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Identifying and characterizing the dynamics of explosive activity is impelling to

build tools for hazard assessment at open-conduit volcanoes: machine learning

techniques are now a feasible choice. During the summer of 2019, Stromboli

experienced two paroxysmal eruptions that occurred in two different volcanic

phases, which gave us the possibility to conceive and test an early-warning

algorithm on a real use case: the paroxysm on July, 3 was clearly preceded by

smaller and less perceptible changes in the volcano dynamics, while the second

paroxysm, on August 28 concluded the eruptive phase. Among the changes

observed in the weeks preceding the July paroxysm one of the most significant

is represented by the shape variation of the ordinaryminor explosions, filtered in

the very long period (VLP 2–50 s) band, recorded by the Sacks-Evertson

strainmeter installed near the village of Stromboli. Starting from these

observations, the usage of two independent methods (an unsupervised

machine learning strategy and a cross-correlation algorithm) to classify

strain transients falling in the ultra long period (ULP 50–200 s) frequency

band, allowed us to validate the robustness of the approach. This

classification leads us to establish a link between VLP and ULP shape

variation forms and volcanic activity, especially related to the unforeseen 3

July 2019 paroxysm. Previous warning times used to precede paroxysms at

Stromboli are of a few minutes only. For paroxysmal events occurring outside

any long-lasting eruption, the initial success of our approach, although applied

only to the few available examples, could permit us to anticipate this time to

several days by detecting medium-term strain anomalies: this could be crucial

for risk mitigation by prohibiting access to the summit. Our innovative analysis

of dynamic strainmay be used to provide an early-warning system also on other

open conduit active volcanoes.
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1 Introduction

The current state of art about the development of early

warning systems in volcanic areas reports robust results only

for short-term precursors at open-conduit volcanoes. In a recent

work Dempsey et al. (2020), use an algorithm on the Whakaari/

White Island volcano capable of finding a 17 h warning prior to

the fatal 2019 eruption, with a peak of the warning occurring 4 h

prior to that event. Another example of an early-warning system,

based on an unsupervised algorithm capable of providing

automatic notifications of eruptions to Government agencies,

has been developed by Ripepe et al. (2018) for Mt. Etna, Italy:

based on the analysis of infrasonic signals, it provides high

success rates on upcoming eruptions characterized by a

smooth increase in the amplitude of both seismic and

infrasonic signals hours before, delivering pre alert notification

about 1 h before the occurrence of the eruptive onset. On the

same volcano, Spampinato et al. (2019) design a multi-station

warning system based on the classification of patterns of the

volcanic tremor, by using Self-Organizing Maps (SOM) and

fuzzy clustering. The classifier forecasts hours before in

hindsight patterns associated with fast-rising magma (typical

of lava fountains) as well as a relatively long lead time of the

outburst (lava flows from eruptive fractures).

Steadily erupting basaltic volcanoes produce Strombolian type

outbursts, rarer fire fountains, effusive activity and paroxysmal

explosions, occurring irregularly every several years (Bevilacqua

et al., 2020; Mattia et al., 2021). The latter represent a major hazard

owing to their sudden occurrence and wide impact. The origin of

these unforecasted blasts remains poorly understood, as well as

their relationship with the usual explosive activity and the effusive

eruptions. Identifying their triggering mechanism and potential

precursors is of outmost importance for both volcano research and

civil defense purposes. Stromboli volcano is one of the best sites for

studying basaltic explosive paroxysms. It is an active, open-conduit

strato-volcano, located in the northernmost area of the Aeolian

Archipelago, Southern Italy, characterized by a moderately

persistent volcanic activity with a paucity of deformation

episodes: hence it has always been a candidate volcano as a

natural laboratory for researchers investigating eruptive

precursors on open-conduit volcanoes. In the past, Pino et al.

(2011) reported on the first detection of seismic signals precursory

to a paroxysm on 5 April 2003 at Stromboli. This strong event was

preceded by 25 h of seismic tremor variation, broadly coincident

with strong geochemical anomalies in crater plume emissions.

Newly, Di Lieto et al. (2020) and Giudicepietro et al. (2020) have

analyzed the signals of a borehole strainmeter installed on the

island, obtaining automatic triggers 10 and 7.5 min before the July

3 and the 28 August 2019 paroxysms, respectively. These results

highlight very short-term precursors of paroxysmal activity and

provide a first valuable evidence for the development of an early

warning system for paroxysmal explosions based on strainmeter

measurements.

Explosive activity, with several hundreds of events per day

(Martini et al., 2007) at intervals ranging from about 3 to 15 min,

dominates Stromboli’s dynamics. Each explosion generates a

seismic signal with high and low frequency content, the latter

characterized by periods of 3 s or more (Neuberg et al., 1994), like

that observed at other open-conduit active volcanoes (see, e.g.,

Nishimura et al., 2000; Aster et al., 2003). Higher frequencies

have been explained as ground-coupled airwaves produced

during an explosion (Braun and Ripepe, 1993), while the

lower frequency content is generally associated with long-

(LPs) and very long-period events (VLPs). These last

phenomena are related to volume changes inside the conduit,

caused bymass transport toward the surface (Chouet et al., 2008).

Statistical analyses of LPs and VLPs were conducted on a data set

from Stromboli volcano, for which the recorded LP-VLP

transients are associated with the recurrent summit

explosions, characteristic of Strombolian activity (Cauchie

et al., 2015). As opposed to these highly frequent explosions,

deformation episodes occur less often: one of the most important

occurred between December 1994 and March 1995, when a

significant variation in tilt data was observed before a seismic

event with magnitude 3.7, due to the activation of a NE-SW

striking structure, accompanied by magmatic fluid injection

(Buonaccorso, 1998). During 2000, a significant tilt and GPS

variation was recorded (Mattia et al., 2008). Here the

2002–2003 eruption and its paroxysm are missing The

2007 paroxysmal eruption occurred during an effusive phase

and was characterized by a ten times greater initial volume

emission, followed by the largest most recent deformation

(Calvari et al., 2005, 2010). Strong strain variations, occurring

minutes before major and paroxysmal eruptions, were revealed

by dilatometer data analysis (Bonaccorso et al., 2012;

