Quaternary tectonic activity of the Murge area
(Apulian foreland – Southern Italy)

Piero Pieri, Vincenzo Festa, Massimo Moretti and Marcello Tropeano
Dipartimento di Geologia e Geofisica, Università di Bari, Italy

Abstract
Integration of structural, stratigraphical, and sedimentological data and instrumental records of some recent low-energy seismic events in the Murge area allow us to suggest a new seismotectonic picture of this region, generally considered an aseismic and stable sector of the Apulian foreland.

Key words Quaternary tectonics – Apulian foreland – Murge region

1. Introduction

The seismotectonic evolution of a weakly deformed region may be reconstructed by using and connecting a large amount of data of different analytic sources, as well as by relating the accuracy of field observations and the sensitivity threshold of instrumental measurements to the relatively small size and scarcity of unambiguous tectonic and seismic evidence. For these reasons, the Quaternary tectonics of the Apulian foreland and, particularly, of the Murge area, which is considered an aseismic and stable sector within the foreland, is an issue that has received attention only in the last few years. The integration of structural, stratigraphic, sedimentologic, palaeoseismic and seismic data collected in the last ten years allows us to suggest a new seismotectonic picture of the Murge area.

2. Structural and geological settings

The Apulian region is a sector of the Adria plate characterized by a relatively thick lithosphere (Calcagnile and Panza, 1981) and by a weakly deformed and autochthonous sedimentary cover (Ricchetti, 1980; Ricchetti et al., 1988). This region represents the Plio-Pleistocene foreland of the South-Appennines orogenic system and is called the Apulian foreland («Avampaese Apulo» of Selli, 1962; D’Argenio et al., 1973; Ciaramfi et al., 1983) (figs. 1 and 2).

The Apulian foreland shows a uniform crustal structure with a Variscan crystalline basement and an approximately 6 km thick Mesozoic sedimentary cover (the Apulia carbonate platform – D’Argenio, 1974; Ricchetti, 1975, 1980); this succession is overlain by thin and discontinuous Tertiary and Quaternary deposits (Ricchetti et al., 1988).

Structurally the Apulian foreland corresponds to a wide WNW-ESE trending antiform (Ricchetti and Mongelli, 1980; Biju-Duval et al., 1979; Royden et al., 1987) (fig. 2) which is obliquely oriented with regard to the South-Appennines subduction hinge (Casnedi, 1988; Doglioni et al., 1994; Pieri et al., 1996). Large
deformation zones, striking oblique or perpen-
dicular to the main WNW antiform trending,
segment the foreland in several large blocks
(Doglioni et al., 1994; Gambini and Tozzi,
1996). The outcropping portion of the Apulian
foreland, which in practise corresponds to the
Puglia region (Southern Italy), is dissected in
three main blocks with different degrees of up-
lift, from the higher Gargano and Murge to the
lowland Salento toward the southeast (Ricchet-
ti et al., 1988; Fumiciello et al., 1991) (fig. 3).

Normal faults have been documented in all
the blocks of the Apulian foreland, be they in
the cited outcropping ones (Ciaranfi et al.,
1983) or in the submerged ones, represented by
the «Rospo High» north of Gargano (André
and Doulcet, 1991) and by the «Apulian swell»
south of Salento (Rossi and Borsetti, 1974; Au-
roux et al., 1985). The faults have variable
ages, most likely ranging from the Mesozoic to
the Pleistocene, and WNW-ESE, NW-SE and
E-W main trends. In particular, the Puglia an-
tiform shows down faulted blocks both toward
the Bradanic trough to the WSW and toward
the Adriatic sea to the ENE (Carissimo et al.,

Fig. 1. Schematic structural map of Italy. The
coloured area represents the Puglia region (Apulian
foreland), which the Murge belongs to.

Fig. 2. Geological cross-section showing the main structural features of the Southern Apennines orogenic
system (from Sella et al. 1988, modified). Note the antiformal structure of the Apulian foreland (Murge). For
location see fig. 1.
Fig. 3. Schematic geological map of the Puglia region; Gargano, Murge and Salento represent the three structural highs of the Apulian foreland.

