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Abstract: Satellite microwave (MW) and millimetre-wave (MMW) passive sensors can be used to 
detect volcanic clouds because of their sensitivity to larger volcanic particles (i.e., size bigger than 
20 µm). In this work, we combine the MW-MMW observations with thermal-infrared (TIR) radio-
metric data from the Low Earth Orbit (LEO) spectroradiometer to have a complete characterisation 
of volcanic plumes. We describe new physical-statistical methods, which combine machine learning 
techniques, aimed at detecting and retrieving volcanic clouds of two highly explosive eruptions: the 
2014 Kelud and 2015 Calbuco test cases. For the detection procedure, we compare the well-known 
split-window methods with a machine learning algorithm named random forest (RF). Our work 
highlights how the machine learning method is suitable to detect volcanic clouds using different 
spectral signatures without fixing a threshold. Moreover, the RF model allows images to be auto-
matically processed with promising results (90% of the area correctly identified). For the retrieval 
procedure of the mass of volcanic particles, we consider two methods, one based on the maximum 
likelihood estimation (MLE) and one using the neural network (NN) architecture. Results show a 
good comparison of the mass obtained using the MLE and NN methods for all the analysed bands. 
Summing the MW-MMW and TIR estimates, we obtain the following masses: 1.11 ± 0.40 1011 kg 
(MLE method) and 1.32 ± 0.47 1011 kg (NN method) for Kelud; 4.48 ± 1.61 1010 kg (MLE method) and 
4.32 ± 1.56 1010 kg (NN method) for Calbuco. This work shows how machine learning techniques 
can be an effective tool for volcanic cloud detection and how the synergic use of the TIR and MW-
MMW observations can give more accurate estimates of the near-source volcanic clouds. 

Keywords: volcanic clouds; satellite microwave and millimetre-wave radiometry; satellite thermal-
infrared radiometry; machine learning; random forest; neural network; ash cloud detection; mass 
loading estimates 
 

1. Introduction 
Volcanic eruptions are one of the most impressive and dangerous natural phenom-

ena on our planet that, over the years, have influenced human life. During highly explo-
sive eruptions, a great number of volcanic particles, also named tephra, are ejected into 
the atmosphere, and can remain suspended for several weeks. The surrounding areas of 
volcanoes are highly exposed to major hazards due to the fall out of blocks/bombs (size > 
32 mm) and lapilli (size > 2 mm) [1,2]. Smaller particles (coarse ash < 2 mm and fine ash < 
63 µm), instead, can travel for long distances in a few hours and remain suspended in the 
atmosphere for days. These smaller particles are largely responsible for damaging air-
crafts and creating aviation traffic impairments [3]. For this reason, timely predictions of 
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time–space dispersion of volcanic particles can ensure an improvement in defining the 
golden standard for airline flights and prevent damages [1]. Orbiting satellite observa-
tions can provide a large amount of daily data. The global perspective offered by Geosyn-
chronous Earth Orbit (GEO) and the Low Earth Orbit (LEO) satellite systems is of vital im-
portance for monitoring volcanoes [4,5], especially those in remote and inaccessible areas. 
Data from the LEO satellite microwave and millimetre-wave (MW-MMW) radiometers, 
such as Advanced Technology Microwave Sounder (ATMS) and Microwave Humidity 
Sounder (MHS), can be combined with thermal-infrared (TIR) spectroradiometers, such as 
Visible Infrared Imaging Radiometer Suite (VIIRS) and Advanced Very High Resolution 
Radiometer (AVHRR), to have more accurate estimates of the near-source volcanic cloud 
[1]. Whereas the LEO infrared data analysis represents the classic approach in the study 
of explosive activity by satellite, given their remarkable spatial resolution and sensitivity 
to ash clouds, their brightness temperature (BT) difference signatures can saturate because 
of large amounts of tephra mass mainly near the volcanic source. Moreover, the presence 
of tephra with a radius larger than 15 µm cannot be detected using these sensors, due to 
their detection limits [1,6], leading to inaccurate detections of some properties in the prox-
imal or near-source volcanic cloud. In support of the TIR sensors, the MW-MMW sensors 
allow larger volcanic particles (⪆ 50 µm) to be observed. Actually, the near-source vol-
canic plume does not typically extinguish the MW-MMW signal, especially in the first 
hours of the eruptive event [1], probing the entire eruption column [7]. However, one of 
the drawbacks of MW-MMW sensors is the poor spatial resolution (up to 32 km). In the 
past, the MW-MMW bands have also been exploited to study volcanic plumes and their 
electrification processes [8–10].  

The goal of this paper is to show how the analysis of both MW-MMW and TIR spec-
tral signatures improves the characterisation of the volcanic plume in terms of detection 
and mass retrieval. For the detection, we worked in a statistical learning framework to 
develop a model capable of automatically processing images without the arbitrary thresh-
old choice. In terms of retrieval, the new developed radiative transfer model algorithm 
(𝑅𝑇𝑀 ) is used to estimate the total columnar content (TCC) and, in turn, the mass for both 
MW-MMW and TIR. In this respect, two minimisation techniques, the MLE [11–13] and 
the NN [14–16], are also compared and discussed. The paper is structured as follows: Sec-
tion 2 introduces the satellite sensors, the detection methods, the 𝑅𝑇𝑀  and the retrieval 
methods; Section 3 illustrates the 2014 Kelud and the 2015 Calbuco eruptions with an ex-
plorative data analysis of the satellite products; Section 4 shows the detection and retrieval 
results in two subsections, one per each eruption; Section 5 discusses the results and ad-
dresses future developments.  

