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ABSTRACT
A reconstruction of the last 2,000 years BP of environmental and oceanographic changes on the 
western margin of Spitsbergen was performed using a multidisciplinary approach including the 
fossil assemblages of diatoms, planktic and benthic foraminifera and calcareous nannofossils and 
the use of geochemistry (X-ray fluorescence spectroscopy, X-ray diffraction). We identified two 
warm periods (2,000–1,600 years BP and 1,300–700 years BP) that were associated with the Roman 
Warm Period and the Medieval Warm Period that alternate with colder oceanic conditions and sea 
ice coverage occurred during the Dark Ages (1,600–1,300 years BP) and the beginning of the Little 
Ice Age. During the Medieval Warm Period the occurrence of ice-rafted debris and Aulocoseira spp., 
a specific diatom genus commonly associated with continental freshwater, suggests significant 
runoff of meltwaters from local glaciers.
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Introduction

The Arctic Ocean is the area most sensitive to global 
warming and oceanographic changes on our planet 
(Moritz, Bitz, and Steig 2002; Serreze and Francis 2006; 
Francis and Vavrus 2012; Stroeve et al. 2012; Cohen 
et al. 2014). Its sensitivity is demonstrated by the recent 
fast change of arctic permafrost stability, by the thinning 
and retreat of sea ice (Stroeve et al. 2008; Overland et al. 
2019), and by the acceleration and thinning of the ice 
streams that drain the Greenland ice sheet (Howat, 
Joughin, and Scambos 2007; Howat et al. 2008). These 
environmental changes on the Arctic margin are caused 
either by natural factors, such as change of albedo, 
clouds, solar radiation, change in atmospheric and ocea-
nic heat transport (Praetorius et al. 2018), or by human 
activities responsible for the increase of atmospheric 
greenhouse gases (e.g., Huntington et al. 2007; 
Solomon et al. 2007; Normand et al. 2017). To distin-
guish between anthropogenic contributions versus nat-
ural changes, it is necessary to study past natural climate 
and environmental changes.

Since the 2010s, the scientific community has been 
focusing on the study of the last 2,000 years BP (e.g., 
PAGES 2k Program 2013). This interval contains infor-
mation about both natural climate variability and cli-
mate changes induced by human activities. Moreover, 
the information obtained from the last 2,000 years BP 
can be used for numerical modeling to predict future 
climate scenarios. In northwestern Europe and along the 
western Spitsbergen margin, the last 2,000 years BP is 
characterized by climatic fluctuations, including the 
Roman Warm Period (RWP; 250 BC to 400 AD = 
2,200–1,550 years BP), the Dark Ages Cold Period 
(400–900 AD = 1,550–1,050 years BP), the Medieval 
Warm Period (MWP; 900–1250 AD = 1,050–700 years 
BP), the Little Ice Age (1250–1900 AD = 700–550 years 
BP), and the recent warming starting at the end of nine-
teenth century and last fifty years (e.g., Lamb 1977; 
Eiríksson et al. 2006; Cage and Austin 2010; 
Cunningham et al. 2013; Easterbrook 2016; Polodova 
Asteman, Filipsson, and Nordberg 2018). Recent studies 
(e.g., Jiang et al. 2002; Spielhagen et al. 2011; Matul et al. 
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2018; Zamelczyk et al. 2020) suggested that the warm 
periods are caused by a strengthening inflow of warm 
Atlantic Water (AW) that flows northward to the Arctic 
Ocean via the Fram Strait (Figure 1).

Variations in the inflow of AW into the Arctic Ocean 
have been linked to the North Atlantic Oscillation 
(NAO) atmospheric forcing (e.g., Trouet et al. 2009; 
Trouet, Scourse, and Raible 2012). The NAO index 
quantifies the difference in pressure between the 
Icelandic atmospheric minimum and the related 
Azores maximum, and it is an indicator of the strength 
of westerly winds and thus the inflow of AW into the 
Greenland, Iceland, and Norwegian (GIN) Seas. A deep 
Icelandic minimum in the north is associated with 
a positive NAO phase (Andersen, Koç, and Moros 
2004). During a positive NAO phase, there is an increase 
in westerly winds bringing moist air over Europe and 
Siberia, an increase in AW in the Fram Strait, and an 
increase in atmospheric temperature, which causes 
a reduction in sea ice formation (e.g., Trouet et al. 
2009; Trouet, Scourse, and Raible 2012). The Atlantic 
Meridional Overturning Circulation (AMOC) consists 
of a northward flow of warm, salty water in the North 
Atlantic and a southward return flow of cooled water. In 
addition, several studies (e.g., Trouet et al. 2009; Olsen, 
Anderson, and Knudsen 2012; Trouet, Scourse, and 
Raible 2012; Faust et al. 2016) have demonstrated 
a link between environmental and oceanographic 
changes over the last millennium and the NAO and 
AMOC variations: the MWP was linked to a strong 
AMOC and a positive NAO, whereas during the Little 
Ice Age the weak AMOC and negative NAO were sug-
gested to prevail. Different authors (T. L. Rasmussen 
et al. 2003; Ellingsen et al. 2008; Müller et al. 2012; 
Pathirana et al. 2015; Hoff et al. 2016; Berben et al. 
2017) have focused on the environmental changes 
recorded in marine sediment cores spanning the 
Holocene along the western Svalbard margin and in 
particular during the last 2,000 years BP (Majewski, 
Szczuciński, and Zajączkowski 2009; Bonnet, De 
Vernal, and Hillaire-Marcel 2010; Spielhagen et al. 
2011; Werner et al. 2011; Jernas et al. 2013; Rueda, 
Fietz, and Rosell-Melé 2013; Pawłowska et al. 2016; 
Matul et al. 2018; Zamelczyk et al. 2020). However, 
previous studies (e.g., Müller et al. 2012; Matul et al. 
2018; Zamelczyk et al. 2020) considered the temporal 
variation of one or two environmental proxies (e.g., IP25 

and other biomarkers, diatoms, planktic foraminifera) 
and thus lack information about the surface and/or 
bottom water masses. Because the Arctic Ocean is stra-
tified, the multiproxy study offers the possibility to 
understand the full water column dynamic, allowing 
one to obtain information on stratification and the 

interaction between different water masses (e.g., Rueda, 
Fietz, and Rosell-Melé 2013). Because the state of water 
column stratification is important for the oceanic circu-
lation pattern in our near future and its evolution is still 
uncertain, improving the understanding of the mixing/ 
stratification of the water column over time will allow us 
to improve forecasts in this sensitive region (e.g., 
Rahmstorf et al. 2015).

Our study is mainly based on diatom assemblages, 
complemented by analyses on benthic and planktic for-
aminiferal and nannofossil assemblages, X-ray fluores-
cence spectroscopy (XRF) and X-ray diffraction (clay 
minerals) in core GS191-01 PC (Figure 1), located at 
1,647 m water depth on the western Spitsbergen margin, 
in an area characterized by a high sedimentation rate 
during the Holocene (e.g., Rebesco et al. 2013; Lucchi 
et al. 2014; Caricchi et al. 2019).

