (2015)). We use a modified version of the ALMA code (Spada & Boschi (2006); Spada (2008))

to numerically estimate the TLN for a periodic forcing as a function of the assumed interior structure. As a reference

model, we use the 1-D density and rigidity profiles of the Moon provided by Williams et al. (2014). However, we have

made several changes (see Sect. 2.3), especially for the lunar core following the assumptions of Garcia et al. (2011)

and Weber et al. (2011). Our set of models is divided into two major categories: (1) a 4-layer structure assuming a

uniform core, LVZ, mantle and crust, which shall refer to as Category 4 and (2) a 5-layer structure where the core

is further subdivided into a solid inner core and a viscous outer core, which will be called Category 5 . Both sets of

models are set up with the same crust and mantle characteristics and include an LVZ at the base of the Moon mantle,

as suggested in Harada et al. (2014).

2.1. ALMA code

The LNs describe how a planetary body (in our case the Moon) deforms in response to a surface load or an external

potential (in the present case, tidal forces) and how equipotential surfaces are consequently modified (Love (1909);

Spada (2008)). We use a semi-analytical code originally developed for studying Earth deformations, ALMA. The

method behind ALMA is explained in detail by Spada & Boschi (2006), and Melini et al. (2022) introduced many

new features to the up-to-date version of ALMA, ALMA3 1. This version incorporates the tidal excitation and the

possibility of defining a planetary profile with an elastic core. Here, we recall the most important characteristics

and equations and briefly discuss how it was adapted to the case of periodic forcing Melini et al. (2022). ALMA

computes the Loading and Tidal Love Numbers (hereafter, LLNs and TLNs) for an incompressible, self-gravitating,

radially layered planetary model. The approximation of incompressibility as assumed in the ALMA code does not

considerably affect our results due to the small size of the Moon. Moreover, Kamata et al. (2012) have obtained models

showing the differences between the compressibility and incompressibility assumption on the LLNs k′2 and h′2. For

periods shorter than 5 kyr, the incompressibility assumption does not critically affect the results. In Appendix A are

presented the comparisons of the Moon estimated TLNs with and without compressibility. In particular, Fig. A1 and

Table A1 show the differences for the TLN k2 and the quality factor. ALMA uses a multi-layered 1-D rheological

profile as input (i.e., radius, density, rigidity and viscosity). The original version of ALMA is aimed at evaluating time-

dependent LNs for a forcing term following a Heaviside time history. Within the framework of Viscoelastic Normal

Modes (VNMs), this is accomplished by computing the LNs in the Laplace domain and performing a numerical inverse

Laplace transform in order to retrieve the LNs in the time domain. ALMA takes advantage of a non-conventional

technique of Laplace inversion, the so-called ”Post-Widder method” (Post (1930); Widder (1934)), introduced and

benchmarked in Spada & Boschi (2006), which allows to overcome most of the intrinsic limitations of VNMs. Since

the Post-Widder method requires a numerical sampling of the LNs in the Laplace domain, ALMA computes the

Laplace-transformed solution of the equilibrium equations as follows:

~x(R, s) = f(s)[PxW (s)J ][PbW (s)J ]−1~b (1)

with

~x(R, s) = (u, v, φ)t (2)

where u, v and φ are the vertical and horizontal components of the displacement and the incremental potential,

respectively. In Eq. (1), R is the planet radius, s is the Laplace variable, f(s) is the Laplace transform of the time-

history of the forcing term, W (s) is the (6×6) matrix that propagates the solution from the core radius to the external

surface, Px and Pb are 3×6 projection operators, J is a 6 × 3 matrix which accounts for the core-interface boundary

conditions, and ~b is a vector expressing the loading or tidal boundary conditions at the surface (e.g. Sabadini et al.

(1982); Spada (2008)). The propagator W has the form:

W (s) =

1∏
j=L+1

Yi(rj+1, s)Y
−1
j (rj , s) (3)

1 available at https://github.com/danielemelini/ALMA3

https://github.com/danielemelini/ALMA3
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where the product index j decreases from j = L + 1 to j = 1, rj (j = 1, ..., L + 2) is the radius of each interface, L

is the number of layers surrounding the central sphere, r1 is the radius of the spherical layer, rL+1 is the lithosphere-

mantle boundary and rL+2 = R. For models assuming a uniform core (Category 4), r1 corresponds to the core-mantle

boundary, while for models with a layered core (Category 5), the core-mantle boundary is at r2 and r1 is the interface

between the inner and outer core.

In Eq. (3), Y (r, s) is the 6× 6 fundamental matrix of the system of differential equations describing the radial part

of the equilibrium and Laplace equation (Spada & Boschi (2006)) whose analytical form is given in Sabadini et al.

(1982), while the elements of its inverse Y −1(r, s) are given by Vermeersen et al. (1996). For an incompressible planet,

the mantle rheology enters in Y (r, s) through the s-dependent complex modulus (or effective shear modulus), whose

form depends upon the kind of (linear) rheological laws assumed for the mantle (Spada (2008)). ALMA can deal with

several linear rheological laws; those used for our study are listed in Table 2.

If the external forcing has a periodic time dependence, the solution can be obtained by setting f(s) = 1 and s = iω

in Eq. (1), where ω is the forcing frequency and i is the imaginary unit. In this case, the solution vector can be written

as:

~x(R,ω) = [PxW (iω)J ][PbW (iω)J ]−1~b (4)

The TLNs can then be obtained from the solution vector ~x(a, ω) = (u(ω), v(ω), φ(ω))t with the relation: u(ω)

v(ω)

φ(ω)

 = φext

 h/γ

l/γ

−(1 + k)

 (5)

where the ω-dependence on the right-hand side has been left implicit, φext is the potential of the tide-raising body and

γ is the surface gravity acceleration. According to (e.g. Wu & Peltier (1982)), Eq. (5) can be equivalently written as: h(ω)

l(ω)

k(ω)

 =

 ξu

ξv

−1− ξ
γφ

 (6)

where ξ = mm/a is the ratio between the Moon mass mm and its radius a. Once the parameters of the layers have

been set as inputs (i.e., radius, density, rigidity and viscosity of each layer), ALMA3 directly computes the real and

imaginary parts of the LNs using Eqs. (4) and (6). For a Heaviside forcing, the short and long-term asymptotic

behaviours of the LNs correspond to the limits for s → ∞ and s → 0 of Eq. (1), respectively, and are commonly

referred to as ”elastic” and ”fluid” Love numbers (e.g. Hide & Dickey (1991). With ALMA we are then able to

estimate the tidal response of the Moon through frequency-dependent complex-valued TLNs. We also compute quality

factors (Q), the corresponding dissipation coefficients, which are sensitive to the viscosity at the CMB interface. To

obtain Q, we first get from ALMA the real and imaginary part of TLNs k2 (<(k) and =(k)), respectively. The complex

LN k obtained from Eq. (6) can be expressed as:

k = <(k) + i=(k) (7)

which gives

|k| =
√

[<(k)]2 + [=(k)]2 (8)

so that the tidal dissipation coefficient is calculated as follows,

Q =
|k|

[=(k)]
. (9)

As described in Williams & Boggs (2015) and in Sect. 2.2, the major periods of interest for the Earth-Moon system

are F =27.212 days and `′ = 365.260 days. Other periods were also discussed in previous studies but, as explained in

Williams & Boggs (2015), the dissipation terms at 3-year and 6-year are more complicated to estimate from the LLR

analysis and therefore most affected by uncertainties. Improving the 3-year and 6-year dissipating terms would lead

to better constraints on the results. This is the reason why only the dissipation at 27.212 days and 365.260 days are

accounted for in this study. We thus compare the ALMA outputs to the TLNs and dissipation coefficient obtained by

Williams et al. (2005); Williams & Boggs (2015); Viswanathan et al. (2018); Thor et al. (2021).
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Table 1. Selenodetic data used to constrain the modeled interior of the Moon. The Delaunay arguments F and `′ correspond
to periods defined by Williams & Boggs (2015) of 27.212 days and 365.260 days, respectively. [1] Williams et al. (2005); [2]
Williams et al. (2014); [3] Williams & Boggs (2015); [4] Viswanathan et al. (2017); [5] Thor et al. (2021); [6] Goossens &
Matsumoto (2008); [7] Matsumoto et al. (2015).