2. Methods 
This section is divided into four subsections; the first describes the considered sen-

sors for the analysis, the second discusses the split-window and the RF detection methods, 
the third describes the 𝑅𝑇𝑀  and the fourth focuses on the empirical approach. 

2.1. Satellite Data  
For the purpose of this work, we observed volcanic plumes using data coming from 

the ATMS and VIIRS, both on board the Suomi-National Polar-orbiting Partnership (S-
NPP) LEO weather satellite provided by National Oceanic and Atmospheric Administra-
tion (NOAA) (all the acronyms are in Appendix A). The ATMS sensor is a passive cross-
track total power MW radiometer that measures microwave energy emitted and scattered 
by the atmosphere. It provides daily global atmospheric temperature, moisture and pres-
sure profiles. It collects information in the frequency window from 23.80 to 183.31 GHz. 
This window is divided into 22 channels, with channels 1-2-16 detecting quasi-vertical 
polarisation, while the other 19 quasi-horizontal polarisation [17–19]. The spatial resolu-
tion is 16 km for the channels from 165.50 to 183.31 GHz, 32 km for the channels from 
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50.30 to 88.20 GHz and 75 km for the channels from 23.80 and 31.40 GHz. The VIIRS in-
strument is a whiskbroom scanning radiometer with an angular field of view of 112.56° 
in the cross-track direction and a swath width of 3000 km. It acquires information in 22 
spectral bands from 0.412 to 12.01 µm. The measured spectrum range is divided into 16 
moderate resolution bands with 750 m spatial resolution, 5 imaging resolution bands with 
375 m spatial resolution, and 1 panchromatic day/night band with a spatial resolution of 
375 m [20,21]. The level 1B products used in this work were downloaded from 
https://www.avl.class.noaa.gov/saa/products/welcome (accessed on 4 February 2023) for 
ATMS and VIIRS sensors and from https://eoportal.eumetsat.int/userMgmt/con-
firmed.faces (accessed on 4 February 2023) for MHS and AVHRR sensors [22,23]. The 
MHS and the AVHRR sensors were used only to train the RF model. The scripts used for 
the analyses were coded in Matlab and Python. Finally, the colour map plots were gener-
ated using the “colorcet” library, which is a collection of perceptually uniform colour 
maps (https://colorcet.com/index.html, accessed on 4 February 2023). 

2.2. Volcanic Cloud Detection 
In this subsection, we focus on the detection of volcanic clouds. We first present the 

multi-spectral brightness temperature difference (or split-window) method (see Section 
2.2.1), and then the RF method (see Section 2.2.2). 

2.2.1. Multi-Spectral Brightness Temperature Difference 
Volcanic clouds in the infrared spectrum can be identified by selecting pixels with a 

brightness temperature difference (BTD) below a fixed threshold (𝑡 ) [24–26]: 𝐵𝑇𝐷 = 𝐵𝑇 . − 𝐵𝑇 < 𝑡  (1)

A good approach is to apply different thresholds and see which one is most likely to 
represent the eruption [26,27]. The style of the eruption and the different weather condi-
tions may have an influence on the threshold values. The higher the threshold, the higher 
the chance of having false alarms (i.e., 𝑡  ~ 0 K). In contrast, a lower threshold (i.e., < 0 
K) increases the chance of underestimating the ash-contaminated areas. In terms of BTD 
thresholds, we use −0.2 K and −1.5 K for Kelud and Calbuco eruptions, respectively.  

Since the clouds are located at high altitudes, they appear cold while observed at 
frequencies above 100 GHz [28]. When working at higher frequencies (>100 GHz), bare 
soil and oceans present higher BTs compared to the clouds’ BTs. The identification of the 
volcanic cloud in the MW-MMW is a two-step identification method called microwave 
spectral difference (MSD). The first step is called the microwave spectral difference win-
dow (𝑀𝑆𝐷 ) [29]: 𝑀𝑆𝐷 = 𝐵𝑇 − 𝐵𝑇  (2)

where 𝑓  and 𝑓  are two frequencies. The former is in the range 155–165 GHz, the lat-
ter in the range 85–95 GHz. For the ATMS sensor, 𝑓  = 165.50 GHz and 𝑓  = 88.20 GHz. 
All 𝑀𝑆𝐷  pixels, which are below a given threshold, are detected as clouds. By conven-
tion, this threshold is set equal to 0 K [29]. Once all the cloud pixels are detected, the sec-
ond step separates meteorological from volcanic clouds [1,29]. Meteorological clouds are 
characterised by a marked amount of water, which makes the channel around 183.31 GHz 
more sensitive due to the presence of the water vapour absorption peak. Volcanic clouds, 
on the other hand, respond better at lower frequencies. The formula below implements 
the microwave spectral difference absorption ( 𝑀𝑆𝐷 ), the second step of the 𝑀𝑆𝐷 
method: 𝑀𝑆𝐷 = 𝐵𝑇 − 𝐵𝑇  (3)
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where 𝑓  and 𝑓  are two different frequencies. For ATMS sensor 𝑓  = 183.31 ± 3 GHz 
and 𝑓  = 165.50 GHz. Volcanic plumes are separated from meteorological clouds by se-
lecting the 𝑀𝑆𝐷  values below an arbitrary threshold, which is, by convention, set equal 
to 0 K [29]. False alarms can still occur also in this case. If the scene is mostly cloudy, fixing 
a threshold close to zero can increase the chance of having false alarms. Moreover, if scat-
tered pixels are identified in the scene, these are excluded from the identification, since 
most aggregated pixels are more likely to belong to a proximal volcanic cloud [29]. In this 
way, only the most aggregated pixels are considered. In our analysis: the 𝑀𝑆𝐷  thresh-
old is set to −9 K for Kelud eruption and to 0 K for Calbuco eruption; the 𝑀𝑆𝐷  threshold 
is set to 0 K for both eruptions. To summarise, it is not possible to assess that a given 
threshold can be useful to detect different volcanic clouds or even the same cloud at dif-
ferent instants mainly due to a change in the particle composition or different weather 
conditions, different times and different sensor settings [29,30]. 