Giudicepietro et al., 2020; Di Lieto et al., 2020). Several

authors have shown that the dynamics of Stromboli is

strongly correlated with an observed change in shape of VLPs

(see, e.g., Braun and Ripepe, 1993; Chouet et al., 2003 and, more

recently, Giudicepietro et al., 2020). VLPs due to volcanic activity

are interpreted as characteristic of their source, since the

waveforms are less prone to be modified by the topography or

by structural heterogeneity within or near the conduct. Possible

source mechanisms for various volcanoes in the world include

deflations and inflations of magma chambers (Nishimura et al.,

2000), volumetric sources (Kumagai et al., 2001) and volume

changes (Julian et al., 1997). The VLP activity at Stromboli

volcano can be explained as caused by the rapid expansion of

a gas slug which nucleates within the magma in the conduit

(Chouet et al., 2003). During this normal activity, the gas slugs

are free to nucleate at any given point in the conduit due to the

homogeneity of the magma, characterized by a low viscosity and

a high permeability (La Spina et al., 2017): polarization analysis

of the VLPs recorded by a 3-component seismic station shows a

dispersion of azimuth and incidence angles during the usual

volcanic activity (Giudicepietro et al., 2020). Just before
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paroxysmal eruptions, however, VLP azimuth and incidence

angle dispersion disappears, suggesting a decrease of the

permeability of the magma stored in uppermost portion of

the feeding system, which in turn could be caused by an

increase in its viscosity, due to cooling of the melt and

incipient crystallization (Mattia et al., 2021).

Previous seismic surveys conducted using broadband

seismometers and focusing on the VLP frequency content of

the recorded explosions found that VLP shapes tend to cluster in

families of similar events: a clustering analysis detected two

different families of VLPs with well-defined shapes generated

by explosions occurring at two different active vents (Chouet

et al., 1999). Earlier, Ripepe et al. (1993) had suggested that these

families are mostly linked to gas pressure fluctuations rather than

to crater geometry. Depending on the currently active vents and

the overall explosive activity, however, more than two families

can be found in volcano dynamics (Kirchdörfer, 1999).

During the summer of 2019, Stromboli experienced two

paroxysmal eruptions; the first in July, the second in August.

They have been subject matter of studies using geological,

geophysical and geochemical approaches (Bevilacqua et al.,

2020; Inguaggiato et al., 2020; Corradino et al., 2021;

Giordano and De Astis, 2021; Mattia et al., 2021; Métrich

et al., 2021; Viccaro et al., 2021). Although their energy

release was comparable (Di Lieto et al., 2020; Giudicepietro

et al., 2020), explosions occurred in two different volcanic

phases: the paroxysm on July 3 was only preceded, in the

previous weeks, by two volcano-tectonic seismic events and a

major explosion with a smaller and less perceptible changes in

the volcano dynamics; the second paroxysm, on August 28,

occurred, similarly to 2007 paroxysms (Di Lieto et al., 2020),

during ongoing effusive and explosive activity and marked the

end of the eruptive phase that began with the previous

paroxysmal event (Di Lieto et al., 2020; Giudicepietro et al.,

2020; Andronico et al., 2021). The 2019 paroxysmal events have

been described by Giudicepietro et al. (2020) and Di Lieto et al.

(2020) in relation to the pressure source and their short term

(minutes before event) geophysical precursors.

A crucial challenge for the scientific community is to enlarge

the current hourly temporal window of very intense explosion

(major explosions and paroxysms) foreseeability to days or even

weeks before the event, especially for those events occurring

outside any long-lasting eruption, when the volcano summit may

be open to visitors. In the past, machine learning methodologies

were applied to characterize volcanic regimes and to define short-

to medium-term forecasts (Carniel and Di Cecca, 1999; Jaquet

and Carniel, 2001; Jaquet and Carniel, 2003; Carniel et al., 2006a;

Carniel et al., 2006b; Telesca et al., 2010; Carniel, 2014).

Among the changes observed in the weeks preceding the July

explosion, as found by Mattia et al. (2021), one of the most

significant is represented by the shape variation of the explosions,

filtered in the VLP band, as recorded by the Sacks-Evertson

strainmeter installed near the village of Stromboli. Starting from

these two observations, the original use of the strain data allowed

us to extend the usual seismic VLP (2–50 s) frequency band used

in previous works, by including also the ultra long-period (ULP -

50–200 s) band using two independent methods in order to

classify events falling in the VLP-ULP frequency bands: a

modified version of the Green-Neuberg VLP-ULP

classification algorithm (Green and Neuberg, 2006), and an

unsupervised machine learning strategy, namely the self-

organizing map (Kohonen et al., 1996; Kohonen, 2001). The

results of the two methodologies were compared to highlight

their robustness.

2 Materials and methods

The data recorded from the borehole strainmeter carry

several pieces of information, due to the intrinsic capability of

the instrument of recording high precision data within a wide

frequency range, being able to record the static and dynamic

deformations. This information is difficult to interpret because of

unclear knowledge of source processes and the large amount of

data stored. For the former problem, the researchers are

proposing innovative models (e.g., for VLPs interpretation see

Legrand and Perton, 2022); about the latter, machine learning

algorithms can play an important role in discovering the

presence of patterns, otherwise hidden, among data: in the

past, data analysis and machine learning algorithms have

already been successfully applied to seismic data, allowing to

found families of self-similar events with a common origin (see,

e.g., Green and Neuberg, 2006), and nowadays more applications

have been developed, some specifically regarding Stromboli

(Bergen et al., 2019; Seydoux et al., 2020).

In the present work, we developed a method capable of

automatically picking volcanic events belonging to both VLP

(strain data filtered between 2 and 50 s) and ULP (2–200 s)

bands, and classifying them in families based on event shape

changes, using two concurrent algorithms, in order to mutually

verify their outcomes: a cross-correlation among VLP/ULP

signals and an unsupervised neural strategy. Both methods

were applied on data recorded throughout the year 2019 to

validate the algorithms. Then the neural network method was

extended to a wider (May 2018-December 2020) period to verify

that families found in a narrower time interval were still present.

We tried, then, to associate families with volcanic activity, finally

proposing a conceptual model capable of explaining the changes

found.