Data Symbol Value 3-σ Reference

Mean radius (km) R 1737.1 [3]

Total mass (kg) M 7.34630 × 1022 ± 0.00264 × 1022 [3]

Moment of Inertia C/MR2 0.393112 ± 3.6 × 10−5 [2, 7]

Potential perturbation k2 0.02346 ± 2.2 × 10−3 [1, 6]

Vertical displacement h2 0.0386 - 0.0430 – [4,5]

Monthly dissipation QF 38 ± 12 [2]

Yearly dissipation Q`′ 41 ± 27 [2]

Monthly libration (k2/Q)F 6.4 × 10−4 ± 4.5 [3]

Yearly libration (k2/Q)`′ 6.2 × 10−4 ± 4.2 [3]

2.2. Observational constraints of the Moon

To delineate the frequency-dependence of the tidal parameters, we employed selenodetic observations of the mean

radius (R), the mass (M), the normalized moment of inertia (C/MR2), the TLNs of degree 2, k2 and h2, and the

dissipation coefficient (Q) as reported in previous studies (e.g. Williams et al. (2005); Goossens & Matsumoto (2008);

Matsumoto et al. (2015); Williams & Boggs (2015)). The total mass, as well as the MoI, are derived from the GRAIL

degree 2 gravity coefficient determination and LLR determination (Williams et al. (2014)), at the Delaunay arguments

F of 27.212 days and `′ of 365.260 days (see Table 1). We will use the estimations of dissipation coefficient and TLNs

for these two frequencies as they were deduced from LLR observations and Fourier analysis by Williams et al. (2014).

The estimates for k2 that will be used as first constraints in this work (see Table 1) are mostly based on LLR and

GRAIL data with values in between 0.0227 - 0.0310 corresponding to values proposed by Williams et al. (2005, 2014).

Recent studies have shown that the observed k2 values can be reduced to 0.02416± 0.00022 by taking the ellipticity of

the gravity field into account (Williams & Boggs (2015)). In addition, the k2 TLNs can be reduced to 0.0227± 0.0025

taking into account the fluid core oblateness (Dickey et al. (1994); Williams et al. (2001); Konopliv et al. (2006);

Williams et al. (2005, 2006); Viswanathan et al. (2017)) .

In addition, the TLN h2 is also considered. However, due to large discrepancies reported by Viswanathan et al.

(2017) and Thor et al. (2021), divergences between the Lunar Laser Altimeter (LOLA) and the LLR-derived values

are observed. We use the admitted range of h2 (Table 1) for constraining our results.

2.3. Geophysical inputs

As inputs for ALMA, we need to implement 1-D profiles that describe the hypothetical interior structure of the

Moon. As mentioned in Sect. 2.1, the radius, the density, the rigidity and the viscosity are required to compute

TLNs. Table 2 shows the structure of the 1-D profiles that we considered, the variability ranges of input parameters

(density, rigidity, viscosity) and the rheological laws assumed in each layer. Our 1-D profiles (see Fig. 1) are based on

the seismologically-derived density and wave velocity (Weber et al. (2011); Garcia et al. (2011); Garcia et al. (2019)).

The crust and the mantle are well-constrained thanks to the seismic studies from Gagnepain-Beyneix et al. (2006);

Weber et al. (2011), see also Viswanathan et al. (2019); Tan & Harada (2021). So we assign to these two layers

constant rheological parameters as listed in Table 2. Previous studies (Harada et al. (2014, 2016)) have shown that

the attenuation of the seismic waves in the deep interior is expected to be consistent with a viscosity reduction at

the core-mantle boundary. This viscosity contrast may explain the frequency dependence of the dissipation coefficient

(Rambaux et al. (2014); Harada et al. (2014); Matsumoto et al. (2015); Harada et al. (2016)). For this LVZ layer, we

thus consider a specific density and rigidity while we explore a wide range of viscosity values to investigate its effect

on the TLNs and dissipation coefficient (see Table 2). With our method, we expect to obtain a strong constraint of

the LVZ viscosity as stated by Harada et al. (2014). The core remains the most uncertain part of the lunar interior.

Hence, we consider four-layer models (Category 4) with only a Newtonian core and five-layer models (Category 5)

including a solid inner core and an outer core according to Weber et al. (2011), (see Fig. 1). From Weber et al. (2011)

and Viswanathan et al. (2019) reference models, we then vary the parameters listed in Table 2 exploring the space
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Table 2. General 1-D profiles of the Moon interior. Values in brackets [ ] indicate the range of parameters that vary randomly
and uniformly between models. [**] represents the values that depend on the random uniform distribution of the radius. Please
note that the core layer is present only in Category 4, while the outer core and inner core are included only in Category 5 (see
Sect.2).

Layer Radius Density Rigidity Viscosity Rheology

Unit km kg/m3 Pa Pa·s –

Crust 1737.1 2700 1.60 × 1010 – Elastic

Mantle 1690 3380 6.56 × 1010 1 × 1021 Maxwell

LVZ [450 : 700] [**] 2.48 × 1010 [1 × 101 : 1 × 1030] Maxwell

Core [250 : 450] [**] 0 [1 × 101 : 1 × 1030] Newton

Outer core [250 : 450] [**] 0 [1 × 101 : 1 × 1030] Newton

Inner core [120 : 250] [**] 4.23 × 1010 – Elastic

Figure 1. Range of 1-D Vs profiles used to the Category 4 (a) and Category 5 (b). Colored lines represent models from
previous studies of Antonangeli et al. (2015); Garcia et al. (2011); Garcia et al. (2019); Weber et al. (2011).

of possible models compatible with the observational constraints given in Table 1. We assign to each model a radial

viscosity profile following the values listed in Table 2. According to Ross & Schubert (1986), the response of the Earth

to lunar tides has been calculated by matching the dissipation coefficient in the mantle from free oscillations. This

computation gave a viscosity of 1021 Pa·s for the Earth mantle, which is in agreement with the mantle viscosity inferred

from post-glacial rebound Turcotte & Schubert (2002). We then adopt the same viscosity for the lunar mantle across

all models. In contrast, we vary the LVZ and the outer core viscosity values assigning to each model a random value

within the ranges listed in Table 2. Compared to Williams et al. (2001); Harada et al. (2014, 2016) who have chosen an

inviscid fluid core rheology, we decided to use a Newtonian rheology for taking into account the core viscosity. Indeed,

previous studies of Secco (1995) have argued different ranges of viscosity of the Earth outer core. So, by analogy,

we explore from very low-viscosity to quasi-elastic core behaviour for testing the TLNs and dissipation coefficient

sensitivity to the core viscosity. The crust and the inner core of the Moon are assumed to be elastic. For the crust,

this choice is supported by evidence of viscous relaxation of the crater topography (Namiki et al. (2009)) reaching the

elastic limit (that is a viscosity greater than 1027 Pa·s). The solid inner core is considered to have a rigidity similar to

the one in Weber et al. (2011).
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3. METHOD

The approach for this study is to randomly vary the input parameters required to estimate the measures for the

lunar deformation (frequency-dependent TLN and dissipation coefficient) and compare ALMA outputs (as given in

Sect. 2.1) to the observational constraints (see Sect. 2.2). First, we select models that satisfy the lunar total mass

and MoI (see Table 1). Second, we compute tidal deformation for the selected lunar models and compare predictions

with the six observed constraints from Table 1. We use the 3-σ quantiles of the Weighted Residual Sum of Squares

(WRSS) distribution as criteria for selecting models compatible with the observations (Table 1).