2.2.2. Random Forest Classification Technique 
In the last decade, the use of machine learning algorithms became popular also in 

atmospheric science. Most of the works present in the literature use the collected radiances 
only in the infrared to make the detection [31–33]. In addition, most of these models are 
designed to work with one specific sensor, even if some new studies are developing sen-
sor-independent schemes [34]. The presented model instead combines different spectral 
information (i.e., MW-MMW and TIR) to attempt a general rule applicable on different 
sensors onboard of different platforms. The goal is to find a model that can detect the 
volcanic cloud automatically (i.e., without user action) and independently from the used 
sensor. The learned model is obtained by the following procedure: (1) definition of train-
ing images; (2) identification of the most relevant features, i.e., those that can better reflect 
the variability of the dependent variable; (3) model training; (4) model performance and 
selection; (5) classification of unseen images. The training data sample uses data collected 
by the MW-MMW and TIR sensors for the 2014 Kelud and 2015 Calbuco eruptions. Table 
1 summarises the data and their application in the RF classification.  

Table 1. Data used for training and prediction applications. 

Date 
Start time 

UTC 
End time 

UTC Sensor Application 

13 February 2014 18:08 18:19 MHS Training 
13 February 2014 18:11 18:15 MHS Training 
13 February 2014 17:18 19:04 AVHRR Training 

23 April 2015 06:54 06:58 MHS Training 
23 April 2015 06:54 07:03 MHS Training 
23 April 2015 06:16 08:08 AVHRR Training 

13 February 2014 17:28 17:36 ATMS Prediction 
13 February 2014 17:26 17:32 VIIRS Prediction 

23 April 2015 05:09 05:17 ATMS Prediction 
23 April 2015 05:08 05:13 VIIRS Prediction 

The considered features are the common channels between the MHS-ATMS and 
AVHRR-VIIRS sensors plus the rectilinear distance (the sum of the absolute differences of 
the pixels’ Cartesian co-ordinates) of each pixel from the volcano. More specifically, we 
use the channels 88.20 GHz (89.00 GHz for MHS), 165.50 GHz (157.00 GHz for MHS), 
183.31 ± 1 GHz, 183.31 ± 3 GHz, 12.01 μm, 10.80 μm and 3.70 μm (3.74 μm for AVHRR). 
Each pixel is then treated as an independent sample during the training process. Due to 
the sensors’ different pixel sizes, the MW-MMW observations were resampled on the TIR 
grid. In this way, each area is represented by the same number of pixels. The collected 
data are divided into sets, henceforth, train (80% of the pixels) and test (20% of the pixels) 
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sets. The former is used to fit the model. The test is instead used to provide an unbiased 
evaluation of the model. The stratified cross-validation (CV) method was used to evaluate 
the actual model performance. With this method, we divide the training dataset into K-
folds (i.e., different k datasets of equal sizes where the percentage of each class does not 
change in each fold). On each iteration, a kth dataset is used as a validation set and the 
remaining k-1 folds are used as training sets. The error is calculated on the held-out fold 
(i.e., the kth set). This process continues up until all the k folds (10 in total) are used as 
validation sets. The k-fold CV result is computed by averaging all the validation errors 
[35]. During the training process, different bagging and boosting tree-based algorithms 
with different configurations are considered. All the different learned models are com-
pared with each other by using the averaged CV score to find the one that better captures 
the underlying distribution. The F1 score is used as the evaluation metric:  

𝐹1 = 2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  (4)

The F1 score allows false alarms and false negatives (FN) to be balanced and can be 
considered as the harmonic mean of the recall and the precision scores, assuming values 
between 0 and 1 [35]. The precision is computed as TP/(TP + FP) and the recall as TP/(TP 
+ FN), where TP is the true positives and FP is the false positives. The precision measures 
the model capability of mislabelling as positive a negative pixel; the recall measures the 
model capability to correctly classify the positive pixels. The best considered model is the 
one learned by the RF algorithm with an F1 CV score of 0.8900 and of 0.9000 on our test. 
The RF configuration is summarised as follows: N° estimators, that is the number of trees 
in the forest, is set equal to 25; Criterion, which controls the function used to measure the 
quality of each split in each tree, uses the Gini index; Max depth, which controls the depth 
of the trees (i.e., how many splits in total), is set equal to 6; Max features defines how many 
features are considered when defining the best split and it is set equal to log N° features ; 
Class weight is used to associate weights to each class considering the class frequency and 
it is set equal to balanced; Bootstrap is set equal to true. The output of the model is a 0–1 
binary mask, 0 for clear pixels (coloured in purple) and 1 for contaminated tephra pixels 
(coloured in orange). Once the mask is generated, we apply a nearest neighbourhood ap-
proach to identify and then exclude small clusters far from the volcanic crater. For the RF 
algorithm, we use the scikit-learn library version 1.0.2 (https://scikit-learn.org/stable/, ac-
cessed on 4 February 2023) and Python 3.7 version [36–38]. A schematic representation of 
the classification methodology is displayed in Figure 1.  
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Figure 1. Scheme of the classification methodology. (Left) The spectral signatures at different fre-
quencies and wavelengths. (Middle) The representation of the RF model. The dataset represents all 
the available pixel information (i.e., the images in the left panel). The blue circles in the trees repre-
sent the decision-making paths for each pixel that end with a classification (i.e., ash or clear pixel). 
In the majority class box, the most frequent class is chosen among all the trees predictions. (Right) 
The output binary mask, where values of 1 (orange pixels) represent tephra pixels and values of 0 
(purple pixels) represent clear (no tephra-contaminated) pixels. 