Study area

The Bellsund Drift is a contourite drift on the continen-
tal slope between 1,200 and 1,800 m water depth along 
the western margin of Spitsbergen. The mechanism 
responsible for sediment accumulation on the Bellsund 
contourite drift is transport operated by the Norwegian 
Sea Deep Water that is episodically fed by sediments 
transported to the deep environment by dense, cold, and 
saline (brine) water forming on the Barents continental 
shelf (Rebesco et al. 2013).

The western margin of Spitsbergen is characterized 
by the presence of the West Spitsbergen Current (WSC), 
which is a persistent along-slope current (Figure 1). The 
WSC is the northernmost extension of the North 
Atlantic Current proceeding from the Gulf of Mexico 
(Aagaard, Foldvik, and Hillman 1987; Beszczynska- 
Möller et al. 2012). The WSC has a key role in the 
Arctic climate variability because it is the major con-
veyor of warm AW into the Arctic Ocean. WSC is 
responsible for sea ice–free conditions during winter in 
western Spitsbergen and exerts a control on deep water 
formation (Beszczynska-Möller et al. 2012; Walczowski 
et al. 2017).

Multiyear hydrographic sections conducted to mea-
sure the water column oceanographic properties out-
lined that the WSC vertical profile contains two main 
water layers: one located at ca. 400 m water depth with 
an average speed of 20 cm/s and a deeper one located at 
ca. 1,500 m water depth with an average speed of 9 cm/s. 
The latter represents the cold (< − 0.9°C) and saline 
(>34.91 PSU) Norwegian Sea Deep Water (e.g., 
Beszczynska-Möller et al. 2012; Von Appen et al. 
2015). At the coring site, a seasonal and interannual 
thermohaline variability is associated with AW’s inflows 
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Figure 1. (a) Schematic map of the northern North Atlantic showing the location of the Fram Strait. The red arrow represents the path 
of the warm Atlantic Water: Norwegian Atlantic Current (NwAC), WSC. A black square indicates core GeoB 17603-3, used for the 
construction of the age model. (b) Western Spitsbergen Margin showing the main oceanographic currents. The red arrow represents 
the path of the warm AW, the blue arrows represent the cold and fresher East Spitsbergen Current and the Spitsbergen Polar Current. 
The green arrows indicate the continental freshwater (FW) input from the fjords to marine domains. Yellow diamond indicates the 
studied core GS191-01PC (01-PC in the figure). The full gray dots indicate other core sites discussed in the article: (1) core HH12-1206BC 
(Zamelczyk et al. 2020), (2) core MSM5/5-712 (Werner et al. 2011; Müller et al. 2012; Cabedo-Sanz and Belt 2016; Matul et al. 2018), and 
(3) core NP05-21 (Jernas et al. 2013). The gray dotted line A–A′ indicates the hydrographic section. (c) Hydrographic section along the 
Western Spitsbergen Margin that shows the variation of temperature and salinity. Oceanographic data from H. E. Garcia et al. (2019).
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and outflows of cold and fresh water from the fjords 
(Figure 1; Bensi et al. 2019). Along the western 
Spitsbergen coast, there are four major fjords, 
Hornsund, Bellsund, Isfjorden, and Kongsfjorden 
(Figure 1), that are characterized by the presence of 
tidewater glaciers in the inner part (e.g., Strzelecki 
et al. 2018; Halbach et al. 2019; Barzycka et al. 2020; 
Szeligowska et al. 2021). Also, Storfjorden, which is 
occupied by glacier systems, strongly impacts the ocea-
nography of Svalbard (Skogseth et al. 2008). Meltwater 
discharge from fjord’s glacier impacts the adjacent mar-
ine area mainly through seasonal freshwater outflows 
(Bensi et al. 2019).

The Spitsbergen Polar Current is a coastal current 
that flows northward along the western Spitsbergen 
margin. The Spitsbergen Polar Current carries colder 
and less saline Arctic Water (ArW) originating from 
the Barents Sea area (Nilsen et al. 2016).

Geologically, the Spitsbergen’s bedrock ranges in age 
from Precambrian to Tertiary (Hjelle 1993; Elvevold, 
Dallmann, and Blomeier 2007). Along the coast of 
southern Spitsbergen, bedrock types include quartzite, 
phyllite, limestone, dolostone, conglomerate, and minor 
volcanic rocks (Elvevold, Dallmann, and Blomeier 
2007). The Devonian succession related to very arid 
conditions is not well represented in the western side 
of Spitsbergen, except north of Isfjorden, where lime-
stones and sandstone–shale successions can be found. 
The Carboniferous and Permian outcrops around the 
Isfjorden and Bellsund are represented by coal-seamed 
sandstones, and in the younger succession fossil-bearing 
limestones and dolostones, with gypsum and anhydrite 
beds. Mesozoic deposits outcrop on the Isfjorden and 
Bellsunds are mostly formed by shales, siltstones, sand-
stones, and rare limestones; at the beginning of the 
Cretaceous these rocks were intruded by magma that 
crystallized in dolerite (Elvevold, Dallmann, and 
Blomeier 2007). The Tertiary rocks are coal-rich sand-
stones and shales, locally containing plant fossils out-
cropping along the Bellsund and south Isfjorden (Hjelle 
1993; Elvevold, Dallmann, and Blomeier 2007).

The spatial variation of clay minerals in the GIN Seas 
is strongly dependent on the lithologies of the adjacent 
lands. The illite clay mineral group is the major compo-
nent of the marine surface sediments in the Barents Sea 
and along western Spitsbergen; this clay mineral group is 
typically a product of physical weathering (Chamley 
1989; Vogt 1997; Vogt and Knies 2009). Vogt (1997) 
indicated that the detrital input contributing to the high 
percentages of illites derives from high crystalline base-
ment rocks (quartzite, phyllite, etc.). In the offshore 
study area, the main source can be associated with ero-
sion and transport (Lucchi et al. 2013). The chlorite 

group is the second most abundant clay mineral in the 
western Spitsbergen margin surface sediments, also 
deriving from physical weathering of high crystalline 
rocks such as dolorite and metamorphic rocks (Wright 
1974; Elverhøi et al. 1989). On Svalbard Mesozoic rocks 
are a potential source for chlorites; in fact, offshore 
southern Svalbard presents the highest chlorite percen-
tages of the whole Barents Sea area (E. S. Rasmussen 
et al. 2008). The kaolinite group averages 17 percent in 
surface sediments from offshore Svalbard (Vogt and 
Knies 2009). Vogt and Knies (2009) thus suggested 
that an enrichment in this clay mineral is principally 
due to local erosion of Mesozoic Svalbard outcrops. 
Smectite is the least represented clay mineral in the 
GIN Seas marine sediments. It is the result of hydrolysis 
and submarine weathering of basaltic rocks or diage-
netic alteration (Chamley 1989). The presence of volca-
nogenic outcrops and smectite-bearing rocks is very 
limited on Svalbard. Moreover, smectite content 
decreases northward from the basaltic Greenland– 
Farøe oceanic ridge (e.g., Kuhlemann, Lange, and 
Paetsch 1993; Berner and Wefer 1994). This latitudinal 
trend has been associated with the sediment transport by 
the northward-flowing North Atlantic Current (Fagel 
et al. 2001; Vogt and Knies 2009; Junttila et al. 2010).