3.1. Step 1: Total mass and moment of inertia criteria

In order to explore a wide range of hypothetical models of the lunar interior, we use a uniform random distribution

for the radius and viscosity (Table 2). The distribution of the density is varied according to the random distribution of

the radius of each layer. Hence, each varying density layer respects the mass conservation constraint. For constraining

random radii that follow a uniform distribution and the deduced densities, we use the observational constraints of the

total mass of the Moon and its MoI. Hence, the models that are considered are only those that agree within the 3-σ

quantiles of the observed mass and MoI listed in Table 1.

For each simulation, we first calculate the total mass of the Moon according to:

M =
4

3
π

L+1∑
j=0

ρj
(
r3j+1 − r3j

)
(10)

where ρj is the density of the jth layer (j = 1, . . . , L+ 1), ρ0 is the density of the core or inner core and r0 = 0. The

MoI for each model is estimated as follows:

C =
8π

15

L+1∑
j=0

ρj
(
r5j+1 − r5j

)
. (11)

Thus, the normalized MoI, C̃, for each model is obtained from Eqs. (10) and (11) as:

C̃ =
C

MR2
(12)

where R is the mean radius of the Moon, in our case, the crust radius (see Table 2).

After filtering out our simulation profiles according to the total mass and the MoI, we use ALMA to compute TLNs

subsequently employed to constrain the Moon inner structure from the 3-σ observational uncertainties (Table 1). By

doing so, we ensure that all selected modeling are consistent, not only, with the observational constraints in TLNs and

dissipation coefficient (see Sect. 3.2), but also in mass, MoI and Vs profiles.

3.2. Step 2: WRSS filtering

3.2.1. Construction of the Weighted Residual Sum of Squares distribution

We study the instrumental noise variability of the constraints obtained from lunar observations described in Sect.2.2

and given in Table 1. To do so, we generate a set of simulated observables composed by the k2 and h2 TLNs and

dissipation coefficients at 27.212 and 365.260 days periods obtained by adding a Gaussian noise to the reference

observables. The Gaussian noise standard deviation corresponds to the observable 3-σ uncertainties as given in Table

1. We operate 1000 samplings and for each of them we compute the differences between the simulated observables and

the reference ones as well as the Weighted Residual Sum of Squares (WRSS) for the 6 observables as follows:

WRSS =
1

N

∑
i=1,N

(
(O − S)i

σi

)2

(13)

where (O − S)i is the difference between the ith observable taken as reference (presented in Table 1), O, and the

simulated ones, S. σi is the 3-σ uncertainty as given in Table 1 and N is the number of observables. We obtain

an experimental WRSS distribution as presented in Fig. 2. From this empirical distribution, we can estimate the
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probability of a WRSS being explained by the instrumental uncertainties associated with the reference values. We

derive the quantiles corresponding to the 3-σ of the WRSS distribution after fitting a log-normal profile. We can

then use a confidence interval [WRSS min: WRSS max] that contains 99.7% of the distribution for selecting the lunar

interior models compatible with the observations of the tidal deformation. The selected models are the ones for which

the WRSS between modeled and observed tidal parameters belongs to the interval [WRSS min: WRSS max] for the

two periods of interest.

Figure 2. Modeled Weighted Residual Sum of Squares distribution (blue histogram). The red line corresponds to the Gaussian
fit used to compute the standard deviation employed to decipher the simulated observable from the 3-σ uncertainties (dashed
red lines).

3.2.2. Filtering

As described previously, for each simulation, we compute the WRSS as defined in Eq. (13) and we keep then only

models whose WRSS is encompassed in the interval [WRSS min: WRSS max]. In the following, this test will be

called WRSS filtering. We apply this filtering and extract the 2-D histograms for the selected models considering the

distribution of layer thicknesses and viscosities. Figs. 3 and 4 show the 2-D probability distributions for the 4-layer

model and the 5-layer models, respectively.

3.3. Step 3: K-means clustering algorithm

As one can see in Fig. 3 and Fig. 4, concentrations of models exist in the parameter space for some ranges of

thicknesses. A fundamental issue that arises then from the 2-D probability distribution is the clustering problem

e.g., the pattern recognition of statistically significant model clusters in the parameter space. In this study, the

clustering problem is defined as the problem of finding homogeneous sub-categories of data points from a given

category of models. Each of these sub-categories is called a cluster and is defined as a region in which the density

of selected models is locally higher than in other regions of the 2-D probability histograms (Figs. 3-4). To identify

the statistically significant clusters, we employed the k-means algorithm, whose details are illustrated in Appendix

B. For both Category 4 and Category 5, we identify the relationships between the thickness of the layers that vary

the most between models as described in Table 2. For the Category 4 (without inner core) the layer thicknesses that

vary are the ones of the LVZ and of the core (see Fig. 3). In contrast, Category 5 gets three layer thicknesses that

vary. Hence, we built three 2-D marginal histograms to decipher relationships between layers, shown in Figs. 4-

c,d,e. Based on the Silhouette parameter estimation described in Appendix B, we find for Category 4 two statistically

significant clusters corresponding to sub-categories 4a and 4b in Table 3. Fig. 4 displays a more complex distribution

of thicknesses between layers (see also Table 2) for the Category 5 set of models. Nevertheless, also in this case we
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Figure 3. 2-D probability distributions of the 4-layer model (without inner core). On each panel, the color scale indicates the
normalised probability distribution. White circles indicate the two sub-categories (Category 4a and 4b), with their respective
standard deviation, resulting from the k −means algorithm. Histograms on panels a and b correspond to the distribution of
the thicknesses and viscosities, respectively. The red and green histograms correspond to the selected models for Category 4a

and Category 4b, respectively.

Table 3. Layer thickness for sub-categories identified by the k −means clustering algorithm. Uncertainties correspond to the
3-σ standard deviation. The superscripts 1 and 2 refer to the 4-layer and 5-layer modeling, respectively.

Category Thicknesses

LVZ Core1 Outer core2 Inner core2

km km km km

4a 154 ± 24 355 ± 25 – –

4b 101 ± 23 386 ± 23 – –

5a 123 ± 22 – 76 ± 14 304 ± 26

5b 141 ± 27 – 142 ± 28 226 ± 23

5c 127 ± 33 – 102 ± 29 277 ± 46

find two statistically significant sub-categories 5a and 5b, presented in Table 3. The Silhouette parameters (Appendix

B, Figs. B1-B3) do not identify statistically significant clusters for the viscosity probability distribution of the two

Categories 4 and 5, respectively (Figs. 3-b and 4-f).
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Figure 4. 2-D probability distributions of the 5-layer model (with inner core). In each panel, the color scale indicates the
normalised probability distribution. White circles indicate the two sub-categories (Category 5a and 5b), with their respective
standard deviation, resulting from the k −means algorithm. Histograms on panels c, d, e and f correspond to the distribution
of the thicknesses and viscosities, respectively. The red and green histograms represent the selected models for Category 5a and
Category 5b, respectively.