2.3. Radiative Transfer Modelling  
The radiative transfer model (RTM) scheme is designed to simulate the BTs observed 

by the TIR and MW-MMW sensors (Figure 2). The contributions coming to the sensor are 
the background radiance (land or water), the atmosphere radiance and the space radiance 
(which is neglected during cloud physical properties retrieval [30]). We solve the radiative 
transfer differential equation by considering one- and two-layer approximations, with a 
normal pointing to the surface (i.e., we do not consider the inclination angle). We ignore 
the multiple scattering effect and the additional extension due to the electrostatic charge 
within highly explosive activity [39]. The one-layer model (𝐵𝑇 ) is applied to the TIR ob-
servations, as proposed in [24], whereas the two-layer model (𝐵𝑇 ) is applied to the MW-
MMW observations. The 𝐵𝑇  (Figure 2 left panel) is the solution to the radiative transfer 
differential equation considering the one-layer approximation, where, 𝑇  and 𝑇  are, re-
spectively, the surface and the top cloud temperature and 𝑒  is the transmittance, ex-
pressed as a function of the optical depth τ, which is computed applying the following 
approximated formula: 𝜏 = 𝑘 𝑟 𝑙 (5)

where 𝑙 is the geometric thickness of the cloud [24] and 𝑘  is the extinction coefficient, 
which is a function of the particle radius. The 𝐵𝑇  (Figure 2 right panel) represents the 
solution to the radiative transfer differential equation considering the two-layer approxi-
mation. The contributions coming to the sensor are the 𝐵𝑇 , which is the surface con-
tribution that is irradiated upward to the satellite and takes into account the surface tem-
perature, the ground emissivity and the transmittance of the two layers; the 𝐵𝑇 , which 
is the first-layer brightness temperature that is irradiated upward; 𝐵𝑇 , which is the 
first-layer brightness temperature that is first reflected and then irradiated upward to the 
sensor; the 𝐵𝑇 , which is the second-layer brightness temperature that is first pushed 
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downward and then it is irradiated upward to the sensor; and the 𝐵𝑇  is the second-
layer brightness temperature that is irradiated upward. 𝑇  is the average temperature be-
tween 𝑇  and 𝑇 . 𝑇  and 𝑇  are the temperature of first and second layers, respectively, 
and 𝛥𝐻, 𝛥𝐻  and 𝛥𝐻  are the respective layer heights. 

 
Figure 2. Schematic representation of the radiative transfer model. The left panel shows the one-
layer approximation for the TIR observations. The right panel shows the two-layer approximation 
for the MW-MMW observations. The two dashed grey lines at the top of the two images represent 
the top of the cloud, whereas the middle grey line (only present on the right panel) represents the 
end of the first layer. 

The analysis in the remote sensing framework is solved by inverting the forward 
problem. The forward problem starts from volcanic cloud properties based on the litera-
ture (e.g., particle size, density and concentration [2]), and then computes synthetic BT 
measurements. The synthetic BTs are then compared with the observed BTs to retrieve 
the main features of volcanic clouds. Our 𝑅𝑇𝑀  can be summarised into four main 
blocks; in the first block, we obtain the particle size distribution, in our case, a scaled 
Gamma. The second block estimates the cloud physical properties and the third block 
simulates the BTs considering the previously estimated layer features. Finally, the fourth 
block uses both the MLE and NN methods to estimate the total columnar content (TCC). 
We consider volcanic plumes composed by particles having particle density (ρ), effective 
radius (𝑅 ) and concentration 𝐶 . Effective radius (𝑅 ) and concentration (𝐶 ) values 
vary depending on particle classes. In this case, a positive relation is considered, i.e., larger 
particles correspond to larger concentration, as expressed in [2]. For the MW-MMW, we 
use the following classification: small lapilli (SL) having a particle density of 1200 kg/m3, 𝑅  in the interval 256–2048 µm and 𝐶  in the interval 103–2 103 mg/m3 [2,40]. For the TIR, 
instead, we consider the class fine ash (FA) with the following characteristics: particle 
density of 2600 kg/m3, 𝑅  in the interval 0.07–10.00 μm and 𝐶  in the interval 100–101.5 
mg/m3 [2]. The complex refractive index (n) is called by the second block when cloud 
properties are retrieved. For MW-MMW, we use 𝑛  = 2.48 − i0.016 [40]. In the case of 
TIR, the refractive index and the extinction coefficient are derived by analysing results 
contained at Aerosol Refractive Index Archive (ARIA, University of Oxford, 
http://eodg.atm.ox.ac.uk/ARIA/, accessed on 4 February 2023). The used refractive in-
dexes at 10.80 and 12.00 μm are, respectively, 2.10 + i0.41 and 1.79 + i0.19 for Kelud and 
2.435 + i1.079 and 2.084 + i0.197 for Calbuco. The scattering of these particles is well de-
scribed by Mie scattering theory. The volumetric extinction cross-section 𝑘  is calculated 
by considering the extinction cross-section (𝜎 ) and the particle distribution N(r) [41,42]: 
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𝑘 𝑟 = 𝜎 𝑁 𝑟 𝑑 𝑟                                𝑚  (6)

where the extinction cross-section 𝜎  is calculated as: 