2.1 Instrumental focus

Stromboli volcano monitoring system has been improved,

after the 2003 paroxysmal event, with two borehole Sacks-

Evertson dilatometers (San Vincenzo Observatory, SVO, and
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Timpone del Fuoco, TDF, in Figure 1), installed during 2006, by

Italian Civil Protection Department, INGV and Universita ̀ degli
Studi di Salerno (Italy), in cooperation with Carnegie Institution

of Washington D.C. (United States). The radial distances of SVO

and TDF strainmeters are about 2.5 km north-east and 1.5 km

west from the main eruptive vents, respectively. Data recorded by

the SVO strainmeter are sampled at 1 sample per second (sps)

and exhibit a very high signal to noise ratio (SNR), which made it

a valuable help in understanding the volcano dynamics and

changes occurring in the shallow plumbing system of

Stromboli volcano. TDF data are affected by a weak coupling

of the instrument with the surrounding rocks. Moreover, the

instrument was not in operation during 2019, so the analyses in

the current paper have been carried out on data recorded by

SVO only.

A Sacks-Evertson strainmeter is a stainless-steel tube (7 cm

in diameter and 4 m in length) filled with degassed silicone oil

which is able to observe a broad class of behaviors (see Figure 2 in

Silver et al., 1999). Its output is obtained by a hydro-mechanical

amplification system, measuring volumetric changes through the

use of a small bellows, whose changing length is measured by a

linear variable differential transformer (LVDT). It measures a

single component of volumetric change in the earth near a

deforming zone, without any clue about the direction of the

principal strains. Once installed in the borehole, strainmeters are

cemented with an expansive grout to couple them with the

surrounding rocks and cannot be recovered, so they must be

calibrated in situ: SVO strainmeter shows a sensitivity of 10−11 per

digital count (Di Lieto et al., 2020).

The choice to focus our analysis on the frequency band of the

dynamic strain is justified by the intrinsic instrumental

characteristics. Due to a linear from zero (DC or static) to

sub-acoustic frequencies instrumental response, strainmeters

represent a bridge between seismological and geodetic

measurements. Furuya and Fukudome (1986) investigated the

response of a borehole volume strainmeter to various kinds of

disturbances, including seismic waves, and determined that for

P-, S- and Rayleigh waves, and Earth tides, the sensitivities are

very similar. From a comparison among different seismometers

and strainmeters, it was found that borehole strainmeters are

more suitable for recording seismic waves with respect to other

kinds of strainmeters (Barbour and Agnew, 2012). Simultaneous

recordings of strain and three-component seismic velocity

suggest that strainmeters detect the dilatational energy for

seismic radiation at earth-noise levels for periods in the range

0.05–20 Hz (Borcherdt et al., 1989). The dynamic strains,

associated with seismic waves, may play a significant role in

earthquake triggering, earthquake damage, ground failure and

hydrological and magmatic changes (Gomberg and Agnew,

1996).

2.2 Data analysis: Detection and
classification of VLP-ULP volcanic signals

In this paper we have analyzed the strain signals collected

during the year 2019. A quantitative classification of events

filtered in the two different frequency bands recorded by the

Sacks-Evertson strainmeter has been carried out using two

different techniques: a cross-correlation cluster analysis and a

self-organized map (SOM) neural network technique. For the

resulting catalog, we find an automated procedure to cluster

events and examine the temporal variations of their shapes, in

order to correlate the families found with specific volcanic

activities.

Thanks to its high signal-to-noise ratio (SNR), the SVO

strainmeter is capable of recording strain changes

characterized by low environmental noise levels. An

automated detection algorithm has been used in order to find

VLPs during the Jan-December 2019 period. Firstly, data have

been pre-processed in order to remove any spurious artifacts like

valves opening/closing that cause highly energetic spikes which

could affect the subsequent data analysis. The pre-processed

signal has been bandpass filtered in two different frequency

ranges using a Butterworth three-pole digital filter: the band

0.005–0.5 Hz (ULP iteration), and the band 0.02–0.5 Hz (VLP

iteration).

In order to automate the algorithm, we used a short-term

amplitude average (STA) versus long-term amplitude average

(LTA; Allen, 1978) ratio: the STA/LTA algorithm was capable of

detecting the vast majority of the events in the analyzed time-

frame, lacking in performance only when bad weather or adverse

sea conditions occurred, since the frequencies characterizing

these occurrences fall within the same range of the VLPs (or

FIGURE 1
Location of Stromboli island and sites of the strainmeter
network (from Di Lieto et al., 2020). The trails are reported to
highlight the scarce presence of the escape routes.
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ULPs). By considering the frequency band of the filtered signals

as well as the typical duration of the events recorded at the

strainmeter, window sizes of 12 and 3,600 s (or 15 and 5,000 for

ULPs) were used to determine the values of STA and LTA,

respectively. This allowed us to find 60,826 VLPs and

57,826 ULPs in the inspected period. A preliminary study of

the strain data frequency content of the selected time windows

influenced the filter band choice made for the time series

analyzed. From a visual inspection of the strain data, we

selected VLPs recorded in the 0.02–0.2 Hz frequency band

with a high signal-to-noise ratio in a time window 250s long.

Three time periods, characterized by different volcanic states,

were found: the first period from June, 1 to June, 25 (“1 month

before” in Figure 2), the second one from June, 25 to July, 3

(“1 week before” in Figure 2), pointing the remaining events as

“ordinary”. These VLPs were stacked with a normalized

amplitude obtained by rescaling the range of the data to the

interval [0,1] (Figure 2A). Using the same time window and

procedure, data filtered in the 50–200 s frequency band have been

stacked in order to look for the presence of ULP transients. The

ULP stacked waveforms concomitant with VLP ones show a

repetitive and stationary trend over the whole year (Figure 2B).

Note that, by using a visual inspection, no differences are

detectable between “ordinary” and “1 week before” events.

VLP and ULP detection is strongly influenced by adverse

weather and sea conditions. The number of detected events

changes substantially during bad weather periods (rough sea,

passage of high/low pressure fronts, severe thunderstorms),

because of lower SNR ratio (see panel “a” of Figure 5 in

Mattia et al., 2021, in which bad weather periods - lasting

several days - are characterized by transients overwhelming

typical VLP amplitudes) and does not allow clear automated

detection of all the explosive events occurring at the active vents.