4. RESULTS

We performed about 120,000 simulations to determine the lunar interior structure using TLNs and dissipation

coefficient constrained by LLR and LOLA observations, the total mass, the MoI and the Vs profiles. In this section,

we present the results of our statistical analysis (see Sect. 3.2 - 3.3) for the two categories of models defined in Sect.

2.3 (Tables 2 and 3).

In what follows, to quantify the distribution of model parameters we use the 25th, 50th and the 75th percentiles.

The 50th percentile, also known as the median, splits the data set in two equal parts meaning that half of the models
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lead to values below the median value and a half lead to values above the median. The 75th percentile identifies the

value at which 75% (25%) of the models lead to lower (higher) values. We will present our results using the notation

abc, where a is the median (50th percentile) while b and c are the 75th and 25th percentiles, respectively.

4.1. Sensitivity analysis of the TLNs and dissipation

We apply the WRSS filtering considering the two periods mentioned in Sect. 2. Fig. 5 shows the distribution of

WRSS for the selected models, showing separately the contributions from TLNs k2 (a) and h2 (b) and from dissipation

coefficient Q (c). The WRSS range lies between 1.4 and 2.2 for k2, between 1.8 and 2.8 for h2 and spans over 5 orders

of magnitude for Q. The differences between the intervals of variations for the TLNs and Q suggest that dissipation is

the parameter that controls the selection of the models. Applying the WRSS filtering extracts 962 (1.60%) and 1126

(2.20%) models respectively for the Category 4 and Category 5 sets, each of them consisting of 60000 models.

Figure 5. 1-D histograms of WRSS for TLNs k2 (a), h2 (b) and quality factor Q (c). For each parameter, WRSS is computed
by considering both periods of interest, 27.212 days and 365.260 days, respectively.

4.2. 4-layer (Category 4)

The models of Category 4 have four layers including a crust, a mantle, an LVZ and a core. Over the 60,000 models,

the WRSS filtering (Sect. 3.2) extracts 962 models (1.60%) that match the observational constraints (Sect. 2.2). We

also consider the impact of using an Andrade model for the mantle instead of a Maxwell model. After filtering both

Maxwell and Andrade models, we obtain 1178 models for the Andrade model against 962 models for the Maxwell

model. The difference over the total number of models is thus about 0.36% after the WRSS filtering. The impact

of considering Andrade instead of Maxwell for the mantle rheology is then negligible in this study. Other rheological

tests can be found in Appendix C. The resulting 1-D profiles are given in Table 4. With identical crust and mantle

characteristics as the ones given in Table 2, the filtered 4-layer models have an LVZ with a radius of 499501497 km and

a density of 340734133393 kg/m3. The LVZ viscosity ranges between 1015.84 Pa·s and 1017.22 Pa·s with a median value of

1016.15 Pa·s. The core radius is 361391343 km with a density of 513754514782 kg/m3. Its viscosity spreads over a wide range

of values, from 1017 to 1026.60 Pa·s, respectively for the 25th and 75th percentiles and a median value of 1020.57 Pa·s.
The k−means clustering algorithm has identified two distinct sub-categories, so-called Category 4a and Category 4b,

gathering 864 models, namely 90% of the models posterior to the WRSS filtering (Table 3).

The 501 models of Category 4a have a thickness for the LVZ and the core of 154±24 km and 355±25 km, respectively

(Table 3). In contrast, the 363 models of Category 4b show a thinner LVZ and a thicker core of 101±23 km and 386±23
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Table 4. Internal Moon parameters for the Category 4 models, after the k −means clustering algorithm filtering. Values of
parameters are the 50th percentile. Lower and upper scripts correspond to the 25th and the 75th percentiles.

Category Layer nb of models Radius Thickness Density Viscosity

k-means km km kg/m3 log10[Pa·s]
4a LVZ 501 500501

498 140159
133 34053413

3400 16.3017.22
16

4a Core 355376
341 355376

341 52235483
4973 20.3025.60

17

4b LVZ 363 499500
498 116124

92 33983413
3393 1616.30

15.84

4b Core 386407
365 386407

365 48445123
4594 22.8426.60

18.95

km, respectively (Table 3). Fig. 6 shows the density and the viscosity profiles deduced from our statistical approach

for models of Category 4a (Figs. 6-a,b) and Category 4b (Figs. 6-c,d). As the crust and the mantle, for the most

part, have constant model parameters, only the parameters of the LVZ and the core show a substantial variation. The

median radius (500 km), density (3,405 kg/m3) and viscosity (1016.30 Pa·s) for the models of Category 4a LVZ are close

to that obtained for Category 4b (Table 4). However, models of Category 4b have a less dense core compared to those

models of Category 4a. The viscosity of the core remains in the same order of magnitude for both categories. The

eight orders of magnitude covered by the estimation of viscosity are due to a large dispersion of the models between

the 25th and 75th percentiles. Compared to previous studies (Garcia et al. (2011); Weber et al. (2011); Garcia et al.

(2019)) the two categories fit in density, especially for the Category 4b. The LVZ viscosity of the two groups fit with

the 1-D profiles of Harada et al. (2016).

4.3. 5-layer (Category 5)

The models of Category 5 have five layers including an elastic inner core, an outer core and a LVZ (Table 2). Over

the 51,000 models, the WRSS filtering (Sect.3.2) extracts 1,126 models (2.21%) that agree with the observational

constraints (Sect. 2.2). Similarly to Category 4 models, the crust and mantle properties are constant as indicated in

Table 2. The selected models have an LVZ radius of 498500498 km and a density of 340634133400 kg/m3. The viscosity of the

LVZ ranges between 1014.30 Pa·s and 1023 Pa·s with a median value of 1016.60 Pa·s. The outer core radius is 390421363

km, with a thickness of 11817067 km and a density of 432847114068 kg/m3. Its viscosity spreads over a wide range of values,

from 1017.30 Pa·s to 1023.73 Pa·s, respectively for the 25th and 75th percentiles and a median value of 1018 Pa·s.
The radius of the inner core is 280310233 km and its density is 645075535677 kg/m3. Among the 5-layer models, the k−means

clustering algorithm identified two distinct clusters of models gathering 562 models and representing 50% of the WRSS

selections (see Table 3), so-called Category 5a and Category 5b (Fig. 4). The second half of the models which are not

considered by the k−means clustering algorithm as potential clusters, cannot be ruled out and are kept as Category 5c.

This group then gathers 564 models and their main characteristics are presented in Table 5.

The 320 models of Category 5a shows thicknesses for the LVZ and the outer core of 123±22 km and 76±14 km

respectively with an inner core radius of 304±26 km. In contrast, the 242 models of Category 5b reveal close thicknesses

for the outer core and LVZ, of about 123 km for the LVZ and 147 km for the outer core. However, the inner core

is thinner than the one of the Category 5a with a radius of 226±23 km to be compared with the 304±20 km for 5a.

In addition, the Category 5b outer core is much thicker (140 km) than the one of Category 5a (70 km) but with a

two-fold dispersion for the Category 5b with respect to the Category 5a. Finally, the outer core viscosity of models

of Category 5a is more than two orders of magnitude lower than that of models of Category 5b with an equivalent

dispersion for both sub-categories.

As expected by its construction, Category 5c shows a bigger dispersion of the outer core radii and viscosities than

Category 5a and Category 5b: the dispersion for the inner core radius is for example 2.3 times the one of Category 5b
and 1.95 the one of Category 5a. On the other hand, LVZ thickness and viscosity for Category 5c are almost as

accurate as the two other categories. It is also interesting to note that the Category 5c values for the inner and outer

cores appear to be in between the estimations of Category 5a and Category 5b with a radius for the inner core of about

277 km when the one of the Category 5b is 18% smaller and the one of Category 5a is 9% larger. The same holds
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Figure 6. 1-D density and viscosity (η) profiles of the Category 4a (a-b) and Category 4b (c-d) . The red lines correspond to
the median of our sampling. The grey areas mark the range between the 25th and 75th percentiles. Colored lines show results
from previous studies of Garcia et al. (2011); Harada et al. (2016); Garcia et al. (2019).

for the thickness of the outer core with a value of 102 km for Category 5c when the Category 5b gives an outer core

thickness 44% larger and Category 5a, 25% smaller.