𝜎 = 𝜎 + 𝜎 = 𝑊𝑃                                        𝑚  (7)

with 𝑊  as the total extinction power, 𝑃  the incoming incident power density, 𝜎  the 
absorption cross-section coefficient and 𝜎  the scattering cross-section coefficient [41,42]. 
The particle size distribution N(r) is computed as: 

𝑁 𝑟 = 𝑁 6 3.67 + 𝜇3.67 Г 𝜇 + 4 2𝑟2𝑟 𝑒 .           𝑚  (8)

where 𝑁  is the intercept parameter, 2𝑟  is the volume-weighted median diameter and 𝜇 is the shape parameter of the gamma distribution [40]. The surface and the cloud tem-
peratures, called by the fourth block, are used to compute the synthetic BTs with the sur-
face emissivity set to 0.90 for MW-MMW [29]. The well-known radiative transfer differ-
ential equation is solved by considering the one- and two-layer approximations [41,42]: 

𝐵𝑇 = 𝐵𝑇 𝑒 , + 𝛼 1 − 𝜔 𝜖𝑇𝑒 , 𝑑𝑠                    𝐾  (9)

where 𝛼  is the absorption coefficient, 𝜔 is the albedo, 𝜖 is the emissivity, 𝜏 0, 𝐻  and 𝜏 𝑠, 𝐻  are, respectively, the entire atmosphere optical thickness and the optical thickness 
from layer 𝑠 to the top of the atmosphere, 𝐵𝑇  is the surface temperature and 𝑇 is the 
physical temperature of the medium. Figure 3 shows the block diagram of the developed 𝑅𝑇𝑀 . 

 
Figure 3. Block diagram of MW-MMW and TIR retrieval procedure. The first orange block computes 
the particle size distribution (PSD) using the particle density, effective radius and concentration. 
The second block is involved to retrieve cloud physical properties. It first computes extinction cross-
section (based on Mie Theory) considering refractive index and wavelength, then the volumetric 
extinction cross-section given PSD and 𝜎 . Finally, the optical depth is estimated by considering 𝑘  
and geometric thickness (l). The third block simulates the BTs considering the surface temperature, 
the layer temperature (𝑇 ), the PSD, the optical depth and the emissivity. The 𝐵𝑇  is the simulated 
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BT at a given wavelength. The fourth block performs the retrieval using two methods: the MLE and 
NN. 

Figure 4 shows the solution of the 𝑅𝑇𝑀  plotted in arch curves. For both MW-MMW 
and TIR curves, we return the associated effective radius. For MW-MMW we show the 
effective radius interval that goes from 0.28 to 2.00 mm. Instead, for TIR measurements, 
we show the effective radius interval from 1.50 to 10.00 μm.  

 
Figure 4. Simulated arch curves for both MW-MMW (left panel) and TIR () observations. On the y-
axis, respectively, the MSD for MW-MMW and the BTD for TIR. On the x-axis, either the BT at 165.50 
GHz or the BT at 10.80 μm. 

The TCC or mass loading identifies the superficial density of the volcanic cloud. For 
that purpose, the cloud is treated as a cylinder and the TCC is computed by the integral 
of the ash content into a cylinder of unit area as [24,25]: 𝑇𝐶𝐶 = 43 𝜋𝐻 𝜌 𝑟 𝑟 𝑁 𝑟 𝑑𝑟                    𝑘𝑔𝑚  (10)

where 𝜌 𝑟  is the ash cloud density, 𝑟 is the particle radius and 𝐻 is the height. The total 
mass is then estimated by multiplying (10) for the area of each pixel and aggregating them. 
The pixel area is calculated from the image itself by looking at the latitude and longitude 
information. This allows a higher level of flexibility since the estimate is independent from 
the sensor and the scanning angle. The uncertainty related to the TCC estimate is given 
by: 

𝜀 = 𝛿𝑇𝐶𝐶𝑇𝐶𝐶 = 𝛿𝐻𝐻 + 𝛿𝑟𝑟  (11)