It is known that much of the long-period spectral energy is due to

ocean microseisms (OMS) (Braun, 2008).

2.2.1 Cross correlation analysis
Starting with the catalog of VLP signals obtained from the

previous section, we quantified the similarity of shape of the

events. In order to do so, we used a revised version of the

algorithm by Green and Neuberg (2006), applied to seismic

data, on each pair of events in the catalog. The cross-

correlation (CC) function

rxy(i, i − l) � ∑n
i�1(xi − x)(yi−l − y)�����������∑n

i�1(xi − x)2√ ������������∑n
i�1(yi−l − y)2√ (1)

returns an index of the similarity in shape of two waveforms,

ignoring their relative amplitude. Each event lasts n samples:

using the mean length of the trigger size and sampling details

discussed above, we chose an equal length of 151 samples for each

event, which is slightly larger than the maximum length of the

events found in the catalogue, the middle point containing the

maximum of the modulus of the event time window. In Eq. 1, we

represent with x and y two different VLPs belonging to the

catalog, each containing n samples: xi represents the ith sample

and yi-l is the (i-l)th sample of the first and second event,

respectively, while l is the lag between the two signals (l=0,

being the complete overlap of the signals, has been chosen here).

Underbar items represent the mean value of the signals.

According to the Big-O notation (Black, 1998), a cross-

correlation algorithm among N events, each lasting M

samples, has a computational complexity of O(N2 x M2) - or

O(N2 x M) when the fast Fourier transform (FFT) based cross-

FIGURE 2
(A) Normalized stacked VLP waveforms for three time periods of the whole year 2019: “ordinary” volcano activity present before (from January
to May) and after (from July to December) 2019 eruptive activity, 1 month and 1 week before 3 July paroxysm. (B) Normalized stacked ULP
waveforms for the same three time periods.
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correlation is chosen, since in the frequency domain the sliding

dot product becomes a mere multiplication. We have chosen to

simplify the process by limiting the sliding window to just one

value, by selecting the main peak of each event and centering it in

the central point of the event window.

The classificationmethod described above is capable of clustering

strain transients into groups with similar waveforms. A threshold

correlation coefficient, C, is needed to separate events falling in a

specific family from those belonging to different families; this results

in a trade-off between robustness of the method and the number of

families found. For a low C-value, transients which slightly differ

from each other will fall in the same family, generating a small

number of families and unifying many events which potentially

belong to different families. On the other hand, a highC-value results

in a higher number of families, most of whichmay be populated by a

small number of events; we require a minimum number of events K

per family to minimize this issue. Rarest events are classified by the

algorithm as characterized by slightly different phases, showing the

same shape as the most frequent ones.

For a chosen C-value, the events whose mutual cross-

correlation value exceeds the C threshold are clustered together

and stacked, determining the master waveforms of each group. The

process is iterated once these events are removed from the matrix

and grouped in a new family. Finally, the master waveforms are

cross-correlated in turn with the events not clustered yet, using the

same C-value to classify a broader group of events.

2.2.2 Self-organizing map analysis
We apply an unsupervised neural strategy to cluster the

N=60,826 events triggered by the automated STA/LTA

algorithm (M-dimensional vectors M=151) in the band

2–50 s, and the N=57,826 events triggered in the band 2–200 s.

Among the unsupervised machine learning approaches, the

Self-Organizing Map (SOM) (Kohonen et al., 1996; Kohonen,

2001) is widely used for clustering and visualization of large data

sets of high dimensional data (it scales only linearly with the size

of the dataset) and, moreover, it can be implemented in an on-

line learning manner (Deng and Kasabov, 2003). The original

motivation of the SOM research was actually an attempt to

mimic aspects of self-organization seen in the somatotopic

and abstract feature maps found in the biological central

nervous systems (Kohonen, 2001).

The SOM carries out a nonlinear mapping of all observed data

onto a two-dimensional map. The mapping preserves the most

important topological and metric relationships of the data. It has

proven to be an efficient tool for data-exploration tasks in a wide

range of applications in various domains (Kohonen, 2008; Vellido

et al., 2020), including speech recognition, image data compression,

robot control, pattern recognition, medical diagnosis,

categorization of galaxies (Naim et al., 1997) and massive

document collections (Kohonen et al., 2000; Lagus et al., 2004).

SOMs have already been applied, in different contexts, also to

seismic data sets (Musil and Plešinger, 1996; Esposito et al., 2006;

Esposito et al., 2008; Essenreiter et al., 2001; De Matos et al., 2007;

Carniel et al., 2013a; Di Luccio et al., 2021). A hierarchical clustering

was applied to results of SOM tremor analysis at Ruapehu (Carniel

et al., 2013b) and Tongariro (Jolly et al., 2014) in New Zealand. A

review of SOM and other machine learning strategies in

volcanology can be found in Carniel and Guzmán (2020).

As with classical feed-forward networks, learning in SOMs is

accomplished by adjusting the weights of the connections

between grid units (neurons or nodes) and input units. In

contrast to supervised feed-forward nets, SOMs learn in an

unsupervised manner, guaranteeing minimal bias from the

investigator. The SOM learning algorithm is such that, after

learning, the final projection of the data on the SOM grid reveals

some underlying structure in the data. One of the reasons for

using SOM for, data exploration is to benefit from that

topological structure when interpreting the data.

A major drawback of some clustering algorithms, such as for

example the common k-mean algorithm, is that they are

computationally intensive, especially when the size N of the

training set grows. In most classical clustering approaches,

every data item must be compared with all others, perhaps re-

iteratively. For large masses of data this is obviously no longer

efficient. Conversely, the SOM learning algorithm is easily and

effectively applicable to large data sets (Kohonen, 2008) since the

SOM computational complexity scales linearly with the number

of data samples (and it does not require huge amounts of

memory, only the prototype vectors and the current training

vector).

The SOM map consists of a regular grid of processing units

known as “neurons” or “nodes.” We use a hexagonal grid, in

particular, a local hexagonal structure and a global sheet map. A

prototype (also called a code vector) is associated with each node.