For the LVZ, the mechanism seems to be different. The 5c estimations for the LVZ thickness are close to one of

the other two sub-categories with a dispersion (2 km) equivalent or smaller than the one of Category 5a (2 km) and

Category 5b (3 km). An important remark stands for the outer core and LVZ 5c viscosities. Contrary to the previous

two sub-categories favoring an LVZ less viscous than the outer core, Category 5c gives an LVZ almost 8 orders of

magnitude more viscous than Category 5a and 5b for an outer core one order of magnitude less viscous than 5a and

almost 4 orders of magnitude less than 5b. We note that the dispersion for the outer core viscosity for Category 5c is

smaller than the one of Category 5a and Category 5b, both Category 5a and Category 5b viscosity values encompassing
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Figure 7. 1-D density and viscosity (η) profiles for the two sub-categories deduced from the 5-layer modeling: Category 5a

(a-b), Category 5b (c-d) and Category 5c (e-f). The red lines correspond to the median of our sampling. The grey area is the
25th and 75th percentiles. Colored solid lines are previous studies of Weber et al. (2011); Harada et al. (2016).

this latest one. With Category 5c, we then have a new type of lunar interior profile with an outer core less viscous

than the LVZ. We can also stress the important dispersion of the Category 5c LVZ viscosity (of about 7 orders of

magnitude compared to only 2 orders of magnitude for 5a), leaving room for even overlap of values between the outer

core and LVZ viscosities.

Fig. 7 shows the 1-D profiles deduced from our statistical approach for Category 5a (Figs. 7-a,b), Category 5b (Figs.

7-c,d) and Category 5c (Figs. 7-e,f). Table 5 lists the parameters of the Moon internal structure deduced for the

models of the three sub-categories. We retrieve for the LVZ very similar radius, density and viscosity as those obtained

for models of Category 4a and Category 4b (Sect. 4.2). The three viscosities of the outer and inner cores diverge from

the study of Harada et al. (2014, 2016) due to the rheologies used in our study. Indeed, Harada et al. (2014) assume

that the outer core is an in-viscid fluid while we assume a Newtonian outer core. We also consider a purely elastic

inner core, meaning that its viscosity tends to infinity. This assumption prevents us to estimate a viscosity for the

inner core.

5. CONSIDERATIONS REGARDING LVZ TEMPERATURE AND CONSEQUENCES
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Table 5. Lunar interior parameters after the k − means clustering algorithm filtering for the 5-layer modeling. Confidence
intervals are reported with the same notation used in Table 4.

Category Layer nb of models Radius Thickness Density Viscosity

k-means km km kg/m3 log10[Pa·s]
5a LVZ 320 499500

498 123156
104 34063413

3400 16.3017.98
16

5a Outer core 376395
358 7690

67 40654267
3918 1823.57

17.37

5a Inner core 304319
279 304319

279 57896296
5517 –

5b LVZ 242 499500
497 123146

98 34073413
3400 1616.84

15.90

5b Outer core 375402
353 147169

125 42764483
4041 20.6924.95

17.30

5b Inner core 226245
211 226245

211 77878341
7183 –

5c LVZ 564 500501
499 127148

94 34063413
3400 23.7726.90

16.95

5c Outer core 371405
350 102130

79 41634461
3881 1717.69

16.77

5c Inner core 277309
231 277309

231 63537619
5695 –

In the previous sections, we presented a selection of models for the lunar interior satisfying within 3-σ uncertainties

of the observational constraints on frequency-dependent dissipation terms and TLNs derived from LLR and GRAIL.

From this selection, we showed the distribution of geophysical parameters describing the lunar internal structure.

From our results presented in Sect. 4, the LVZ radius and density are well constrained. Conversely, the viscosity of

the LVZ varies by about two orders of magnitude within the range of quantiles (see Tables 4 and 5). However, our

estimate of the median of the LVZ viscosity agrees with previous findings (Harada et al. (2014); Tan & Harada (2021))

of about 1016 Pa·s to 1017.60 Pa·s. The LVZ radius and densities are in agreement with previous studies of Weber

et al. (2011); Harada et al. (2014, 2016), namely about 500 km and 3,400 kg/m3, respectively.

At this point, it is reasonable to question what we can infer about the status of the LVZ from our statistical modeling

approach. As it was stated in seismological studies, the LVZ is supposed to be a part of the mantle with high viscosity

(at about 1021 Pa·s), meaning that this thin layer should have crossed the lunar mantle solidus for justifying such low

viscosity profiles (between 1015.90 - 1016.95 Pa·s). In this sense, it is worth to investigate the temperature profiles of

our selected models for the LVZ since we obtained very stringent constraints for this layer.

5.1. On constraining the lunar deep mantle temperature

The Categories 4 and 5 display a wide range of viscosities considering the quantiles as listed in Tables 4 and 5. The

LVZ of the lunar mantle controls the seleno-dynamic processes (Harada et al. (2014, 2016)), so to better constrain the

lunar models, we use the mantle and LVZ as constraining layers.

Along the lines of Nakada et al. (2012), who relate the depth-varying viscosity η(z) to the temperature of the lunar

mantle, we assume that the LVZ viscosity depends upon temperature as follows:

η(z) = η0 exp

(
H∗

RgT

)
(14)

where η0=1021 Pa·s is the mantle viscosity, H∗ is the activation enthalpy and Rg is the gas constant.

The depth of the upper and lower boundaries of the LVZ (i.e. the mantle-LVZ interface and the LVZ-core interface)

are defined as zm and zlvz, respectively. These quantities are related to the thickness of each category given in Sect.

4.2 and 4.3. Here, we assume that at z = zm the viscosity is equal to the mantle viscosity, i.e. η(zm) = ηm (see Table.
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2), while the temperature at the mantle-LVZ interface, T (zm) = Tm, varies according to the unknown depth of the

top LVZ boundary.

We take the temperature at the mantle-LVZ interface (Tm) as defined by Khan et al. (2014). In their work, Khan

et al. (2014) have performed marginals-posterior probability density function (i.e. PDF) profiles of the Moon depicting

the modeled temperature as a function of depth. They have fixed depth node histograms, reflecting the PDF of the

sampled temperatures. By lining up these marginals, the temperature can be envisioned as contours directly related

to probability occurrence. The range of admitted LVZ temperatures is listed in Table 6.

Following Nakada et al. (2012), by setting η(zm) = ηm we rewrite Eq. (14) as:

η(z) = ηm exp

[
−H

∗

Rg

(
1

Tm
− 1

T (z)

)]
. (15)

We then assume that the temperature within the LVZ scales with depth as T (z) = Tm+∆T (z), hence the temperature

at the LVZ-core interface is T (zlvz) = Tlvz = Tm + ∆Tlvz. In analogy with Nakada et al. (2012), from Eq. (15) we

obtain:

ηlvz = ηm exp

(
− H∗

RgTm

∆Tlvz/Tm
1 + ∆Tlvz/Tm

)
(16)

or, equivalently:

ln
ηlvz
ηm

=
H∗

RgTm

∆Tlvz/Tm
1 + ∆Tlvz/Tm

(17)

which provides the temperature ratio ∆Tlvz/Tm as a function of the viscosity ratio ηlvz/ηm:

∆Tlvz
Tm

=
ln
(
ηlvz

ηm

)
H∗

RgTm
− ln

(
ηlvz

ηm

) . (18)

From Eq. (18), the temperature at the LVZ-core interface can be obtained as a function of two unknowns, i.e. the

temperature at the mantle-LVZ interface (Tm) and the activation enthalpy (H∗). The ηlvz/ηm ratio is estimated from

our results for each category (Tables 4,5).