where we assume the following values for each independent parameter: δr = 0.20r and δH = 0.30H. The relative percentage error 𝜀  is equal to 36%. For each simulated BT, 
different information is known, such as 𝑅 , 𝐶  and 𝜏. For observed pixels these quanti-
ties are retrieved by associating each of them to their closest curves. In this work, we com-
pare two methods to pair synthetic BTs with observed BTs: the maximum a posteriori 
probability (MAP) and an NN architecture. Assuming uniform prior information, the 
MAP and the MLE converge to the same solution. Moreover, assuming Gaussian-likeli-
hood statistics of the difference between the synthetic BTs and observed BTs and uncor-
relation between the deviations (i.e., errors) of the same observables, the MLE reduces to 
the minimisation of a quadratic form [2]. The MLE method is used to retrieve information 
about 𝑅  and TCC, computed by the 𝑅𝑇𝑀 , for the collected BTs. 
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The NN architectures are particularly powerful to solve nonlinear problems. In this 
work, we consider an architecture composed by one hidden layer. This configuration re-
turns good results to solve this multiple-nonlinear regression problem. The NN fitting 
procedure is involved in defining the unknown parameters that fit the training data well. 
In NN, the unknown parameters are the weights θ. Since it is a regression problem, the 
root mean squared error (RMSE) is used as a measure of fit. The stochastic gradient de-
scent optimisation method was used to minimise the mean squared error (MSE) loss func-
tion [14,35]. This speeds up the computation since the gradient is not computed on the 
whole dataset but on a randomly selected subset. More specifically, the adaptive moment 
estimation (ADAM) method is used [43]. The learning rate 𝛾  for the batch size is opti-
mised by a linear search that minimises the error function at each iteration. This means 
that 𝛾  goes to zero while increasing the number of iterations r. ADAM uses the first and 
the second moments of the gradients to adaptively adjust the learning rate. The weights 
are randomly initialised with values near to zero. In this way, the model becomes nonlin-
ear as soon as the weights are updated [14]. The response variables TCC and 𝑅  are de-
pendent upon the BTs and upon each other. This requires a model which is able to predict 
both quantities at once. NN allows a multi-output model to be defined. For that reason, 
the NN architecture presents two nodes in the output layer, one per each response varia-
ble. The input layer, instead, is composed by n numbers of nodes based on the number of 
simulated BTs. Mathematically, the used architecture can be expressed as follows [14]: 𝑓 𝑥 = 𝑔 𝑊 𝑎 𝑊 𝑥 + 𝑏 + 𝑏  (12)

where 𝑔 is the output function, 𝑊  is the weight matrix 𝑖, a is the activation function, 𝑥 
is the input (simulated BTs) and 𝑏  the bias matrix 𝑖. The dataset used to train and eval-
uate the model is composed by the BTs simulated with the 𝑅𝑇𝑀 . In particular, for each 
simulated channel, there is a 500 × 500 matrix where each entrance is a simulated BT ex-
pressed in K. Then, the dataset is divided into train (80%) and test (20%) sets. The CV 
method, applied on the train set, was used to evaluate the actual NN performance by 
using the RMSE metric. The NN architecture is summarised in Figure 5. 

 
Figure 5. Schematic representation of the NN architecture. The input 𝑥 , 𝑥  and 𝑥  represent, re-
spectively, the simulated BTs at 88.20, 165.50 and 183.31 GHz. For the TIR, the NN architecture has 
two input nodes that are 𝑥  and 𝑥 , representing the BTs at 10.80 and 12.01 µm, respectively. 

Since we are working with both the MW-MMW and TIR sensors, we developed two 
NN models. The NN model for the MW-MMW observations has three input nodes repre-
sented by the synthetic BTs at frequencies 88.20, 165.50 and 183.31 GHz. The hidden layer 
is composed of 256 nodes. The batch size is set to 512. The number of epochs is set to a 
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large number with the early stopping method. In this way, the training stops when the 
model performance stops, improving after a given number of iterations. The rectified lin-
ear unit (ReLu) activation function is used in the hidden layer [14,44,45]. The NN archi-
tecture for the TIR has instead two input nodes: BTs at 10.80 and 12.01 µm. The hidden 
layer is composed of 128 nodes. The batch size and number of epochs are treated as for 
the MW-MMW network. Moreover, here, the ReLu activation function is used in the hid-
den layer. For the NN implementation, we use the TensorFlow 2.8.2 open-source platform 
(https://github.com/tensorflow/tensorflow, accessed on 4 February 2023) and the Keras 2.8 
deep learning API (https://github.com/keras-team/keras, accessed on 4 February 2023) 
written in Python [46].  

2.4. The Empirical Parametric Retrieval (EPR) Method 
The MW-MMW mass loading estimates, obtained with the MLE and NN methods, 

are compared with the parametric regressive formula named empirical parametric re-
trieval (EPR) [1]. The EPR is used as a quality measure of the MLE and NN estimates. The 
EPR comes from a regression analysis applied on a numerical model simulation in terms 
of MW BTs of volcanic plumes over land [1]:  

𝐿 = 𝑎 𝜌𝜌 + 𝑏 𝜌𝜌 𝐵𝑇     𝑘𝑔𝑚  (13)

where 𝑎  = 63.84, 𝑏  = −0.2564 and 𝜌 = 𝜌 = 2500 kg/m3. The 𝐵𝑇  is the brightness tem-
perature around the 183 GHz channel, the frequency near the water vapour absorption 
peak. The tephra mass loading estimate (𝐿 ) is almost not dependent on the surface land 
emissivity variation due to the use of the absorption channel around 183 GHz [1]. 

3. Test Cases  
In this section we describe the Kelud and Calbuco eruptions conjointly with an ex-

plorative data analysis of the ATMS and VIIRS products. 

3.1. The Kelud Eruption in 2014 
Kelud volcano is one of the most dangerous stratovolcanoes in Indonesia. It is located 

at −7°55′48.00″S 112°18′28.80″E, East Java. At the beginning of 2014, the earthquake activ-
ity started increasing, alerting the local community of an awakening of the volcano. On 
13th February 2014 at 15:46 UTC, the seismic activity stopped, indicating the onset of the 
eruption. The first recorded explosion formed a high eruption column. The top of the um-
brella cloud’s height was estimated at approximately 20 km, with a diameter of more than 
200 km [47]. The plume drifted south-west across the Java Island and the Indian Ocean 
[48]. The eruption caused many problems to air traffic; indeed, many local flights were 
cancelled or rerouted. The tephra ashfall damaged schools, homes and local businesses. 
More than 76,000 people were evacuated from their homes until the eruption activity 
stopped on 17th February [47,48].  