The learning process of the map attempts to represent all the

available data with optimal accuracy by using a restricted set of

nodes. At the same time the nodes become ordered on the grid so

that similar prototypes are associated with nodes close to one

another and dissimilar prototypes with nodes far from one

another. The whole dataset is presented, in random order, to

the network during the learning strategy.

In the basic iterative and sequential SOM algorithm, at each

iteration a single input vector is presented to the map. The

winning node, i.e., the best matching unit (BMU), is identified

(competitive aspect) and the prototype of the winning node is

updated together with the prototypes of the neighborhood nodes

(cooperative aspect).

At each iteration t, a feature input vector x(t) is extracted and

the winner index c, i.e., the BMU of the input vector, is identified

by the condition:

∀i, |x(t) −mc(t) |≤ | x(t) −mi(t)| (2)
where x(t) is the feature vector of the signal extracted at step t,

andmi(t) is the prototype of node i. After that, all prototypes in

the neighborhood are updated by the equation
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mi(t + 1) � mi(t) + hci (x(t) −mi(t)) (3)

Here hci is the “neighborhood function,” a decreasing

function of the distance between the ith and cth nodes on the

map grid. As neighborhood function it is often used the Gaussian

expressed as:

hci(t) � αt exp[ − d(c, i)2/ 2 r2t ] (4)

where learning rate αt is a monotonically decreasing scalar

function of t, d(c, i) is the geometric distance between the

nodes c and i in the grid, and the neighborhood radius rt is

another monotonically decreasing function of t. The exact

mathematical form of rt is not crucial, as long as the value of

rt is fairly large (e.g., on the order of half of the width of the grid)

at the outset, and decreases to a value that is a fraction of the

initial value, when a rough order of the models has been achieved

(Kohonen, 2008).

3 Results

3.1 Cross-correlation results

The CC algorithm tries to best accommodate in a matrix all

the events in the catalog. Due to its intrinsic behavior based on a

given threshold, however, not all the events will be arranged

within families. We tried different combinations of C- and

K-values: as expected, the more the value of C is lowered, the

more the algorithm classifies events which slightly differ from

each other in larger groups; on the other hand, an increase in the

C-value scatters waveforms in a higher number of less-populated

families, most of which contain events whose waveforms are

extremely similar in shape. At the same time, in order to avoid

very low-populated families, we chose accordingly an

appropriate K-value. Hence, we chose the two pairs of C- and

K-values which give the best trade-off between the highest

possible C along with a realistic number of families. Using

C = 0.82 and K = 100 for the VLP iteration and C = 0.82 and

K =150 for the ULP iteration, we build two cross-correlation

matrices (Figures 3A,B). To check their mutual similarity, master

waveforms have been cross-correlated with each other, obtaining

a maximum correlation coefficient matrix of size n x n, n being

the number of families found during the iteration: in this way we

were able to verify visually the similarity between families. The

choice of families with a mutual CC value above the given

threshold of 0.82 and which had similar shape characteristics

as confirmed by a visual inspection, allowed us to confirm that

clusters of similar waveforms could be grouped together.

The master waveforms found have their coherent signals

added while the random noise contained in the generating events

cancels out, allowing cross-correlation with the events not yet

cataloged, using the same C-value previously used for VLP and

ULP iterations. This last step has allowed us finally to generate

temporal histograms of a much higher number of noisy events

belonging to each family found in the previous step: in Figures

4A,B the histograms are shown.

We found a total of 15 and 43 families from the VLP and ULP

iterations respectively, (Figures 5A,B), where the waveforms are

determined as the stacking of the events whose mutual CC

exceeded the chosen thresholds C: the total number of events

belonging to each family in both iterations, depicted in Figures

4A,B, show each group exceeding the K-value chosen for the

iteration.

3.2 Self-organizing map results

A SOM strategy is used to project all the available N events in

a SOM topographic map. In the preprocessing stage, for each of

the N 151-dimensional vectors, in order to get a compact

representation of the input data, we extract 22 features, which

are given as input to the SOM learning algorithm, namely the

maximum and minimum values of the normalized vectors and

the first 20 principal components (extracted with linear Principal

Components Analysis - PCA). Application of the SOM technique

to our dataset, composed of N events, yields the maps illustrated

in Figure 6. A SOM map with 5x5 units or nodes, each displayed

as a hexagon, is used for clustering the VLP dataset. Given the

higher heterogeneity of ULP data (more influenced by bad

weather) we use a larger SOM map (with 8x8 units) to

visualize the ULP dataset. The sizes of the yellow hexagons in

Figures 6A–C represent the number of events which fall into each

node. The events that have the same BMU represent a family. We

have analyzed all families coming from the 25/64 SOM nodes

individually, and for each of them we focus on the temporal

histograms of the cumulative number of events per day. When

the number of nodes is small as in this case, it is possible to

consider all map units individually, but in the case of a much

larger map this could result in far too many families, and a

grouping of nodes can be achieved with a hierarchical clustering

of nodes, as has been applied to results of SOM tremor analysis at

Ruapehu (Carniel et al., 2013b) and Tongariro (Jolly et al., 2014)

in New Zealand.

One standard visualization method shows the distance

matrix (U-matrix), where a color scale represents prototype

vector distances of adjacent nodes Figures 6B–D. The

normalized euclidean distances among the corresponding

prototypes are presented with different coloring between the

adjacent nodes: dark/light colors between two nodes on the map

indicate large/small distances between the prototypes associated

with those nodes. The SOM visualizations allow an

understanding of the structure of the data set: reading each

node as a family of events, we can also recognize in the map

the relationship between adjacent families.

In Figure 7 we visualize, on the SOM map, the histogram of

when, during the year of registration, the signals falling in each
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node have been recorded. Notably, some nodes show a temporal

distribution with very low dispersion, highly peaked in a

relatively small interval of time (see for example in Figure 7 A

the node 9 of VLP-SOMwhose 3,222 events are quite clustered in

occurrence time). Moreover, similar temporal histograms belong

to adjacent nodes in the map. Since the information on the time

of registration is not given to the SOM algorithm, it organizes

data in themap only on the basis of shape similarity. Thus there is

a correlation between time occurrence (histogram) and shape of

events. Finally we visualize the normalized stacked waveform of

signals for all nodes of the SOM map (Figure 8).