As highlighted in Sect. 5, the LVZ thickness is well constrained by our statistical modeling. We take then a depth of

1237 ± 2 km for defining zm. According to Khan et al. (2006) the posterior temperature profile at this depth correspond

to the range [1200°C - 1500°C], depending on the least and most probable occurrences. The second unknown is H∗.

On one hand, we assume that the lunar mantle is ”a priori” composed as the Earth upper mantle (Katz et al. (2003);

Tomlinson & Holland (2021)). We adopt a peridotite composition, which is composed of variable proportions of

olivine, orthopyroxene, clinopyroxene and aluminium phase (garnet/spinel). From the meta-stable phases of minerals,

depending on the water content, the activation enthalpy (H∗) must be encompassed in between [372:430] kJ/mol under

4.5 GPa (or 1237 km depth, Nakakuki et al. (2010); Yamazaki & Karato (2001)). On the other hand, Ilmenite-bearing

cumulates enriched with TiO2 may favor the existence of a partially molten layer at the lunar core-mantle boundary.

Hence, we take into account the H∗ of the Illmenite at about [275:283] kJ/mol (Tokle et al. 2021). Table 6 summarizes

the parameters used for computing the Moon mantle temperature. With such modeling, we are able to compare the

temperature profiles for the LVZ and the mantle to the Earth solidus hypothesis found in the literature.

Table 6. Parameters used for constraining the LVZ temperature. [1] (Yamazaki & Karato 2001), [2] (Tokle et al. 2021),[3]
(Nakakuki et al. 2010), [4] (Khan et al. 2004), [5] (Khan et al. 2014)

Symbol Value Unit Reference

Rg 8.314462 J· K−1 · mol−1 –

H∗ 275 - 430 kJ/mol [1],[2],[3]

zm 1237 ± 2 km this study

ηm 1×1021 Pa·s this study

ηlvz 8×1015 - 9×1017 Pa·s this study

Tm 1200 - 1500 °C [4],[5]
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Figure 8. LVZ temperature (Tlvz) as function of mantle temperature (Tm). The shaded red area corresponds to the minimum
and maximum LVZ viscosity found in this study for both Categories. The red area marks the median of LVZ viscosity. Variations
correspond to the range of H∗ at 1237 km depth. Grey areas are the probability occurrence of mantle-LVZ interface temperature
at the depth of 1237 km from Khan et al. (2004). Colored solid and dashed lines are the solidus and liquidus from Takahashi &
Kushiro (1983); Herzberg & Zhang (1996); Walter (1998); Hirschmann (2000); Katz et al. (2003); Tomlinson & Holland (2021).

5.2. Use of temperature profile

With the approach described in Sect.5.1, we attempt to better constrain the lunar interior characteristics. Fig. 8

summarises the relations between the admitted range of mantle temperature (Tm) at the mantle-LVZ interface from

Khan et al. (2006) and the temperature at the LVZ-core interface (Tlvz), deduced from Eq. (18). The shaded red

area corresponds to the range of LVZ viscosities (i.e., 1st and 3rd quantiles) while the red area indicates the median of

both categories. The dispersion around the median is due to the variation in H∗ linked to its variability, depending

on the mineral phase (i.e., peridotite or ilmenite). The vertical grey areas correspond to the probability occurrence

of temperature at the given depth of 1237±2 km modelled by Khan & Mosegaard (2001). The solidus and liquidus

deriving from studies of Takahashi & Kushiro (1983); Herzberg & Zhang (1996); Walter (1998); Hirschmann (2000);

Katz et al. (2003); Tomlinson & Holland (2021) correspond to the olivine assemblage at depth zm. Here, our range

of LVZ viscosity cross-cuts the solidus in between 1560°C and 1720°C within the area of 70% probability occurrence

of mantle-LVZ interface temperature (Tm). From this constraint in temperature we can deduce a narrow range of the

LVZ viscosity of 1016.3 Pa·s and 1018 Pa·s. The low viscosity might be in favor of possible partial melting of the LVZ

as previously suggested in Weber et al. (2011); Khan et al. (2014); Tan & Harada (2021). We use Fig. 8 for further

filtering our selection of models from the Sect. 4. This selection of models correspond to 5.5% of the statistically

selected models and their main characteristics are presented in Table 7 and Figs. 9 and 10.

6. DISCUSSION

In Sect. 4 we present statistical selections obtained considering the total mass and the MoI of the Moon and the

WRSS as selection criteria. We have seen that five categories of models were obtained: three including a solid inner

core and an outer core together with a crust, a mantle and an LVZ and two with only one uniform core. On the basis

of the present observations, we are not able to support or reject the hypothesis of the existence of a Moon inner core.

Another important result of the Sect. 5.1 is the consistent constraint obtained on the LVZ thickness, which turns out

to be common to the five selected categories as well as for its viscosity, common for four out of five categories. Figs.
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1, 6, 7 confirm that our five possible series of models are consistent with the profiles deduced from seismological data

such as Weber et al. (2011); Garcia et al. (2011); Garcia et al. (2019). In Sect. 5.2 we introduce an additional selection

criterion by considering only models with the LVZ temperature profiles consistent with an intersection of the solidus

at the mantle-LVZ depth and temperature (Fig. 8).

In considering Fig. 8, we are able to keep only a sub-sample of the Categories 4 and 5. The main characteristics of

the remaining models are provided in Table 7 and in Figs. 9 and 10 in which results obtained with statistical filtering

described in Sect. 4 are plotted next to these new results. It is important to note that the intersection between our

model groups and the solidus obtained for different mantle chemical compositions match the range of temperatures

(between 1600 and 1800 °C) expected for the Earth mantle below 4.5 GPa. This is a good indicator of the consistency

of our results. An important result is the significant reduction of the dispersion in the distribution of the LVZ and

outer core viscosities of Categorie 5b and 5c after the application of the temperature filter. This is also true for all

five categories of models, either including or not an inner core. On average, when for the WRSS+k-means filtering

the dispersion between the first and the last quantiles of the outer core viscosity was of about 8 orders to magnitude,

it is less than 2 orders of magnitude with the temperature filter. This allows the first accurate determination for the

outer core viscosity of about 16.9017.8215.95 Pa·s without inner core and of 15.9517.8415.77 Pa·s with inner core.

Besides these results, it is also interesting to note that our estimations are consistent with previous studies as one

can see in Figs. 9 and 10. Considering the 5-layer modeling, the Category 5b seems to be more in accordance with

the previous studies with a good match of the inner core density and size, especially with Weber et al. (2011). The

Category 5b is also consistent with Garcia et al. (2019) regarding the density of the outer core. Considering the LVZ,

our estimations meet the error bars from Matsuyama et al. (2016) in density and radius and match well with Tan &

Harada (2021) for the viscosity. The Category 5a proposes an alternative series of models that can be ruled out by

considering our statistical or temperature filterings. These models propose a smaller and less dense inner core. Instead

of an inner core of about 220 km (and a density of 8000kg/m3) deduced with the models of Category 5b, the inner cores

of Category 5a have a radius of about 302 km with a density of 5830 kg/m3. The Category 5a might correspond to a

new series of models with a less metal-rich inner core component in comparison with the Category 5b models which

are in favor of a Fe inner core. Less dense inner cores may favour the presence of volatile-rich elements according to

the core differentiation models (Steenstra et al. 2017). A large inner core (i., Category 5a and 5c) would be indeed,

enriched in light elements and resolving thereby, the so-called core density deficit (CDD) because the resulting alloy

would have an expanded volume and reduced average atomic mass relative to pure iron (Khan et al. 2018; Stähler

et al. 2021; Murphy 2016). Nevertheless, since our models are based on geodetic constraints, further geochemical

analysis would be required to explore the reliability of the core density with a volatile-rich composition. Regarding

the Newtonian outer core and the LVZ, the Category 5a and 5b give very close results. The Category 5c proposes

an intermediate value for the outer core thickness (of about 133 km) but an inner core smaller than in Category 5a.