1963; Pieri, 1980; Ricchetti, 1980) (fig. 2). These faults were active during the Plio-Pleistocene in the eastern margin of the Bradanic trough (the South-Apennines foredeep – Ciaranfi et al., 1979) as indicated by syn-tectonic deposits west of Murge (Tropeano et al., 1994) and, in the shelf, west of Salento (Tramutoli et al., 1984).

As regards Quaternary tectonic activity inside the outcropping blocks, Gargano is a well-known seismic region of the foreland, being characterized by two main fault zones (Tremiti and Mattinata fault zones, Auctt.) which are capable of producing high-energy earthquakes (Postpischi, 1985); Salento presents evidence of Quaternary tectonic activity, documented by several normal faults which clearly cut also Pleistocene deposits (Martinis, 1962; Palmentola and Vignola, 1980; Tozzi, 1993; Moretti, 1996). On the contrary, both the seismicity and/or the Quaternary fault activity are poorly documented in the Murge area since not many historical earthquakes have been reported and it is not clear how the normal faults, which cut the Cretaceous substratum, affect the Quaternary deposits as the latter are very thin and poorly distributed (figs. 3, 4 and 5). For these reasons Murge is generically considered an aseismic and stable sector of the Apulian foreland (De Vivo et al., 1979; Ciaranfi et al., 1981; Boschi et al., 1995). In spite of this deduced stability, during Plio-Pleistocene the Murge, similar to the other outcropping blocks of the foreland, suffered two distinct evolution-
Fig. 4. Schematic geological cross-section of the Murge high (from Doglioni et al. 1996, modified).

Fig. 5. Geologic map of the Murge area.

ary stages: during the Pliocene and lower part of the early Pleistocene it underwent subsidence; from the upper part of the early Pleistocene it underwent uplift (Cianfi et al., 1983).

In particular, middle Pliocene-early Pleistocene subsidence of Murge caused the drowning of Mesozoic rocks, which had uninterruptedly emerged since the upper Cretaceous (Pieri, 1980); transgressive and deepening-upward deposits («Calcarenite di Gravina» and «Argille subappennine» formations) record this subsidence (Iannone and Pieri, 1982). The middle-late Pleistocene uplift of Murge is testified by the presence of 16 orders of uplifted shorelines, recorded by paleocliffs, abrasion platforms, and/or by thin marine terraced deposits («Depositi marini terrazzati»), that overlie the Mesozoic limestones and the late Pliocene-early Pleistocene transgressive units (Cianfi et al., 1988). According to late Pleistocene geochronological data, uplift rates are in the order of 0.2-0.3 mm/yr (Cosenino and Gliozzi, 1988; Dai Pra and Hearty, 1988, 1989); however, stratigraphic data suggest uplift rates of at least 0.5 mm/yr (Cianfi et al., 1994).
3. Main structural elements with Quaternary activity of the Murge area

Murge is separated from Gargano by the «Ofanto Graben» (Auctt.) and from Salento by the «Soglia Messapica» (Auctt. – also called «Taranto-Brindisi depression»; Ricchetti et al., 1988) (fig. 3).

The Ofanto Graben is a large structural depression, located North of Murge and with a SW-NE trend, and is filled by a thick Plio-Pleistocene succession (locally more than 1 km in thickness); recently it has been interpreted as a «comb graben» (Doglioni et al., 1994). Main faults are buried, but evidence of tectonic activity during the Plio-Pleistocene have been observed on the Murge side of the graben, near the so called «Ofanto line» (Iannone and Pieri, 1980, 1982). Outcropping faults have SW-NE, N-S and NNW-SSE main trends (Ciaranfi et al., 1983).