Note that the SOM algorithm, with its competitive/

cooperative learning process, attempts to best visualize on the

map the structure of all the N events, without discarding any

data. So the 25 families of the VLP SOM cover all the VLP dataset

with N=60,826 events while the 64 families of the ULP SOM

cover all N =57,826 events triggered by the automated STA/LTA

algorithm. Comparing Figures 5, 8, we observe that there are

some stacked waveform of SOM nodes that do not have the

equivalent in the stacked waveform of CC families (for example

stacked waveform of node 18,19,21,22,23 24 in Figure 8A do not

appear in Figure 5A). Indeed while the CC algorithm, based on a

given threshold, does not arrange all the events within families,

the SOM allocates all the data, trying to preserve the topology of

the multi-dimensional data when they are transformed into a

lower dimensional space.

3.3 Link between VLP- ULP seismicity and
volcanic activity

A significant number of events belonging to several families

tend to occur in specific time frames within the year 2019, as

hinted by Figures 4, 7. While several events, which mainly could

be associated with bad weather conditions or with a more

frequent volcano dynamics, are spread across the year, some

transients seem to occur prior to volcanic events. This led us to

try to group them in clusters of families, to find a simultaneous

occurrence. These clusters of families, determined by both

methodologies as reported in Figures 9, 10, are correlated with

different volcanic activity.

In case of the VLP iteration, the analysis conducted on the

signals led us to the following results (Figures 9A,B and Figures

10A,B):

• during June 3 we found the abrupt appearance of families

14 and 15 (from the CC analysis) or 9 (for SOM analysis),

which lasts up to June 25, gradually decreasing in number

of events; in the same time frame, family 10 and family 4

(from CC and SOM analysis, respectively) have the

opposite behavior, gradually increasing the number of

events per day. In both cases, families suddenly disappear

on June 25;

• after June 25, families 3, 4 and 5 (CC) and 1, 11 and 25

(SOM) slowly increase, until the paroxysm occurred on July

3, when the average number of events per day drops to a

negligible level; during the same period, more families are

found (1, 2, 6, 7, 8 and 13 through the CC; 3 through the

SOM), showing a decreasing trend in time;

• more family groups (9, 11 and 12, CC) are found in the

same period; their waveforms slightly differ with respect

to each other, showing a mild increase in events per day

as the paroxysm approaches, while wavelengths show a

faint increase;

• SOM algorithm defines the steady volcanic state with one

particular family, denoted 6, whose shape is very similar to

FIGURE 3
Cross-correlationmatrices for (A) VLP and (B)ULP iterations. Thematrices are 15×15 and 43×43wide, respectively: the families found by the CC
algorithm are reported on the x- and y-axes, while the blocks have a color associated with the mutual cross-correlation value. Lighter colors
represent a higher degree of similarity.
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families 1, 11 and 25, which is spread throughout the year,

but suddenly disappears in June 25-July. Correspondent

events found through the CC algorithm are distributed in

more families, due to the self-similarity in shape of the

transients found.

A similar analysis conducted on the signals found via the ULP

iteration achieved similar conclusions, apart from the families

found in the ULP iteration, both by using CC (Figure 5B) and

SOM (Figure 8B) techniques, that are characterized by a lower

frequency tremor present when there are bad weather conditions

FIGURE 4
Temporal Histograms of cumulative number of events per day belonging to the ith family determined by the CC algorithm (A) events found by
the VLP iteration (B) events found by the ULP iteration. The horizontal axis of the histograms indicates the time in 2019 Julian day.
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and/or rough sea (e.g., family 3 in Figure 9C). Considering the

remaining families, they well characterize the volcano dynamics,

determining similar time periods as those found by using the VLP

results (Figures 9C,D and Figures 10C,D):

• the CC algorithm found three groups of families (39,

37–40 and 38–41) whose appearance is limited to the

period June 5-June 25. The appearance of family

39 occurs simultaneously with families 37 & 40, but,

FIGURE 5
Normalized stacked waveforms belonging to the ith family determined by the CC algorithm (A) families found by the VLP iteration (B) families
found by the ULP iteration. The horizontal axis indicates time in seconds.
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while in mid June family 39 suddenly disappears,

families 37 & 40 have a gradual decrease, in contrast

with families 38 & 41 whose events start to rise at the

beginning of the month, dropping to low levels at the end

of the period; in the same period, similarly, SOM

highlights families 12, 46 and 47 which tend to

decrease as the competing family 45 begins to appear;

• on June 13, as a VT event is recorded, both CC and SOM

algorithm found a sudden change in families shape: families

37, 39 and 40 disappear in the CC as families 38 and 41 are

found; analogously, the SOM marks a clear change from

family 47 to family 46;

• after June 25, the previous families are not found again by

either methodology, while other families suddenly appear: CC

was capable of finding families 35, 42 and 43, while SOM

found families 37, 57, 58 and 59. In both cases, these families

dropped to almost zero events per day just after July 3;

• SOM algorithm determines a particular family (62) during

July - November 2019.

At the beginning of June 2019 continuous thermal anomalies

recorded from MODIS data have been observed (Mattia et al.,

2021). On June 13 there was a volcano-tectonic event (VT) and

on June 25 a major eruption occurred (Giudicepietro et al., 2020).

On July 3 the first paroxysmal eruption defined a further change

in volcano dynamics, while on August 28 a second paroxysmal

eruption took place. The explosive activity levels remained very

high (25–35 events/hour) until waning after 20 September

(Andronico et al., 2021). At the beginning of November the

tremor amplitude drastically decreased [reported in the INGV

surveillance bulletins (http://www.ct.ingv.it)].

Considering the volcanic activity described above, we note

the appearance of a correlation between volcano phenomenology

and results of our analyses.