The estimations for the outer core viscosities are, for the three categories, inside the quantiles intervals with a larger

dispersion for Category 5c. In considering the largest interval of dispersion over the three sub-categories, we end up

with the outer core viscosity for the five-layer modeling of about 16.5417.8415.77 Pa·s. For the LVZ, the Category 5c gives

the thinnest value with 102 km against 148 km for 5b and 132 km for 5a. The LVZ viscosities are very similar for

the three categories with a dispersion of less than 101.5 Pa·s. Finally, while, before the temperature filtering, the

Category 5c gathers about the same number of selected models than Category 5a and 5b together, only 35 5c models

pass the solidus line against 65 for Categories 5a and 50 for 5b. Besides showing the importance of the temperature

filtering for our final results, these figures seem also to indicate that the models favoring a more viscous LVZ than the

outer core do not meet easily the constraint of a melting LVZ between 1600 and 1800°C.

For the four-layer modeling, the differences between the Category 4a and 4b are less important than between the

Category 5a and 5b. Mainly one can notice that the temperature filtering induces a reduction of the dispersion of

the outer core thicknesses which is more pronounced in Category 4a than in 4b. For Category 4a, the use of the

temperature profiles as a filter induces a reduction of about 50% of the dispersion while the dispersion for 4b seems to

be unaffected by the temperature filtering. In terms of consistency with the previous studies, our results of 4a and 4b
are in the range of the values found in the literature. One can notice that the temperature profile selection tends to

favor the Garcia et al. (2011) relative to Viswanathan et al. (2019) and Antonangeli et al. (2015) regarding the radius

of the core. In addition, the Category 4 suggests a density for a fully molten in the range of proposed densities at the

pressure and temperature (T � 1800K) of the lunar core. These ranges of densities can be explained by liquid Fe-S

or Fe-Ni-Si alloys containing 30 to 40% in weight of sulfide content (Morard et al. 2018; Terasaki et al. 2019).
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Figure 9. Distributions of radius, density and viscosity for each layer in models of Category 4a (left panels) and 4b (right
panels). Colored dots mark results from previous studies. Are also represented measures obtained from non-geodesic techniques
such as the magnetic soundings from Shimizu et al. (2013)
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Figure 10. Distributions of radius, density and viscosity for each layer in models of Category 5a (left panels), 5b (middle
panels) and 5c (right panels). Colored dots mark results from previous studies. Are also represented measures obtained from
non-geodesic techniques such as the magnetic soundings from Shimizu et al. (2013)
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Table 7. Characteristics of categories layers using the temperature filtering (see Sect. 5 for more details.

Category nb of models Layer Radius Thickness Density Viscosity

T°C filtering km km kg/m3 log10[Pa·s]
4a 58 LVZ 499500

498 132143
117 34023413

3400 17.0017.82
16.84

4a Core 366383
355 366383

355 51115262
4878 16.9017.00

15.95

4b 99 LVZ 499501
498 140159

123 34063413
3400 17.0017.77

16.85

4b Core 347363
328 347363

328 53835690
5131 16.8417.00

15.96

5a 64 LVZ 500501
499 129147

101 34003406
3393 16.8417.84

16.30

5a Outer core 370397
352 7685

67 42724423
3987 17.0017.84

16.80

5a Inner core 302318
281 302318

281 58306276
5525 −−

5b 50 LVZ 499500
498 148164

132 34073413
3400 16.9517.77

16.77

5b Outer core 351366
335 133148

110 45374666
4355 16.6917.00

16.00

5b Inner core 220236
205 220236

205 80008585
7457 −−

5c 35 LVZ 500501
499 102151

75 34133420
3398 16.8516.82

16.77

5c Outer core 396445
346 113133

84 39964525
3723 15.9516.60

15.77

5c Inner core 286332
224 286332

224 61537832
5313 −−
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7. CONCLUSIONS

In this work, we presented a selection of possible modeling for the Moon structures on the basis of observational

constraints on tidal deformation and dissipation. We adapted the semi-analytical code ALMA, originally aimed at

evaluating time-domain LNs suitable for the Earth, to the estimation of frequency-dependent tidal LNs for a given

lunar interior model. We generated 120,000 random models of the lunar interior in which the thicknesses and viscosity

profiles are varied within plausible ranges and the mantle and crust parameters are kept constant while keeping the

mass, MoI and seismological profiles consistent with current determinations. For each model, we estimated tidal LNs

and dissipation coefficient at two periods. We selected 1462 models that fit with the present observational constraints.

As this selection of models provides very accurate information on the LVZ thickness and viscosity, confirming the

viscosity gradient between the upper mantle and the core-mantle boundary, we further refine our ensemble of models

by requiring their temperature profiles to be consistent with the hypothesis of an intersection with the solidus, as seen

for the Earth mantle. Our findings can be summarized as follows:

1. The current selenodetic constraints (i.e., the mass of the Moon, MoI, TLNs, dissipation coefficient and seismic

velocity) cannot clearly rule out the presence of an inner core.

2. On the basis of our geodetic statistical filtering, we can conclude that the LVZ is well constrained with a radius

of (500 ± 1) km, a density of (3400 ± 10) kg/m3 and a viscosity of about 17.0017.8216.84 Pa·s without inner core and

16.8817.8416.30 Pa·s with inner core. Both estimations are consistent within the quantile intervals.

3. We obtain the first estimation for the viscosity of the outer core. The viscosity of the core is of about 16.8717.0015.95

Pa·s without inner core and of 16.5417.8415.77 Pa·s with an inner core.

Besides these main results, one can also stress two possible scenarios regarding an inner core.

• One category (i.e., 5a) of models favors a big inner core of about 302 km radius but with a density smaller than

the one expected for a pure iron core (about 6000 kg/m3) and a small outer core with a thickness of about

76 km and a density of 4280 kg/m3. These models are consistent with a less dense metal-rich inner core as
previously thought (Murphy 2016; Khan et al. 2018; Stähler et al. 2021). The category 5c shows wider dispersion

in radius and densities. Only the upper bound of the density interval may suggest an iron-rich inner core while

the lower bound may correspond to a new type of composed iron-light elements alloys. Less dense inner cores

may favour the presence of volatile-rich elements according to the core differentiation models of Steenstra et al.

(2017). However, the models presented in this study are based on geodetic constraints and statistical analysis

only. Further geochemical analysis in laboratory would be required to further explore the reliability of the core

density with volatile-rich composition.

• The other category is closer to the traditional picture of the telluric planet model with a dense inner core, about

8000kg/m3 for a 220 km radius, and a thicker outer core with a thickness of about 133 km.

The investigation on plausible temperature dependency of the viscosity of the LVZ gives insights into the partially

molten conditions as well as the thermal state of the Moon mantle. As suggested in Harada et al. (2016) the LVZ

might play the role of thermal blanket for the cooling on the core which might result in degree-one convection and

explains the formation of lunar mare basalts asymmetry (Zhong et al. (2000)).