The «Soglia Messapica» is a high scarp, mainly oriented E-W, which separates Southern Murge from Salento (Pieri, 1980). The relationship between Murge and Salento is not simple, being due to different rotations of the two main blocks and to strike slip movements along their boundary (Funicello et al., 1991; Tozzi, 1993; «North-Salento Fault Zone» of Gambini and Tozzi, 1996). In fact, more correctly, Murge and Salento are separated by a large deformation zone, with E-W trend, which corresponds to a large «triangular» depression to the east (filled by a thick succession of Plio-Pleistocene deposits – Ciaranfi et al., 1988; Ricchetti et al., 1988) and to a series of small uplifted blocks and depressions to the west. The latter feature is particularly evident between Matera and Mottola localities, where transpressional and transtensional structures are clearly associated with mainly dextral strike-slip faults; these structures show pre-syn- and post-depositional activities referred to the outcropping late Pliocene-early Pleistocene deposits (Festa, 1996; Tropeano et al., 1997).

The neotectonic studies carried out for the «Progetto Finalizzato Geodinamica – CNR» showed up also the presence of some structural lineaments within Murge, dissecting the region both with WNW-ESE and E-W trends (Ciaranfi et al., 1983; Ambrosetti et al., 1983; Bigi et al., 1988; and references therein) (fig. 5). The main regional structures within the Murge are two narrow grabens («Murge alte» and «Murge basse» Grabens) which mainly formed before the sedimentation of the Plio-Quaternary deposits of the Murge (Iannone and Pieri, 1980, 1982, 1983). These grabens are a few km wide and up to 100 km long; they are approximately parallel each other. Both run from the Ofanto valley toward the Adriatic sea, initially with WNW-ESE and then with E-W trend (fig. 5). The «Murge alte» Graben is located between Montegrosso and Fasano localities; the «Murge basse» Graben between Canosa and Polignano localities. Both grabens are structured by a NE dipping master fault and by a smaller SW dipping synthetic fault. Kinematic indicators show mainly dip-slip movements, but oblique-slip evidence has also been observed. Two morphological depressions correspond to the two grabens, which show fresh cliffed sides and are not completely sutured and/or filled by Plio-Quaternary deposits. Both could be evidence of quaternary activity of the faults.

Middle-late Pleistocene tectonic activity is best recorded in the Northern Murge. In particular, this has been documented in those settings where the marine terraced deposits are relatively thick and widely distributed (fig. 5). Normal faults, with some metres of displacement and with the same main trends of the Murge grabens and of the Ofanto line, have been observed at «Montegrosso», «Canosa» and «Canne della Battaglia» localities (Iannone and Pieri, 1980).

All the above mentioned structures have features similar to the others with the same main elongations recognized in the foreland ramp (Sella et al., 1988), particularly in the sector named «premurge plateau» (Pieri et al., 1994, 1996). Murge and premurge plateau are separated by a SW dipping normal fault which shows also Quaternary activity («faglia della Valle del Bradano» of Martinis, 1961). Other important normal faults, which dissect the foreland ramp, are buried by Plio-Quaternary syntectonic deposits in the Bradano trough («faglie assiali» of Pieri et al., 1994, 1996).
Where the Cretaceous substratum of the pre-murge plateau outcrops, it has been observed that the foreland ramp is characterized by a complex horst and graben system (fig. 5), with structures ranging from kilometric scale \(\text{i.e.,} \) the Zagarella Horst to metric scale (Pieri and Tropeano, 1994; Tropeano et al., 1994), and by sinistral transtensional faults mainly oriented NW-SE (Festa, 1996). These structures show a pre- \(\text{syn-} \) and post-depositional activity referred to the late Pliocene-early Pleistocene outcropping formations. Some of the structures grew during the sedimentation of these last deposits, but others completely cut the same deposits, recording at least a middle Pleistocene tectonic activity of the observed normal and transtensional faults (Tropeano et al., 1994, 1997).

4. Palaeoseismicity (seismites), historical and instrumental seismicity of Murge

The recognition of soft-sediment deformation structures induced by seismic liquefaction and/or fluidization processes (seismites, sensu Seilacher, 1969) represents one of the more innovative tools for palaeoseismological studies (Obermeier, 1996). In particular, seismites are sedimentary fossil records of moderate to high magnitude seismic events \(M \geq 5\), Audemard and de Santis, 1991; Obermeier, 1996) and generally they occur within a range of 40 km from the earthquake epicenter (Galli and Meloni, 1993).