Figure 6 shows the explorative analysis from the ATMS and VIIRS sensors. The first 
row of Figure 6 shows the channels 88.20, 165.50, 183.31 ± 4.50 and 183.31 ± 1 GHz. Over 
the land, the use of frequencies above 80 GHz displays how the scattering is stronger if 
compared with the emission-based process. The background BT signatures at frequencies 
above 90 GHz appear to be hotter (yellow pixels) than the cloud ones (blue and dark blue 
pixels). This allows the visual detection of volcanic cloud pixels. The second row repre-
sents the channels 12.01, 10.80, 8.55 and 3.70 µm of the VIIRS sensor. The presence of me-
teorological clouds coupled with shorter wavelengths (compared to MW-MMW) does not 
allow full discrimination between the volcanic cloud and the background. Indeed, by 
looking only at channel 3.70 µm, both background and the contour of the cloud appear 
blue. The other TIR channels better distinguish the cloud and the background (yellow 
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areas). However, the borders of the clouds are still not well separated by the meteorolog-
ical clouds (light blue pixels around 240 K). 

 
Figure 6. The Suomi-NPP Kelud eruption on 13th February 2014 at 17:26 UTC. (First row) ATMS 
brightness temperature at frequencies 88.20, 165.50, 183.31 ± 4.50 and 183.31 ± 1 GHz. Coldest pixels 
(blue and dark blue) highlight the volcanic cloud. (Second row) VIIRS brightness temperature at 
wavelengths 12.01, 10.80, 8.55 and 3.70 µm. Dark blue and black pixels highlight the volcanic cloud. 

3.2. The Calbuco Eruption in 2015 
Calbuco is an active and hazardous stratovolcano located at 41°20′S–72°37′W in 

southern Chile. It covers an area of 150 km2, with its summit at 2003 m above sea level. 
After 54 years of calm, it reawakened on 22nd April 2015 at 21:08 UTC. Alarms of the 
volcano’s awakening were signalled by an intense seismic activity [49]. On 23 April 2015 
at 04:00 UTC, a strong explosion occurred, which lasted about six hours. The ash plume, 
with a maximum estimated altitude of about 15–20 km, moved in the north-east direction 
[1]. On 24th April 2015 at 02:30 UTC, a smaller explosion occurred. During those events, 
different cities registered inconveniences and mobility problems. The air traffic in the air-
port of Puerto Montt was also suspended. Different cities and areas were affected by 
tephra fallout, such as Los Lagos, Los Rios and Araucani [1].  

Figure 7 is an explorative analysis from the ATMS and VIIRS sensors. Moreover, in 
this case, the first row of the figure shows the channels 88.20, 165.50, 183.31 ± 4.50 and 
183.31 ± 1 GHz. The volcanic cloud pixels appear colder while moving at frequencies 
above 90 GHz, due to the increasing ratio between particle sizes and wavelengths. In par-
ticular, frequencies around 165.50 GHz and 183.31 GHz allow a clear discrimination be-
tween the background and the volcanic cloud. The coldest pixels (i.e., darkest blue and 
black) highlight the area covered by the volcanic cloud, whereas yellow pixels the back-
ground. It is interesting to notice how, using the ATMS sensor, the distal cloud is not vis-
ible in any of these channels. This is because these frequencies are not sensitive to smaller 
dispersed ashes. The channels 12.01, 10.80 and 8.55 µm show in dark blue and black the 
near-source cloud, in light blue the dispersed cloud and in yellow the background. The 
channel 3.70 µm allows a good visual representation of the volcanic cloud at the source 
(darkest blue and black pixels) but, due to its sensitivity to finest particles, the volcanic 
distal cloud may be partially masked by the presence of the other background atmos-
pheric effects. 
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Figure 7. The Suomi-NPP Calbuco eruption on 23rd April 2015 at 05:09 UTC. (First row) ATMS 
brightness temperature at frequencies 88.20, 165.50, 183.31 ± 4.50 and 183.31 ± 1 GHz. (Second row) 
VIIRS brightness temperature at wavelengths 12.01, 10.80, 8.55 and 3.70 µm. The volcanic cloud is 
characterised by darkest blue and black pixels for both MW-MMW and TIR signatures. In the VIIRS 
images, the dispersed volcanic cloud is highlighted by light blue pixels. 

4. Results  
In this chapter, we show the detection and the retrieval using MW-MMW and TIR 

spectral signatures. We first describe the detection results obtained using the split window 
methods and the RF model, then the estimates obtained using the MLE and the NN meth-
ods. For the detection, the results are displayed with three images, where images A and B 
show the detection using the MSD and BTD methods, respectively; image C shows the 
detection using the RF model. For the RF outputs, the results are plotted using three dif-
ferent colours. Regarding the retrieval, we provide simulated arch curves, representing 
the simulated BTs, for both spectral signatures. The TCC maps are grouped into two fig-
ures composed of five panels each. Section 4.1 is dedicated to the Kelud event and Section 
4.2 to the Calbuco event. 

4.1. Kelud: Detection and Retrieval  
For the Kelud eruption, the MSD cloud pixel identification is visible in Figure 8A. 