Constraints on the lunar deep interior from tidal deformation 23

ACKNOWLEDGEMENTS

This work has been funded by the French National Research Agency (ANR) and by the German Research Foundation

(DFG) joined project ANR-19-CE31-0026. GS is funded by a FFABR (Finanziamento delle Attivita‘ Base di Ricerca)

grant of MIUR (Ministero dell’Istruzione, dell’Universita‘ e della Ricerca) and by a RFO research grant of DIFA

(Diparti- mento di Fisica e Astronomia ‘Augusto Righi’) of the Alma Mater Studiorum Universita‘ di Bologna.

REFERENCES

Antonangeli, D., Morard, G., Schmerr, N. C., et al. 2015,

Proceedings of the National Academy of Sciences, 112,

3916, doi: 10.1073/pnas.1417490112

Dickey, J. O., Bender, P. L., Faller, J. E., et al. 1994,

Science, 265, 482, doi: 10.1126/science.265.5171.482

Gagnepain-Beyneix, J., Lognonné, P., Chenet, H.,
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Laneuville, M. 2011, Nature, 479, 215
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Table A1. Comparison between compressible model of (Harada et al. 2014) and the ALMA incompressible model.

Symbols This study Harada et al. (2014) difference

k2F 0.02370 0.02369 1×10−5

k2l′ 0.02468 0.02468 9×10−4

QF 53 51 2

Ql′ 119 110 9

Figure A1. Comparisons between compressible and incompressible models for a Maxwell rheology. Top: k2 as a function of
the low viscosity zone (Pa·s). Bottom: Q as a function of the low viscosity zone (Pa·s). Black lines correspond to the model of
Harada et al. (2014) while blue and red dots correspond to the ALMA models for the two periods of interest.

APPENDIX

A. INCOMPRESSIBLE MODEL ASSUMPTION

To estimate the impact of the incompressibility approximation assumed in this study, we have made some comparisons

with the results provided by Harada et al. (2014), who employed a compressible Maxwell model. We took as inputs, an

LVZ radius equal to 480 km and the same range of viscosity from 109 to 1021 Pa·s. For the density and rigidity, we used

the values given by Weber et al. (2011) for each layer. Fig A1 shows the dissipation Q and the k2 tidal Love Number

as a function of the LVZ viscosity. The differences are negligible between the compressible model (Harada et al. 2014)

and the incompressible (our work) as can also be seen from the numerical values listed in Table A1. Moreover, the

differences are under the 3-sigma uncertainties given in Table 1 of this study.

B. K-MEANS ALGORITHM

Here, we present the k-means algorithm, which is an iterative, data-partitioning algorithm that assigns N observa-

tions to one of M clusters defined by centroids, where k is chosen before the algorithm starts. The data sets X of our

two model groups (Category 4 and Category 5) can be expressed as:

X = {x1, ..., xN}, xN ∈ Rd, (B1)

Where xn is a vector containing the (independent) parameters of each model, N is the number of models and d is the

number of parameters for each model (N = 1126 and N = 962 for models with an inner core (Category 5) and without

an inner core (Category 4), respectively). The k-means algorithm aims at partitioning the data set into M disjoint
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Figure B1. Silhouette coefficient as a function of the number of clusters for the outer core thicknesses versus LVZ thicknesses
of Category 4.

sub-categories (e.g., clusters) C1,...,CM , such that a clustering criterion is optimized. The commonly used criteria are

the minimization of the sum of the squared Euclidian distances between each data point xi and the centroid mk of

the sub-category Ck (Hartigan & Wong (1979)):

E(m1, ...,mM ) =

N∑
i=1

M∑
k=1

I(Fi ∈ Ck)||Fi −mk||2, (B2)

Where E is called clustering error and I(F ) = 1 if F is true and 0 otherwise.

To determine the optimal number M of clusters, we have proceeded clustering with M , the number of clusters varying

from 1 to 10. We then compute the Silhouette parameter S for each clustering and plot it against M . The Silhouette

coefficient is defined by the following equation

S(i) =
b(xi)− a(xi)

max(a(xi); b(xi))
(B3)

where xi is the member of one of the clusters, a(xi) is the average Euclidian distance between xi and all other members

of the cluster to which xi belongs, and b(xi) is the average distance from xi to all clusters to which xi does not belong.

The optimum number of clusters is reached when the averaged S reaches its maximum for a given number of clusters.

One can see in Fig. B1 and Fig. B2 that for the five possible combinations (Category 4 and Category 5) S reaches

its maximum for k = 2 except for the outer core thickness versus LVZ thickness. In this case, there is a plateau of

a maximum between 2 and 3 possible clusters. However as for the others cases, the maximum is clearly reached at

k = 2, we keep results obtained with 2 clusterings.

In Fig. B3, we plot the Silhouette average S for the viscosity of the outer core and LVZ for Category 5. It appears

that the values stay very close to 1, indicating that the distribution is not clustered. Based on this result, we do not

consider clusters for the viscosities. Another indicator of clustering is the distribution of the 1-D histograms of Fig.

3-b and 4-f. In these histograms, only one peak of density is visible together with a long tail. This type of distribution

is also a good indication that there is only one density concentration for the viscosity distributions of both categories.

C. OTHER POSSIBLE RHEOLOGIES FOR THE FLUID CORE

We have tested the hypothesis of having a Maxwell instead of a Newton rheology in the core. To do so, we

implemented ALMA3, a core with a Maxwell rheology and we estimated TLNs and quality factors. As initial conditions,
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Figure B2. Evolution of the Silhouette coefficient relative to the number of clusters for the inner core versus outer core
thicknesses (left-hand side), the Inner Core versus LVZ thicknesses (middle), and the Outer Core versus LVZ thicknesses (right-
hand side) of Category 5.

Figure B3. Evolution of the Silhouette coefficient relative to the number of clusters for the viscosity of the core versus LVZ
Category 4 (left-hand side) and of the outer core versus LVZ of Category 5 (right-hand side).

we have randomly sampled ten models (see Table. C1) of Category 4 and Category 5. Since the rigidity of the fluid

core is not constrained we thus used a range from low rigidity (µ=1×1010 Pa) to unrealistic high rigidity (µ=1× 1012

Pa). The results are shown in Fig. C1. In this Figure, one can see how the k2/Q changes with the rigidity as well as

the observed k2/Q for the monthly and yearly period, here represented with dots and error bars. It is then visible that

the Newtonian fluid core matches with the two observational constraints at the periods of interest while models with

low rigidities do not fit with the observations. Only models with very high rigidities (µ=1× 1012 Pa) may fit with the

observations. For these cases, the required rigidities are higher than the one used for the inner core and low-velocity

zone of 4.23× 1010 Pa and 2.48× 1010 Pa, respectively.
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Figure C1. Examples of variations of the k2/Q parameter versus excitation periods in days obtained with ALMA3 for randomly
sampled profiles of Category 4 (left-hand side) and Category 5 (right-hand side) and different core rheologies: the Newtonian
rheology in panels (a, d), the Maxwell rheology of µ= 1010 Pa and µ= 1012 Pa in panels (b, e) and (c, f), respectively.
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Table C1. Characteristics of the randomly selected models. Upper and lower scripts refer to maximum minimum values,
respectively.

Symbol Unit Category 4 Category 5

RLV Z km 501
497

501
498

RC km 413
357 –

ROC km – 423
327

RIC km – 243
191

ηLV Z Pa·s 17.00
15.77

18.00
16.47

ηC Pa·s 25.84
16.69 –

ηOC Pa·s – 17.00
15.84
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