Several soft-sediment deformation structures \(\text{i.e.,} \) sand volcanoes, load casts, and balls and pillows – fig. 6) have been recognised in the marine terraced deposits of the Murge, and most of them have been attributed to liquefaction induced by earthquakes; younger seismites outcrop near the Adriatic coast of the Murge (near Trani, Bari and Brindisi localities – fig. 7) and also deform Tyrhenian deposits (Moretti et al., 1994, 1995; Moretti and Tropeano, 1996; Moretti, 1997).

Making use of empirical relationships between magnitude and distances of observed liquefaction phenomena from historical earthquake epicenters in Italy (Galli and Meloni, 1993), the Murge seismites may have been induced only by seismic events of \(M \geq 5\) located within the Murge and/or the near Adriatic shelf (Moretti et al., 1995).

As regards the historical seismicity, Baratta (1901) and Kärnik (1969) point out some strong earthquakes inside the Murge, but their exact location and true Magnitude are considered uncertain. On the contrary low-energy earthquakes are well known inside the Murge \(\text{i.e.,} \) the 1977 Spinazzola earthquake – Panza and Calcagnile, 1977) and events of maximum intensity of \(5^\circ\) in the MCS scale should be expected (Calcagnile and Del Gaudio, 1990).

Other evidence of recent seismicity and tectonic activity of the Murge have been supplied by Forti and Postischl (1984) who analysed discontinuities in the growth of stalagmites and displacements of their axes in several caves of the Murge. According to Bruno and Sgobba (1993) the observed evidence is due more probably to slow tectonic displacements rather than to the low-energy earthquakes which seem to characterize the Murge.

More recently, the instrumental record of low-energy earthquakes \(M \leq 3.2\) with epicenters inside the Murge (1988 Poggiosini; 1988 Altamura-Santeramo; 1991 Castel del Monte – fig. 7) have clearly demonstrated present tectonic activity of some of the above mentioned faults (Del Gaudio et al., 1997).
5. Discussion and concluding remarks

The above data allow us to suggest a new seismotectonic picture of the Murge area, which is often represented by a «white area» in the seismic zonation and structural maps of the Apulian foreland.

The Apulian foreland is dissected into several blocks because of the oblique interaction of the rigid and thick Apulian ridge with the Apennines and Dinaric orogens (Dolgioni et al., 1994, 1996; Gambini and Tozzi, 1996). The antiformal structure assumed by the Apulian ridge, which is also considered a peripheral bulge (i.e., Argnani et al., 1993; de Altriis, 1995), and its Quaternary high uplift rates have been attributed to a lithospheric buckling due to the slower and shallower penetration rate of the lithospheric slab compared with its eastward rollback rate (Dolgioni et al., 1994, 1996) (fig. 8).

The Murge represents one of the outcopping blocks of the Apulian foreland and clearly shows an antiformal structure; it suffered subsidence during middle Pliocene-early Pleistocene and then uplift during middle-late Pleistocene. The Murge is dissected by normal and transtensional faults, activated before the Plio-Pleistocene transgression, being mainly buried by Plio-Pleistocene deposits, but also having grown during subsidence and during the fol-
ollowing uplift. Upper Pliocene-early Pleistocene deposits folded or cut by some faults indicate tectonic activity, at least up to the middle Pleistocene; but the recorded earthquakes with epicenters near the main Murge faults prove a present tectonic activity within the region.

The bulk of exposed data proves that, as regards the Murge region, the large bounding deformation zones («Ofanto line» and «Soglia Messapica») and the main horst and graben systems (which are mainly oriented parallel to the axis of foreland buckling) are still slowly developing, and the whole Murge antiformal structure should be considered to be still growing. Uplift of the Murge is marked by the growth of several normal and transtensional faults, which produce low-energy earthquakes instrumentally recorded in the last ten years.