Materials and methods

The sediment core analyzed in this study, GS191-01PC, 
was collected from the crest of the Bellsund Drift at 
76.52167°N; 12.73833°E and 1,647 m water depth 
(Figure 1b) during a scientific cruise aboard the R/V G. 
O. Sars (June 2014), in the framework of the Eurofleets-2 
Project PREPARED (Lucchi et al. 2014). The sediment 
core was X-radiographed with computed axial tomogra-
phy scanning technology at ENI Laboratories (Milan, 
Italy), and each core was split longitudinally into two 
halves. The archive section was visually described, digi-
tally photographed, and analyzed with an Avaatech XRF 
core scan at the University of Barcelona (Spain) to 
determine the sediment chemical composition, and the 
working half was subsampled for the micropaleontolo-
gical and sedimentological analyses (sampling details are 
discussed later).

Paleomagnetic and rock magnetic measurements 
were carried out at the Istituto Nazionale di Geofisica 
e Vulcanologia in Rome (Italy); for details, see Caricchi 
et al. (2019).

Age model

The age model of the PREPARED core, GS191-01PC, 
was established by taking into account the variation in 
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the relative paleointensity and paleomagnetic inclina-
tion curves, the lithological constraints, and the radio-
carbon ages (Caricchi et al. 2019, 2022; Figure 2). Low- 
field magnetic susceptibility (k), natural remanent mag-
netization, and anhysteretic remanent magnetization 
(ARM) were measured at 1-cm spacing. The 

paleomagnetic and rock magnetic analyses and results 
were described in detail in Caricchi et al. (2019).

Taking advantage of the high-resolution and well- 
constrained Holocene record from nearby core 
GeoB17603-3, collected at Kveithola trough mouth fan 
(Caricchi et al. 2018), we carried out high-resolution 

Figure 2. Core correlation stratigraphy. The red arrows indicate the 14C ages, and the gray dashed lines indicate correlation between the 
tie points, lowfield magnetic susceptibility (k), and anhysteretic remanent magnetization (ARM) (modified from Caricchi et al. 2018, 2019).
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core correlations between the cores using StratFit soft-
ware (Sagnotti and Caricchi 2018), based on the linear 
regression between subsequent pairs of selected tie 
points. The tie points were chosen considering (1) the 
trend of multiple rock magnetic and paleomagnetic 
parameters (Caricchi et al. 2018, 2019), (2) the recon-
structed age models (Caricchi et al. 2018, 2019, 2020), 
and (3) the lithofacies distribution (Caricchi et al. 2018, 
2019). In Figure 2, the correlation of k and ARM strati-
graphic trends (see Caricchi et al. [2018, 2019] for addi-
tional details about k and ARM parameters and their 
downcore variations) is shown as a representative exam-
ple for the output of the high-resolution core correlation 
procedure. This procedure was used to validate and 
constrain the age model of the upper 78 cm of GS191- 
01PC corresponding to the last 2,000 years BP. Based on 
the age model the mean sedimentation rate is 0.039 cm/ 
year.

Sedimentological analyses

The identification of the clay mineral assemblage was 
performed on eight samples through X-ray diffraction 
analyses. The samples were freeze-dried and sieved with 
distilled water using a 63-µm mesh. The <63 µm fine 
fraction was then treated with diluted hydrogen perox-
ide at 10 volume percent for 24 hours to remove the 
organic matter and centrifuged (1 minute at 1,050 
rounds/min) to separate the silt fraction (>2 µm) from 
the clay fraction remaining in suspension. The suspen-
sion was then centrifuged for 10 minutes at 3,980 
rounds/min to settle the clay fraction, which was 
smeared onto glass slides and analyzed with a Siemens 
D500 diffractometer with CuKα radiation and generator 
setting 20 mA, 40 kV.

Each sample was analyzed between 2° and 40° 2θ, 
with a step size of 0.02° 2θ in the air-dried state. The 
samples were then treated with ethylene glycol solvation, 
which permits the expansion of the smectite peak to 
a basal spacing of about 17 Å and the glycolated samples 
were scanned between 23° and 26° 2θ, with a step size of 
0.01° 2θ to distinguish the chlorite-kaolinite twin peaks 
(Biscaye 1965). Semiquantitative estimation of the main 
clay mineral abundance (smectite, chlorite, and illite) 
was determined using MacDiff software (Petschick 
2010). The relative percentages of each clay mineral 
were computed using weighting factors as described by 
Biscaye (1965). The clay mineral percentage standard 
deviations were calculated using illite ±1 percent, smec-
tite ±1 percent, kaolinite ±2.5 percent, and chlorite 
±2.5 percent according to Damiani, Giorgetti, and 
Memmi Turbanti (2006).

Illite, chlorite, and kaolinite are considered products of 
glacial erosion of the Spitsbergen and northwest Barents 
Sea area. Their presence in the sediments is associated 
with the glacial input (Wright 1974; Elverhøi et al. 1989; 
Vogt 2009; Lucchi et al. 2013). The smectite content is, 
instead, used as an indicator for AW inflow following 
Griffin, Windom, and Goldberg (1968), Tucker (1988), 
Vogt and Knies (2009), and Junttila et al. (2010).

Compositional XRF core scan analyses were performed 
at 1-cm resolution using the 10 and 30 kV settings. Selected 
elements were normalized versus titanium (Ti) following 
a standard procedure described in Croudace and Rothwell 
(2015) and references therein. In this study, we consider 
the following ratios as paleoenvironmental proxies: Zr/Rb 
used as a grain size proxy (Wu et al. 2020) with positive 
peaks indicating higher percentages of coarse silt and sand, 
Si/Al used to determine the variation between the biogenic 
silica (Si) versus the detrital (Al) fraction (Dickson et al. 
2010), Ca/Ti used to infer variations between the biogenic 
carbonate (Ca) and detrital (Ti) fractions (Olsen, 
Anderson, and Knudsen 2012; Lucchi et al. 2013), and Si/ 
Ti and K/Ti used as proxies for the content of quartz and 
K-feldspars delivered to the area mainly by meltwaters and/ 
or sea ice, therefore representing a detrital input (Marsh 
et al. 2007; Agnihotri et al. 2008; Diekmann et al. 2008; Piva 
et al. 2008; Lucchi et al. 2013, 2015; Shala et al. 2014). 
Additional information on the compositional proxies is 
reported in Table 1.

Micropaleontological analyses

Diatoms
Diatom slides were prepared following the methodology 
described in Rathburn et al. (1997). We used 0.5 g of 
dried sediment, and each sample was placed in a beaker 
with 60 mL of 35 percent hydrogen peroxide (H2O2), 
40 mL of distilled water, and 0.5 g of anhydrous tetra-
sodium pyrophosphate (Na2H2P2O7). In addition, sam-
ples were also treated with 10 percent hydrochloric acid 
(HCl) solution to dissolve calcareous organisms and 
placed for 15 minutes on a hot plate (70°C). The sample 
was rinsed with distilled water every 8 hours to reach 
a pH of ca. 6. A known volume of solution (700 µL from 
20 mL) was pipetted onto a coverslip placed inside 
a Petri dish together with distilled water to obtain 
a homogeneous distribution of diatoms on the coverslip. 
Excess water contained in the Petri dish was removed 
utilizing an immersion cotton thread in the Petri dish 
over a period of 10 to 20 hours. The use of a centrifuge 
was avoided to better preserve long and fragile diatoms 
such as the genus Thalassiothrix spp. A total of forty-five 
samples were analyzed for diatom analyses. After the 
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Table 1. Environmental meaning of the proxies used in this work.
Species Ecological meaning Reference