An application of the SOM algorithm to the VLP events

occurring in May 2018 - December 2020 (Figure 11) has been

carried out to evaluate the performance and to test the

methodology. It confirmed the results previously found. In

this period, seven further major explosions (18 August 2018;

FIGURE 6
(A,C)Hits of VLP-data on the 5×5-SOMmap (A), and hits of ULP-data on the 8×8-SOMmap (C). Each hexagon represents one node on themap;
the size of the inner yellow hexagon shows how many events fall in each node of the map. Refer to Figure 7 for the order of nodes. (B,D) The
normalized euclidean distance among “nodes” prototypes of the topographicmap is shown. The normalized distance between the adjacent nodes is
presented with different colorings between the adjacent nodes: Dark colors (dark red) represent large distances, and light colors (light yellow)
correspond to small distances among prototypes of nodes.
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FIGURE 7
Temporal histograms of cumulative number of events per day belonging to the ith node determined by the SOM algorithm (A) events found by
the VLP iteration (B) events found by the ULP iteration. The horizontal axis of the histograms indicates the time in 2019 Julian day. Signals falling in
some nodes notably show a high clustering in time of occurrence. Since SOM organizes data in the map only on the basis of shape similarity, the low
dispersion in the temporal distribution indicates a correlation between time occurrence (histogram) and shape of events.
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July 19, August 13, November 10, 16, 21, 6 December 2020 -

INGV surveillance bulletins) and hybrid events (31 March 2020)

occurred. The 19 July 2020 event is an anomalous explosion,

classified by Calvari et al. (2021) as a paroxysm. The SOM proved

capable of finding families as well as their temporal occurrence

Figures 11A,B in the period. As shown in Figures 11C,D, the

specific sequence of occurrence of families found before 3 July

2019, does not happen elsewhere, while families 6 and 12 well

FIGURE 8
Normalized stackedwaveforms belonging to the ith node of the SOMmap (A) stackedwaveform of families found by the VLP SOM algorithm (B)
stacked waveform of families found by the ULP SOM algorithm. The horizontal axis indicates the time in seconds.
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define the post-eruptive phases of the two major explosions

occurring on 18 August 2018 and 19 July 2020, respectively. It

is remarkable that there is an increase in the number of events

belonging to family 12 recorded after the anomalous explosion

occurring in July 2020, which is followed by a gradual decrease in

the upcoming days. Another peculiar period, in which all the

evidenced families are found, is represented by the months

January-May 2020, which is characterized by the occurrence

of hybrid events.

4 Discussion

In this work, for the first time, we statistically analyzed

dilatation data content in the frequency band 2–200 s by

using two independent methods to improve the robustness

of the results, which led us in defining families of VLP/ULP

events.

A recent classification of strain and seismic VLP

waveforms in different “families” has been reported, on Mt.

Stromboli, by Giudicepietro et al. (2020) and by Mattia et al.

(2021). The transition from one VLP family to another, or the

superposition of several seismic VLP families, has been

interpreted as an indicator of changes in the fluid

properties, such as the change in permeability of the higher

portion of the magma in the main conduit and this can be

considered an alteration of the normal condition leading to the

mild ordinary explosive activity.

Due to the receiver-source distance (about 1 km) and

wavelength of the analyzed signals (of the order of 10 km), we

FIGURE 9
CC cluster of families correlatedwith different volcanic activity (A,C) VLP and ULPNormalized stackedwaveforms respectively (B,D)Histograms
of VLP- and ULP- data. Both spectral intervals locate families whose cumulative number of events per day tend to change as July 3 paroxysm
approaches. For ULP events, a “bad weather condition” family (Family 3 in the last panel) is plotted to show its different shape in respect to volcanic
activity families. The blue dashed line marks the VT occurrence on June, 13; the red dashed line marks a major explosion; the two red vertical
solid lines mark the two paroxysmal events; the blue solid line marks the lowering of the explosive activity level.
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can consider the near field condition: the time history of VLP

displacement reflects the source time function and can be

considered to be a time dependent quasi-static volume

displacement of the source (Chouet et al., 2003; Legrand et al.,

2005). VLP families are related, hence, to the same source process

and comparable locations, linked to fluid mass transport and the

upward migration of gas slugs.

In previous articles, two basic families refer to the two main

different vents and conduits. Moreover, since seismic VLPs are

linked to inertial displacement of material in which they

propagate (Ohminato et al., 1998; Chouet et al., 2005), the

different characteristic waveform of two types suggests two

origins: a variation in mechanical magma properties or a

different location. In Giudicepietro et al. (2020), all seismic

VLPs show little variation in incidence angle and azimuth and,

starting from 25 June, become very spatially concentrated. The

locations do not show remarkable variations before or during

the eruptive phase of summer 2019. Mattia et al. (2021, see

Figure 9) show as no direct correlation between recorded

family types and vents activity is found. Furthermore, as is

known from simplified models of seismo-volcanic sources

(Chouet, 1986; Chouet, 1988; Chouet, 1992; Chouet and

Matoza, 2013; Park et al., 2020), the resonance frequency

and damping of the system is strongly influenced by the

nature of liquid and gas content. These observations seem

to reinforce the first hypothesis. Recent detailed analysis

FIGURE 10
SOM cluster of families correlated with different volcanic activity (A,C) VLP and ULP Normalized stacked waveforms respectively. The horizontal
axis indicates the time in seconds (B,D)Histograms of VLP- and ULP- data. The horizontal axis in B of the histograms indicates the time in 2019 Julian
day. Both spectral intervals locate families whose cumulative number of events per day tend to change as July 3 paroxysm approaches. SOM
algorithm finds an “ordinary volcanic activity” family in VLP and ULP iteration (families 6 and 62, respectively). The blue dashed line marks the VT
occurrence on June, 13; the red dashed line marks a major explosion; the two red vertical solid lines mark the two paroxysmal events; the blue solid
line marks the lowering of the explosive activity level.
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performed at Stromboli, with near source instruments, led

Ripepe et al. (2021) to relate seismic VLP to pressurization/

depressurization of the uppermost slug of magma, supporting

the three-phase plug model proposed by Suckale et al. (2016).

In contrast, an explanation of strain VLP shape characteristic is

not available in the literature: the work by Mattia et al. (2021) is

a starting point in understanding the volcanic processes on

which these observations are based. The principal difference is

in the time history of the source, which can be affected by the

process generating the volumetric component of the source.