As regards the seismicity of the region, there is an apparent contrast between the palaeoseismic data (both seismites and ancient historical seismic data) and the instrumental recorded earthquakes. The latter indicate low-energy events ($M \leq 3.2$) comparable with the expected maximum intensity of the earthquakes inside the Murge ($I \leq 5^\circ$ MCS). On the contrary, the seismites observed in Tyrrenhenian deposits along the Adriatic coast of the Murge indicate «palaeo-events» due to earthquakes of uncertain location but with $M \geq 5$ and able to cause a local PGA of no less than 0.2 g (Moretti et al., 1995; Moretti and Tropeano, 1996; Moretti, 1997).

From macroseismic maps of historical earthquakes of Gargano it is possible to observe that the Adriatic coast of the Murge may be affected by tsunamis and by a local $I = 7^\circ/8^\circ$ MCS (Tinti et al., 1995), higher than that expected by local events. Furthermore, the South Gargano line (Finetti, 1982; Ambrosetti et al., 1983), which runs as the Mattinata fault zone south of the Gargano block and as the Gondola line in the South Adriatic Sea (Auctt.), is a high-energy seismogenetic fault on land (i.e., Postpischl, 1985), but clearly shows present seismicity (Favalli et al., 1990) and present deformation of the sea floor in its offshore prosecution (de Alteriis and Aiello, 1993).

In accordance with Moretti and Tropeano (1996) and Moretti (1997), the Gondola line is the known high-energy seismogenetic line inside the foreland closest to the Adriatic coast of the Murge (it runs up to 50 km offshore Bari) and could be considered the most probable source of high-energy historical and palaeoseismic events recorded inside the Murge.

Acknowledgements

Research supported by CNR (P. Pieri 94.119.CT05) and ASI (P. Pieri ARS-96-47) grants.

REFERENCES

Carissimo, L., O. D’Agostino, C. Loddi and M. Pieri (1965): Petroleum exploration by AGIP Mineraria and
new geological information in Central and Southern Italy, from the Abruzzi to the Taranto Gulf, in 6th Pet. Int. Congr. section I, 267-292.

ciarafini, n., m. maggiore, p. pieri, l. rapisardi, g. ricchetti and n. walsh (1979): Considerazioni sulla neotettonica della fossa bradanica, Prog. Fin. Geol., Cnr, Publication No. 251, 73-95.

ciarafini, n., f. ghisetti, m. guida, g. laccarino, s. lambiase, p. pieri, l. rapisardi, g. ricchetti, m. torre, l. tornorici and l. vezzani (1983): Carta neotettonica dell'Italia Meridionale, Prog. Fin. Geol., Cnr, Publication No. 515, pp. 62.

derelmers, g. (1985): Different foreland basins in italy. examples from the central and southern adriatic sea, Tectonophysics, 252, 349-373.

del gaudio, v., v. iurilli, p. pieri, g. ruina, g. calcaignile, r. canziani, m. moretti, p. pieri and m. tropeano (1997): Sismicità di bassa energia e caratteristiche strutturali delle murge nord-orientali, in atti XV convegno gnfts (in press).

devivo, b., d. dietrichi, i. guerra, g. ianuccione, g. luongo, p. scandone, r. scarpa and e. turco (1979): Carta sismotettonica preliminare dell’appennino meridionale, Prog. Fin. Geol., Cnr, Publication No. 166, 64.

gambini, r. and m. tozzi (1996): Tertiary geodynamic evolution of southern adria microplate, terra nova, 8, 593-602.

moretti, m. (1996): Tettonica sinsedimentaria e strutture sedimentarie deformative nei depositi pleistocenici di santa cesarea terme (le), in atti riunioni gruppo informale di sedimentologia del Cnr, università di catania, 196-199.

OBERMEIER, S.F. (1996): Use of liquefaction-induced features for paleoseismic analysis – an overview of how liquefaction features can be distinguished from other features and how their distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes, *Eng. Geol.*, **44**, 1-76.