Diatoms
Actinocyclus 

curvatulus
Sea ice–related species often thrive in marginal sea ice zones. It 

is associated with AW assemblage.
Andersen, Koç, and Moros (2004); Von Quillfeldt, Ambrose, and 

Clough (2003); Oksman et al. (2019)
Aulacoseira spp. Freshwater indicator M. L. Garcia et al. (2019)
Bacterosira 

bathyomphala
Cold-water indicator Oksman et al. (2019)

Chaetoceros 
resting spore

Cold-water productivity. Stratified water column Matul et al. (2018)

Coscinodiscus 
marginatus

Temperate warm water associated with AW Oksman et al. (2019)

Coscinodiscus 
radiatus

Temperate warm water associated with AW Oksman et al. (2019)

Fragilariopsis 
cylindrus

Species associated with sea ice and with marginal sea-ice zone Oksman et al. (2019); Weckström et al. (2020)

Fragilariopsis 
oceanica

Species associated with sea ice and with marginal sea-ice zone Oksman et al. (2019)

Odontella aurita Brackish water Obrewzkova, Kolesnik, and Semiletov (2014)
Paralia sulcata Warm water indicator associated with AW. Strong bottom 

current
Koç-Karpuz and Schrader (1990). Melis et al. (2018)

Porosira glacialis Species associated with sea-ice marginal zone Oksman et al. (2019)
Rhizosolenia 

hebetata
Cold-water indicator associated with AW Oksman et al. (2019)

Shionodiscus 
oestrupii

Warm species associated with AW Barron et al. (2009)

Thalassiosira 
antarctica

Cold-water indicator associated with AW Koç-Karpuz and Schrader (1990); Oksman et al. (2019)

Planktic foraminifera
Globigerina 

bulloides
Subpolar species. Related to warm Atlantic surface water. 

Seasonal peak abundances in late summer
Tolderlund and Bé (1971); Carstens, Hebbeln, and Wefer (1997); 

Volkmann (2000); Schiebel et al. (2001); Simstich, Sarntheim, and 
Erlenkauser (2003); Schiebel et al. (2017)

Neogloboquadrina 
pachyderma

Polar species. Related to Arctic surface waters Tolderlund and Bé (1971); Carstens, Hebbeln, and Wefer (1997); Greco 
et al. (2019)

Turborotalita 
quinqueloba

Subpolar species. Related to the Arctic and Polar fronts, in areas 
influenced by warm AW

Tolderlund and Bé (1971); Carstens, Hebbeln, and Wefer (1997); 
Volkmann (2000)

Benthic foraminifera
Cassidulina 

neoteretis
Cool transformed surface Atlantic source surface water. Stable 

salinity. Seasonal ice-free conditions. High seasonal 
productivity

Wollenburg and Mackensen (1998); Wollenburg, Knies, and 
Mackensen (2004); Jennings et al. (2004); Cage et al. (2021)

Cassidulina 
reniforme

Polar species. It indicates cold water, normal salinity, and 
glaciomarine conditions

Sejrup et al. (1981); Mackensen, Sejrup, and Jansen (1985); Polyak 
et al. (2002)

Cibicidoides 
wuellerstorfi

Indicator of AW influence and 
bottom current activity

Sejrup et al. (1981); Mackensen, Sejrup, and Jansen (1985); 
Wollenburg and Mackensen (1998)

Elphidium 
clavatum

Polar species. It prefers cold bottom waters and could tolerate 
less than marine salinity. Opportunistic; common in glacier- 
proximal environments

Hald and Korsun (1997); Korsun and Hald (2000); Polyak et al. (2002); 
Darling et al. (2016); Jennings et al. (2020); Gamboa Sojo et al. 
(2021)

Epistominella 
exigua

Opportunistic species able to feed on fresh phytodetritus Gooday (1993); Thomas et al. (1995); Wollenburg and Mackensen 
(1998)

Melonis barleeanus Arctic–boreal species, related to cooled Atlantic water with 
supply of degraded organic matter. High salinities

Korsun and Hald (1998); Polyak et al. (2002); Jennings et al. (2004)

Oridorsalis tener Low productivity Osterman, Poore, and Foley (1999); Wollenburg and Mackensen 
(1998)

Calcareous nannofossil
H/P index Proxy to distinguish the prevalence of warm Atlantic-derived 

water versus cold Polar and Arctic waters 
H/P index > 0 indicative of Atlantic conditions; H/P index < 0 
indicative of Arctic to Polar conditions

Andruleit and Baumann (1998); Carbonara et al. (2016)

Emiliana huxleyi < 
4 µm

Warm water indicator Colmenero-Hidalgo, Flores, and Sierro (2002)

Coccolithus 
pelagicus

Cold- and open-water indicator McIntyre and Bé (1967); Roth and Coulbourn (1982); Samtleben and 
Bickert (1990)

Sedimentological indicator
Zr/Rb Grain size indicator; high value indicates the prevalence of 

coarse material
Wu et al. (2020)

Ca/Ti Proxy for changes in biogenic versus lithogenic sedimentation 
and for estimate carbonate content. High value suggests 
more biogenic material

Olsen, Anderson, and Leng (2013); Vandorpe et al. (2019)

Si/Al Biogenic productivity indicator of the siliceous microfossils (such 
as diatoms). High value indicates more biogenic material

Dickson et al. (2010)

Si/Ti Proxy of the quartz content (terrigenous input). High Si indicates 
high quartz content

Agnihotri et al. (2008); Marsh et al. (2007); Shala et al. (2014)

(Continued)

568 F. TORRICELLA ET AL.



preparation of the slides, diatoms were observed using 
a light microscope (Leica Leitz Dialux 20) at 1,000× 
magnification and a Zeiss (Immersol oil 518) immersion 
oil was used to allow the observation, following the 
counting rules proposed by Crosta and Koç (2007). 
When possible, we counted at least 300 diatom valves 
per slide; in many cases the entire slide was analyzed 
without reaching this number. Nevertheless, we consid-
ered that the diatom assemblage could give a qualitative 
indication of the past environment change if adequately 
supported by other proxies. Sediment samples were 
considered barren if no valves were found along at 
least five transects. Taxonomic identification at the spe-
cies level was based on Sancetta (1982), Hasle and 
Syvertsen (1997), and Pearce et al. (2014).

The total absolute diatom abundance (ADA) in terms 
of the number of valves per gram of dry sediment (nv/ 
gds) was calculated using the formula 

nv
cA

� �
x

Ap
w

� �

x
Vs
Vp

� �

;

where 
nv is the number of total valves counted,
cA is the counted area (mm2),
Ap is the area of the Petri dish (mm2),
w is the weight of dry sediments used (g),
Vs is the quantity of initial solution (mL),
and Vp is the pipetted solution (mL).

The relative abundance of each species (expressed as 
a percentage) in each sample was calculated as the ratio 
of the number of valves of diatom species on the total 
diatom valves counted.

Additional information on the diatom ecology is 
reported in Table 1.