Passage of a gas slug through the upper conduit-vent system

coupled with the properties of the gas slug itself can influence

the explosion nucleation and consequently the time history of

the seismic source, influencing the VLP waveform. The

repetitive waveform type associated with activity at a given

vent suggests that usually the source process recurs in very

similar conditions.

Waves radiated during the bubble growth stage may move

freely through the expanding magma due to its lower damping,

and under favorable conditions these waves may actually be

amplified.

When the first arrival phase is tensile, the system utilizes

bubble growth for additional acoustic energy and for higher wave

amplitudes. On this basis we suggest a new conceptual model, in

which under amplifying conditions, cycles of pressurization and

depressurization of bubbly magma could be responsible for the

initial amplification phase seen in LP and VLP signals.

In Kurzon et al. (2011), the analysis presented showed that

when a viscous bubbly magma expands, damping is reduced

(even if amplification conditions are not reached) and the

medium becomes transparent, allowing unimpeded

propagation of pressure waves. Legrand and Petron (2022)

propose a new way of modeling and interpreting VLPs at

Stromboli as the quasi-static ground-displacement field due to

FIGURE 11
SOM cluster of families found in May 2018-December 2020 (A) Normalized stacked waveforms belonging to the ith node of the SOM map (B)
Temporal histograms of cumulative number of events per day belonging to the ith node determined by the SOM algorithm (C,D)Normalized stacked
waveforms and histograms of VLP data for noticeable families: black solid line marks the occurrence of the hybrid events on 31 March 2020; red
dashed lines mark major explosions; the two red vertical solid lines mark the two paroxysmal events.
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pressure variation of a spatially extended conduit, partially filled

with magma, as a pump-like model. VLPs hence are interpreted

as the elastic near- or quasi-static field ground displacement

generated by amagma column under pressure. VLPs time history

is characterized by a pre-eruptive expanding phase,

corresponding to the increase of the pressure inside the

magma column, and a post-eruptive contracting phase,

corresponding to the decrease of the inner magma-column

pressure. These two phases are followed by a few oscillations

of the conduit/edifice. In this way, the different VLP shapes

found seem to be compatible with a damped harmonic oscillator

model, with changes occurring in the propagation medium

properties, strengthening once again the hypothesis already

made in Mattia et al., 2021.

On the basis of laboratory models, additionally,

Oppenheimer et al. (2020) have proposed the important role

of near-surface (down to 800 m) crystallization and the

variations of the crystallinity and the interactions of crystal-

bubbles in regulating the intensity of degassing and explosive

activity. These authors proposed a “weak plug” model for

Strombolian explosions, evolving from low viscosity style

towards more crystalline, a stronger and less permeable plug

corresponding to larger events. These last events are

characterized by an increase in the crystallinity, determining a

different conduit condition and larger size explosions. This

model predicts some features of the Strombolian explosions,

such as the variability of their sizes, duration, pulsation and

fountaining according to the degree of near-surface

crystallization, but suffers from a lack of a quantitative

explanation of geophysical signals.

Petrological evidence, based on textural and chemical rock

features, strengthens the weak plug model based on observations

of earlier explosions, as discussed in Caracciolo et al. (2021): they

suggest that dense, degassed and crystal-rich magma formed a

“soft” rheological plug at the top of the conduit. Under such a

condition, bubbles can accumulate under the plug to slowly build

the pressure to a threshold point, after which the pressure is

enough to cause the fragmentation of the plug.

Classification of strain VLP/ULP waveforms in different

families and their variation over time, could be the missing

piece to understand the source mechanism and to evaluate the

volcanic hazard from explosive activity. The transition from one

VLP family to another can be an indicator of changes in the fluid

properties, such as the change in permeability of the higher

portion of the magma in the main conduit and this can be

considered an alteration of the normal condition leading to the

mild ordinary explosive activity. In our opinion, a high rate (N >
100/day) and change in the family shape strain VLPs from

“ordinary” to one “month before” (see Figure 2A) indicate a

high likelihood for an impending change in volcanic activity

which could lead to an explosive event within the next weeks. In

this sense, this information could improve our capability to

forecast dramatic events such as the one which occurred in

July 2019.

5 Conclusion

In the present work, the SOM and CC algorithms have been

able to discriminate little differences in VLPs shape and to find a

correspondence among a higher number of families and volcanic

phenomenologies. Starting from June 2019 the VLPs shape at

Stromboli changes, showing a minor number of oscillations until

June 25, when the shape matches the previous one. A

fundamental role in these shape variations is hence played by

the damping factor associated with each VLPs family found.

Considering the receiver-source distance and wavelength of the

analyzed signals, we are in the near field condition, which gives

clues about the strain changes occurring at the source.

All the findings related with the changes in VLPs shapes lead

us to propose that from June 3 until 25 June 2019, a continuous

increase in the viscosity of the upper section of the magma

column occurred, a hypothesis also supported by recent

geophysical models, laboratory works and petrological

findings. The self-organized neural system has the intrinsic

capability of the SOM to analyze large sets of high

dimensional data and moreover it can be implemented in an

on-line learning manner. This allowed us to validate the findings

that the ordered sequence of specific families brings to medium-

term anomalies on a larger dataset, leading to peculiar volcano

behavior.

In the present work we found that the VLP shape changes

can be used as a precursor, especially for paroxysmal events

occurring outside long-lasting eruptions in open-conduit

volcanoes, such as Stromboli: as the VLP shape varies,

suggesting an evolution in the rheological properties of the

upper portion of the magma column, an impending outburst

becomes more likely to occur.

The innovative analysis of dynamic strain carried out in this

work, allowed us to find a medium-term (days to weeks)

precursor capable of forecasting an incoming paroxysmal

eruption. Considering that also short term (several minutes)

strain transients are very clearly detected by the borehole

strainmeters installed on Stromboli volcano, we are confident

that the installation of an additional borehole instrument, which

could supply information about the wavefield direction, could

improve our knowledge of the mechanisms of ground

deformation, linked to the pressurization processes leading to

the most relevant episodes (major explosions or paroxysms) of

volcanic activity.

Finally, the present work provides evidence that the dynamic

strain could be useful for the knowledge of the open-conduit

volcano dynamic processes and the deployment of an early

warning system for eruption monitoring.
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