Calcareous nannofossils
Nine samples were analyzed for calcareous nannofossil 
content. All samples were prepared from unprocessed 
material as smear slides, following standard techniques 

(Bown and Young 1998), and examined using a Zeiss 
Axioskop light microscope at 1,250× magnification. 
Coccoliths were counted in 200 fields of view, corre-
sponding to a smear slide area of 6.28 mm2, following 
the method described by Backman and Shackleton 
(1983) and Rio, Raffi, and Villa (1990). Relative abun-
dance, expressed as a percentage, and absolute abun-
dance, expressed as the number of specimens per 
10 mm2 in the slides, were calculated. In this work, we 
considered the ecological index H/P, which is the ratio 
between Emiliania huxleyi and Coccolithus pelagicus. 
The H/P index is a useful proxy that gives an indication 
about the prevalence of warm Atlantic-derived water 
versus cold Polar and Arctic Water (Andruleit and 
Baumann 1998). Additional information on the calcar-
eous nannofossil ecology is reported in Table 1.

Planktic and benthic foraminifera
For planktic and benthic foraminiferal analysis, the 
samples were dried at 40°C, weighed, and wet-sieved 
using a sieve of 63 µm, followed by dry sieving at 150 
µm. A total of sixteen samples were analyzed for 
foraminiferal content. The samples were subdivided 
by dry splitting to obtain a subsample aliquot, where 
about 300 specimens were counted and identified at 
the species level in the sand fraction >150 µm. 
Specimen counting was performed on well- 
preserved tests and recorded as relative abundance 
(percentage). The planktic and benthic foraminiferal 
absolute abundances were reported as the number of 
specimens per gram of dry sediment. Planktic fora-
minifera were counted and identified at the species 
level following the taxonomy of Darling et al. (2006) 
and El Bani Altuna et al. (2018). The taxonomy of 
benthic foraminifera followed Ellis and Messina 
(1940–1978), Loeblich and Tappan (1953, 1987, 
2015), Feyling-Hanssen et al. (1971), Gabel (1971), 
Knudsen (1998), Wollenburg and Mackensen (1998), 
Holbourn, Henderson, and MacLeod (2013), and 

Table 1. (Continued).
Species Ecological meaning Reference

K/Ti Proxy for terrigenous input. High K/Ti ratio suggests more 
terrigenous input

Diekmann et al. (2008); Piva et al. (2008)

Smectite Proxy for AW input. Increase of smectite suggests more AW 
inflow

Junttila et al. (2010)

Illite Proxy for continent input. Increase in illite indicates continent 
input

Lucchi et al. (2013)

Kaolinite Proxy for continent input. High kaolite value suggests high 
continent input

Junttila et al. (2010)

Chlorite Proxy for continent input. High chlorite value suggests high 
continent input

Junttila et al. (2010)

AW = Atlantic Water. 
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Setoyama and Kaminski (2015). Additional informa-
tion on the foraminifera ecology is reported in 
Table 1.

Results

Sedimentology

The sedimentary sequence consists of bioturbated mud 
with sparse and locally abundant clasts of ice-rafted 
debris (IRD fraction >1 mm; Grobe 1987; Figure 3). 
A 3-cm-diameter pebble was recovered at 26 to 27 cm 
below sea floor (bsf) corresponding to ~1,000 years BP 
according to the age model.

The grain size, and in particular the content of very 
coarse silt and sand indicated by the Zr/Rb ratio, gen-
erally decreases from the bottom to the top of the core, 
and two secondary decreasing trends can be distin-
guished between the bottom of the core and 37 cm bsf 
(~1,200 years BP) and the latter point to the top of the 
core. Relatively coarse-grained intervals are located 
between the bottom to 75 cm bsf (~2,000–1,940 years 
BP), between 60 and 51 cm bsf (~1,600–1,400 years BP), 
at 35 cm bsf (~1,100 years BP), and between 23 and 

19 cm bsf (~950–900 years BP); the latter roughly cor-
responds to the presence of an IRD-rich interval also 
visible through X-ray images.

The Ca/Ti ratio generally increases up-core, with 
several fluctuations. One of the pronounced minimums 
of the Ca/Ti trend is located at the base of the interval 
between 60 and 42 cm bsf (~1,600–1,200 years BP).

The Si/Al ratio has maximum values between 55 and 
27 cm bsf (~1,500–1,000 years BP) with an increasing 
trend in the upper part of the core from 11 cm bsf (~800 
years BP) to the top.

Both Si/Ti and K/Ti decrease from the bottom to 
approximately 42 cm bsf (~1,200 years BP; Figure 3), 
with a minimum at 55 to 42 cm bsf (~1,500–1,200 years 
BP); after this interval the values increase to 11 cm bsf 
(~800 years BP) and decrease again in the uppermost 
part of the core.

The clay mineral assemblage is formed by illite (58– 
68 percent), kaolinite (15–17 percent), chlorite (13– 
18 percent), and smectite (2–12 percent; Figure 3). The 
illite relative abundance increases up to 68 cm bsf 
(~1,800 years BP) and then decreases between 68 and 
48 cm bsf (~1,800–1,300 years BP), after which it 
increases until 18 cm bsf (~900 years BP) and decreases 

Figure 3. Photo and X-ray of the studied core GS191-01PC together with XRF ratios: Zr/Rb, Ca/Ti, Si/Al, Si/Ti, and K/Ti and clay mineral 
content against core depth. The age model is also reported. The yellow shades correspond to warm intervals and the gray shades 
correspond to cold intervals, as noted in the discussions. sm = smectite; kln = kaolinite; chl = chlorite; ill = illite.
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in the uppermost part of the core. The chlorite relative 
abundance decreases until 68 cm bsf (~1,800 years BP), 
after which it generally increases to the top of the core, 
with a minimum at 18 cm bsf (~900 years BP). The 
kaolinite content slightly decreases from the bottom to 
70 cm bsf (~1,800 years BP) and then increases until 
53 cm bsf (~1,400 years BP), after which it decreases 
toward the top of the core. The smectite content 
increases from the bottom until 48 cm bsf (~1,300 
years BP) except at 58 cm bfs (~1,600 years BP) where 
the value drops, after which it remains almost constant 
from 38 to 28 cm bsf (~1,100–1,000 years BP) then 
decreases to its minimum value at 18 cm bsf (~900 
years BP), and slightly increases toward the top of the 
core.

Micropaleontological proxies

Diatom assemblages
The ADAs vary from 0 to 530 × 104 v/gds (Figure 4). 
Five barren intervals occur at 63 cm bsf (~1,700 years 
BP), 60 to 54 cm bsf (~1,600–1,500 years BP), 17 to 
16 cm bsf (~900 years BP), 15 to 14 cm bsf (~850 years 
BP), and 10 cm bsf (~800 years BP). The higher absolute 
abundances of diatoms occur from 37 to 19 cm bsf 
(~1,100–900 years BP) and from 5 to 0 cm bsf (~700 
years BP).

Actinocyclus curvatulus, Fragilariopsis cylindrus, and 
Fragilariopsis oceanica form the sea-ice margin group. 
Actinocyclus curvatulus has relative abundance ranging 
from 0 to 7 percent, F. cylindrus from 0 to 4 percent, and 
F. oceanica from 0 to 6 percent. Combined this diatom 
group varies from 0 to 10 percent and presents 
a relatively high value from the bottom to 69 cm bsf 
(~1,800 years BP), whereas from 67 to 5 cm bsf ~1,800– 
700 years BP) is rare except for some peaks at 53 cm bsf 

(~1,500 years BP) and at 41 cm bsf (~1,200 years BP). 
From 5 cm bsf (~700 years BP) this group reaches its 
maximum abundance.

Bacterosira bathyomphala, Rhizosolenia hebetata, 
Porosira glacialis, and Thalassiosira antarctica var. bor-
ealis (here after Thalassiosira antarctica) comprise the 
cold-water group. Bacterosira bathyomphala has 
a relative abundance ranging from 0 to 4 percent, 
R. hebetata from 0 to 17 percent, P. glacialis from 0 to 
4 percent, and T. antarctica from 0 to 10 percent. 
Combined this diatom group has a relative abundance 
from 0 to 24 percent. From 72 to 69 cm bsf (~1,900– 
1,800 years BP) and between 50 and 37 cm bsf (~1,400– 
1,100 years BP) this group presents relative high percen-
tage and then decreases until 5 cm bsf (~700 years BP); 
from 5 cm bsf to the top (~700–670 years BP) the cold- 
water group increases.

Chaetoceros resting spores (CRS) are the most abun-
dant diatom taxon in the assemblage, with a relative 
abundance ranging from 0 to 80 percent, which 
decreases from the bottom to 51 cm bsf (~1,400 years 
BP) and increases from 48 to 15 cm bsf (~1,300–850 
years BP), except for the interval 32 to 29 cm bsf 
(~1,100–1,000 years BP). From 15 cm bsf to the top 
(~850–670 years BP), CRS has an increasing trend but 
is less abundant than the previous interval. 
Coscinodiscus marginatus, Coscinodiscus radiatus, and 
Shionodiscus oestrupii comprise the warmwater group. 
Coscinodiscus marginatus has a relative abundance ran-
ging from 0 to 60 percent, C. radiatus from 0 to 15 per-
cent, and S. oestrupii from 0 to 6 percent. Combined 
these diatom species have relative percentages varying 
from 0 to 75 percent. From the bottom to 56 cm bsf 
(~2,000–1,500 years BP) the percentage of warmwater 
group decreases; from 56 to 5 cm bsf (~1,500–700 years 
BP) the warmwater group dominates the diatom 

Figure 4. Absolute diatom abundance and down-core distribution of diatom species are expressed as relative abundance plots against 
the depth. The age model is also reported. The yellow shades correspond to warm intervals and the gray shades correspond to cold 
intervals. The white shade indicates a level barren in diatoms.
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assemblage but presents three decreases at 50 cm bsf 
(~1,400 years BP), 35 cm bsf (~1,100 years BP), and 
24 cm bsf (~1,000 years BP), and it decreases from 
5 cm bsf to the top core.

Paralia sulcata, also part of the warmwater group, has 
a relative abundance ranging from 0 to 34 percent. Paralia 
sulcata has an oscillating trend, with the major peaks at 
74 cm bsf (~1900), from 53 to 46 cm bsf (~1,400–1,300 
years BP), between 32 and 29 cm bsf (~1,000 years BP), 
and a last peak at 17 cm bsf (~900 years BP).

Aulacoseira spp. and Odontella aurita comprises the 
freshwater group. The relative abundance of this group 
varies from 0 to 12 percent. From the bottom to 46 cm bsf 
(~1,300 years BP), the freshwater group is less abundant, 
and then from 46 cm bsf (~1,300 years BP) to the top this 
group is present with maximum percentages of 10 percent.

Calcareous nannofossil assemblages
The calcareous nannofossil total abundance, calcu-
lated as the number of specimens per fixed area, 

ranges between 111 and 257 coccoliths/10 mm2 

through the upper 78 cm bsf (Figure 5). Emiliana 
huxleyi dominates the assemblage (38–59 percent) 
except for a drop at 16 cm bsf (~900 years BP) that 
corresponds to the peak of Coccolithus pelagicus. The 
latter form has relative abundance ranges between 36 
and 60 percent. The H/P index spans from 0.63 to 
1.67 through the studied interval. The H/P index is 
always greater than 1 except at 16 cm bsf (~900 years 
BP), where it reaches 0.63.

Planktic and benthic foraminiferal assemblages
The absolute planktic foraminiferal abundance ranges 
from 26 to about 160 planktic foramifera per gram of dry 
sediment (npf/gds) along the core (Figure 6).

Neogloboquadrina pachyderma dominates the assem-
blage (60–100 percent); it is more abundant from the 
bottom to 48 cm bsf (~1,300 years BP) and then 
decreases toward until 10 cm bsf (~800 years BP) except 
for a peak of 90 percent at the top of the core.

Figure 5. Down-core distribution of calcareous nannofossil species expressed as a percentage, total abundance, and H/P index plots 
against the depth. The age model is also reported. The yellow shades correspond to warm intervals and the gray shades correspond to 
cold intervals. The dotted line indicates the change in paleoenvironment at 1,500 years BP. ArW = Arctic Water. AW = Atlantic Water.
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Turborotalita quinqueloba has a relative abundance 
ranging from 0 to 20 percent; it has a low abundance 
from the bottom to 48 cm bsf (~1,300 years BP), subse-
quently increasing until 10 cm bsf (~800 years BP), and 
then decreases toward the top of the studied core. The 
relative abundances of Globigerina bulloides (1–10 per-
cent) have a constant trend with a peak at 10 cm bsf 
(~800 years BP).

The absolute benthic foraminifera abundance 
spans from 11 to 40 (nbf/gds) along the core 
(Figure 6). The absolute benthic foraminiferal abun-
dance decreases from the bottom to 43 cm bsf 
(~1,200 years BP) except for a peak at 53 cm 
(~1,400 years BP), then increases until 10 cm (~800 
years BP) and again decreases toward the top core. 
Cibicidoides wuellerstorfi dominates the assemblage 
(20–70 percent); it decreases from the bottom to 
58 cm bsf (~1,600 years BP), increases until 10 cm 
bsf (~800 years BP), decreases until 3 cm bsf (~700 
years BP), and then increases toward the top of the 
core. Cassidulina reniforme (0–12 percent) is more 
abundant from the bottom to 53 cm bsf (~1,500 
years BP) and then decreases toward the top except 
for a peak at 3 cm bsf (~700 years BP). Elphidium 
clavatum (0–9 percent) is low abundant along the 
core except for two peaks at 68 cm bsf (~1,800 
years BP) and 43 cm bsf (~1,200 years BP). Melonis 
barleeanus (0–6 percent) is present with very low 
relative abundance along the investigated sediment 
sequence except for a peak at 10 cm bsf (~800 
years BP). Cassidulina neoteretis (0–8 percent) 
increases from the bottom to 63 cm bsf (~1,700 
years BP) and then decreases toward the top except 
for peaks at 42 cm bsf (~1,200 years BP) and 10 cm 

bsf (~800 years BP). Oridorsalis tener (0–30 percent) 
decreases from the bottom toward the top of the 
core, except for a peak at 48 cm bsf (~1,300 years 
BP). Epistominella exigua (0–15 percent) in general 
increases toward the top with two peaks at 48 cm bsf 
(~1,300 years BP) and 3 cm bsf (~700 years BP).

Discussion

Paleoenvironmental changes during the last 2,000 
years BP at Bellsund Drift

The studied time interval records an overall warming 
trend punctuated by minor climatic fluctuations that 
seem to be mainly associated with the variability of the 
AW inflow and its feedback on the marginal sea-ice 
formation. The progressive overall warming in the area 
can also be interpreted from a two-step decrease of the 
sediment grain size (Zr/Rb ratio) indicating a general 
progressive increasing distance of the glacial point 
source to the studied area.

We identified four main climatic phases that occurred 
during the last 2,000 years BP: 2,000–1,600, 1,600–1,300, 
1,300–700, and 700–670 years BP (Figures 7 and 8), 
mainly based on the micropaleontological assemblage 
(in particular, the occurence of diatom sea-ice species 
and cold-water species and sedimentological variations 
(in particular, the variation of the smectite clay mineral).

Time interval: 2,000–1,600 years BP

During this time interval the abundance of 
Coscinodiscus marginatus and C. radiatus in the diatom 
assemblages and the presence of T. quinqueloba in the 

Figure 6. Down-core distribution of absolute planktic and benthic foraminifera abundance expressed as number of tests on grams of 
dry sediment and foraminifera species expressed as percentage plots against the depth. The age model is also reported. The yellow 
shades correspond to warm intervals and the gray shades correspond to cold intervals.
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planktic foraminiferal assemblage suggest an inflow of 
warm AW. This interpretation is also supported by the 
high content of the calcareous nannofossils E. huxleyi 
and the high H/P index, as well as a relatively high input 
of smectite (Figure 7). The contemporaneous domi-
nance of the arctic foraminifera N. pachyderma and the 
planktic diatom R. hebetata suggests the co-existence of 
relatively cool and stratified water. We argue that the 
coexisting evidence of AW inflow input and the pre-
sence of cold surface waters may result from repeated 
advance and retreat of the sea ice in the surroundings. 
This interpretation is supported by the presence of the 
sea ice diatom F. cylindrus and F. oceanica occurring 
between 1,900 and 1,800 years BP and CRS that are 
usually associated with very high primary productivity. 
In polar regions CRS could also reflect sea-ice melting 
and surface water stratification if they account for more 
than 20 percent of the total assemblage (Leventer et al. 
1996; Armand et al. 2005) as in our record. The rela-
tively high values of Si/Ti and K/Ti ratios and the diffuse 
abundance of small-size gravel (IRD) visible through the 
X-ray images also support a consistent sediment input 
through sea-ice melting. According to Müller et al. 
(2012), the western Spitsbergen area was characterized 
during the last 3,000 years BP by sequentially rapid 
advancing and retreat of the sea ice, which can be 
a vehicle for transporting IRD, normally of fine- 
grained material (Dowdeswell 2009). Although the sur-
face conditions indicate warm AW inflow, the deep 
environment is still characterized by bottom cold- 
water masses, indicated by the presence of the benthic 
foraminifera E. clavatum, whereas the presence of 
C. wuellerstorfi indicates vigorous bottom currents 

(e.g., Wollenburg and Mackensen 1998; Polyak et al. 
2002; Rebesco et al. 2013).

According to the reconstructed environmental con-
ditions and the age model, this interval was related to the 
warm climatic phase called the Roman Warm Period 
(Lamb 1977), characterized by an enhanced input of the 
warm AW as observed on the Storfjorden trough mouth 
fan (Zamelczyk et al. 2020) and in the northern (Jernas 
et al. 2013) and northwestern (Bonnet, De Vernal, and 
Hillaire-Marcel 2010; Werner et al. 2011) areas of 
Spitsbergen. In the latter case, the abundance of fine- 
grained detritus, the increase of IP25, and other phyto-
plankton markers were interpreted by Müller et al. 
(2012) as evidence of the intensification of the sea-ice 
coverage, whereas Bonnet, De Vernal, and Hillaire- 
Marcel (2010), working in the same area on dinocyst 
assemblages, indicated warm sea surface temperatures 
(SSTs) with seasonal sea ice and low-salinity surface 
waters. Both statements, however, can fit our interpreta-
tion that envisages an enhanced sea-ice distribution as 
feedback to the intensification of the warm AW inflow 
promoting ice melting with generation of a surface layer 
of freshwater, in turn, forcing new sea-ice formation. It 
is furthermore argued that the strengthening of the AW 
inflow during this time may have caused a northward 
shift of the polar front, promoting the development of 
sea ice northward.

Time interval: 1,600–1,300 years BP

The older part of this period (1,600–1,500 years BP) is 
characterized by sediments that are almost diatom free, 
suggesting unfavorable conditions for their development 

Figure 7. Age–depth plot for the studied sediments interval. The main climatic and paleoenvironmental events are illustrated, 
supported by sedimentological and micropaleontological evidence. The black line indicates the main climatic period recognized in the 
studied sedimentary sequence, the dotted lines limit the minor climatic event, black arrows indicate the increasing or decreasing of 
a proxy.
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or preservation. The presence of diatoms in the water 
column depends on several environmental characteristics, 
including (a) the availability of silicate in the water with 
a percentage greater than 2 μmol/L (Egge and Aksnes 
1992), (b) the sea-ice conditions (Horner 1985), (c) the 
stability of water surface temperature (Leventer 1991), (d) 
the availability of nutrients (Fitzwater et al. 1996), (e) the 
variability of salinity associated with freshwater input 
from the mainland (Licursi, Sierra, and Gomez 2006), 
(f) the availability of sunlight needed for the photosynth-
esis, and (g) the biogenic silica dissolution/preservation 
during settling in the water column.

We think that a combination of the above processes 
may have been responsible for the absence of diatoms in 
the sediments. The relative increase of the continentally 
derived clay minerals (mainly chlorite but also illite and 
kaolinite) and the marked decrease of smectite suggest 
a reduced inflow of the warm AW pointing to a cold 
environment. Evidence of colder conditions between 
1,600 and 1,500 years BP is reflected by the relatively 
low values of Ca/Ti and of Si/Al, which suggest low 
biogenic carbonate and biosiliceous productivity. The 
relatively high Si/Ti ratio until 1,500 years BP can be 
associated with continuous continental and/or sea-ice 
terrigenous supply to the environment that may have 
obscured the surface water masses, reducing the sunlight 
penetration, in turn impacting phytoplankton productiv-
ity. A change in the diatom productivity/preservation was 
observed starting from 1,500 years BP, with a progressive 
increase of warmwater diatom species C. marginatus and 
C. radiatus, suggesting a transition to warmer climate 
conditions with a renewed intensification of the warm 
AW advection (Figure 7). Furthermore, the presence of 
sea-ice diatoms F. cylindrus and F. oceanica together with 
the cold-water affinity species T. antarctica, R. hebetata, 
and CRS can be associated with surface cold water and 
stratified ArW (Kemp et al. 2000; Oksman et al. 2019). 
The co-presence of arctic planktic foraminifera 
N. pachyderma supports the indication of cold and stra-
tified surface water. Therefore, we argue that the intensi-
fication of AW promoted the melting of both sea ice and 
glaciers in the fjords. This interpretation is supported by 
the appearance of Aulacoseira spp. in the diatom assem-
blage, which typically live in continental freshwater basins 
(rivers and lakes, e.g., M. L. Garcia et al. 2019). The 
increase of the benthic foraminifera C. reniforme suggests 
the presence of cold water at the sea bottom. The increase 
of E. exigua together with the reduction of O. tener indi-
cates an increase of organic flux to the sea floor, due to 
enhanced productivity, which is also supported by the 
increase of ADA. According to the discussed data, the 
time interval between 1,600 and 1,300 years BP appears as 

Figure 8. Sketch illustrating the oceanographic variations along 
the continental shelf margin of west Spitsbergen during the last 
2,000 years BP.
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a transitional time that is initially characterized by rela-
tively cold conditions (1,600–1,500 years BP) followed by 
a progressive intensification of the AW inflow. The 
renewed warm inflow since 1,500 years BP initially 
impacts on the environment through ice melting and 
formation of a surface cold-water layer. This time interval 
was associated with the Dark Ages Cold Period (Lamb 
1977) observed also by other authors along the western 
Spitsbergen margin and Barents Sea (Werner et al. 2011; 
Müller et al. 2012; Jernas et al. 2013; Berben et al. 2014; 
Cabedo-Sanz and Belt 2016; Zamelczyk et al. 2020).

Similar to our observations made for the time interval 
1,600 to 1,500 years BP, Werner et al. (2011) recorded 
a cooling period characterized by a generally low pro-
ductivity, a marked increase of the planktic foraminifera 
N. pachyderma, and associated cooling of SST estimated 
through the planktic foraminiferal assemblage. Jernas 
et al. (2013) inferred from the benthic foraminifera 
association a cooling period starting at about 1,700 
years BP in the Kongsfjorden and Hiplopen (north-
wewst Spitsbergen), which the authors related to both 
a reduced influence of AW inflow and increased of cold 
ArW input. In contrast, in northwest Spitsbergen, 
Bonnet, De Vernal, and Hillaire-Marcel (2010) observed 
relatively warm SST and sea ice–free conditions related 
with a stronger AW inflow causing the northward shift 
of the Arctic front at about 1,450 years BP.

Time interval: 1,300–700 years BP

This interval is clearly marked by the increase of warm 
planktic and benthic species. Although the planktic 
foraminiferal assemblage is still dominated by the arc-
tic species N. pachyderma, the consistent appearance of 
the subpolar species T. quinqueloba denotes the pre-
sence of warmer conditions with respect to the pre-
vious interval that were related to a stronger advection 
of warm AW (e.g., Volkmann 2000). Indeed, since ca. 
1,200 years BP, the increase in the Ca/Ti ratio supports 
the evidence of a stronger warmwater inflow favorable 
for carbonate productivity and/or preservation. The 
dominance of the diatom warm water species 
C. marginatus, C. radiatus, and P. sulcata supports 
this interpretation. However, the co-presence of cryo-
philic forms such as A. curvatulus, F. cylindrus, and 
B. bathyomphala, together with the occurrence of the 
CRS, suggests a relative proximity to the sea-ice margin 
with the presence of surface-stratified water. The high 
percentage of the cold-water species T. antarctica in the 
diatom assemblage confirms such a hypothesis because 
it is commonly related to the presence of cold ArW. 
The decrease of the benthic foraminifera C. reniforme 
and E. clavatum and the increase of C. wuellerstorfi 

indicate warm deepwater masses, likely due to strong 
influx of AW, as also shown by the general increase of 
the smectite content.

The presented data indicate that warmer environ-
mental conditions during this period occurred in 
both bottom and surface water masses. According 
to the age model (1,300–700 years BP), we related 
this warm interval to the MWP (Lamb 1977), com-
monly characterized by warm surface conditions 
along the western and northern margins of 
Spitsbergen (Werner et al. 2011; Jernas et al. 2013; 
Zamelczyk et al. 2020), with reduced sea-ice cover 
(Müller et al. 2012), or with the presence of seasonal 
sea ice (Bonnet, De Vernal, and Hillaire-Marcel 
2010; Cabedo-Sanz and Belt 2016).

The sediment record of the MWP in the studied 
core contains sparse <1-cm clasts, indicating that 
diffuse glaciers and iceberg melting occurred as 
feedback to the increased inflow of the warm AW. 
In particular, the presence of a solitary 3-cm- 
diameter pebble at ca. 1,000 years BP indicates 
IRD input from melting iceberg rather than other 
transport mechanisms (e.g., Moran et al. 2006; 
St. John 2008; Stickley et al. 2009). The sediments 
enclosing the large clast do not record depositional 
disturbance or structures that could be associated 
with gravity flow processes. Instead, the sediments 
record a consistent presence of the diatom 
Aulacoseira spp., commonly blooming in continen-
tal freshwater such as rivers and lakes. The docu-
mented strong advection of warm AW could force 
the melting of Svalbard tidewater glaciers, causing a 
consistent meltwater runoff, promoting the spread 
of the Aulacoseira spp. in the marine environment.

Time interval: 700–670 years BP

In the upper part of our record, at ca. 700 years BP, 
we recorded an abrupt increase in cold-water indica-
tors. The increase of the sea-ice diatom species 
F. oceanica and A. curvatulus together with cold- 
water indicators such as R. hebetata and 
T. antarctica suggest a pronounced decline in the 
AW inflow, which is also supported by the reduction 
of the warm water diatom species C. marginatus and 
C. radiatus. In addition, the planktic foraminifera 
record is characterized by an abrupt increase of the 
cold-water species N. pachyderma and a decrease of 
the warmwater species T. quinqueloba and 
G. bulloides, pointing to cooling surface and subsur-
face water. This youngest interval is also marked by 
the maximum value of ADA, indicating an increase 
in primary productivity that was related to the 
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presence of seasonal sea ice with periodic release of 
nutrients promoting the diatom bloom. According to 
the age model, we relate this period with the begin-
ning of the Little Ice Age.

Conclusion

The integrated micropaleontological (diatoms, nanno-
fossils, planktic and benthic foraminifera) and sedimen-
tological approach (X-ray, XRF, clay mineral) to the 
study of a sediment core from the Bellsund Drift pro-
vided new paleoenvironmental insights on the last two 
millennia.

We identified two warm periods (2,000–1,600 years 
BP and 1,300–600 years BP) corresponding to the RWP 
and the MWP, respectively, alternating with two cold 
periods (1,600–1,300 years BP; 700–670 years BP) cor-
responding to the Dark Ages and the beginning of the 
Little Ice Age, respectively.

During the RWP, the coexistence of warmwater 
planktic species together with cold and/or stratified 
water indicators was related to the enhanced sea-ice 
distribution as feedback to the intensification of the 
warm AW inflow. The warmwater promoted ice melting 
and contributed to creating a surface layer of freshwater, 
in turn forcing new sea-ice formation. RWP is followed 
by a transitional time (Dark Ages, 1,600–1,500 years BP) 
characterized by the absence of diatoms and high terri-
genous supply. During the MWP, warmer surface con-
ditions (with respect to the RWP) occurred and 
warmwater masses influenced the sea bottom. A large 
ice-rafted clast and the consistent presence of 
Aulacoseira spp. were interpreted as evidence for 
increased glacier decay. Since 700 years BP, the abrupt 
increase of diatom sea-ice species and cold-water spe-
cies, together with the high abundance of 
N. pachyderma, was related to colder environmental 
conditions with the presence of sea ice.
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