The 𝑀𝑆𝐷  is higher for pixels which are proximal to the volcanic crater. This effect is 
shown in this image by the pixels with the yellow shade colour (higher 𝑀𝑆𝐷 ) and dark 
blue pixels (smaller 𝑀𝑆𝐷 ). The BTD detection is displayed in Figure 8B. The reported 
values are already adjusted with the water vapour correction explained in Appendix B. 
The edges of the cloud are characterised by the presence of pixels with a BTD smaller than 
zero (pale-blue and light-yellow colours), whereas the pixels near the volcano are charac-
terised by a BTD slightly above zero (yellow pixels), where the abundance of water parti-
cles is relevant. Figure 8C shows the output of the RF model. As a measure of comparison, 
the images A and B are overlapped and used as ground truth. In this way, every RF-clas-
sified pixel is compared with its symmetrical available in the A + B combined image. The 
pixel is coloured in purple if it is identified by both the methods, the MSD-BTD and the 
RF; it is magenta if it is identified by the RF but not by the MSD-BTD; it is orange if it is 
identified by the MSD-BTD but not by the RF. Almost 90% of the area is identified by the 
RF model (purple pixels). A small fraction is missing (i.e., orange pixels) and another small 
part disagrees with the MSD-BTD detection (magenta pixels). The overall F1 score on this 
image is 0.9049, which is a very high score and higher than the one obtained during the 
test phase, meaning that the model is performing correctly and it is not overfitting. 
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Figure 8. The Kelud eruption on 13th February 2014. (A) The volcanic cloud detected by using the 
MSD decision rule. (B) The volcanic cloud detected by the BTD decision rule. (C) The RF classifica-
tion where purple pixels are correctly classified ash pixels, magenta pixels are false alarms and or-
ange pixels represent missed ash pixels. 

Regarding the retrieval, Figure 9A details the simulated curves for MW-MMW vol-
canic particles. The black points represent the volcanic particle pixels previously detected 
using the MSD method. These points are associated with particles of effective radius that 
vary from 0.28 to 0.60 mm. The points that lie outside the simulated curves are associated 
with their closest curve [24]. For the TIR curves, the detected ash particles have a particle 
radius that ranges between 5.00 and 10.00 μm. These points are represented in Figure 9B 
as orange points. The black points represent the MW-MMW-detected pixels, which were 
resampled on the TIR grid (this is the reason why there are more than those displayed in 
Figure 9A). As expected, many points lie outside the simulated curves and have a positive 
BTD. These are the points that represent the areas contaminated by particles not visible at 
the TIR wavelengths due to sensor detection limits.  

 
Figure 9. The Kelud eruption on 13th February 2014 at 17:28 UTC. (A) The simulated arch curves 
for MW-MMW observations. (B) The simulated arch curves for TIR observations. The black points 
represent ash pixels identified using the MSD method. The orange pixels highlight the pixels de-
tected using the BTD method. 

Starting from these simulated curves, we perform the mass retrieval. Per each of the 
three methods, the MW-MMW masses are, respectively, EPR 1.54 ± 0.55 1011 kg, MLE 1.11 
± 0.40 1011 kg and NN 1.30 ± 0.47 1011 kg. All the three methods highlight how the higher 
masses are estimated to be in the centre of the cloud (yellow pixels of Figure 10A–C). The 
smaller masses are associated with the areas far away from the volcanic crater (blue pix-
els). The instantaneous total masses and the TCC maps, for both the MLE and the NN, are 
in good agreement with the one obtained using the parametric formula (EPR). Figure 10 
D, E show the estimated TCC maps for both MLE and NN methods considering TIR ob-
servations. The estimated masses are, respectively, MLE 2.25 ± 0.81 109 kg and NN 2.16 ± 
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0.78 109 kg. The MLE and the NN TIR results show the highest mass loading in the centre 
of the cloud (yellow pixels). However, the NN method shows a more homogeneous path 
in the map, with high mass loading areas also outside the centre of the cloud. This is more 
in line with the MW-MMW retrievals, in particular, the EPR (Figure 10A) and the NN 
(Figure 10C). Indeed, Figure 10 A, C, E are in agreement with each other (see yellow and 
blue pixels) in terms of mapping. Then, the NN results (MW-MMW and TIR) better char-
acterise the volcanic cloud. Moreover, our NN estimate of the mass, given by the sum of 
the MW-MMW and TIR estimates, is 1.32 ± 0.47 1011 kg, which is in line (in terms of order 
of magnitude) with volcanological studies. Following [48,50], using field data collected on 
ground, a total erupted mass was estimated to be 3.30–6.60 1011 kg. It is noteworthy that 
we are observing the eruption only at the time of the satellite overpass (17:28 UTC) when 
the eruption was still ongoing. This implies that we are not considering in the comparison 
the mass emitted after the satellite acquisition time until the end of the eruptive event. 

 
Figure 10. The Kelud eruption on 13th February 2014. (First row) The retrieval for the MW-MMW 
observations, where (A) the TCC map and mass estimates by the EPR; (B) the TCC map and mass 
estimates by the MLE; (C) the TCC map and the mass estimates by the NN. (Second row) The re-
trieval for TIR observations, where (D) the TCC map and the mass estimates by the MLE; (E) the 
TCC map and the mass estimates by the NN. 

4.2. Calbuco: Detection and Retrieval 
For the Calbuco eruption, the MSD cloud pixel identification is displayed in Figure 

11A. The 𝑀𝑆𝐷  assumes high values in almost the whole detected area, except for one 
pixel with a value of ≈ −11 K. When the plume is spreading, it has a greater amount of fine 
particles, not detected by the MSD. The presence of smaller particles is, instead, well visi-
ble in Figure 11B (see outlines coloured in pale blue). As for Kelud, the reported BTDs 
values are already adjusted with the water vapour correction described in Appendix B. 
Figure 11C shows the output of the RF model. Moreover, here, the images A and B are 
overlapped and used as ground truth. Most of the pixels are coloured in purple, with an 
area coverage of about 90%. A small fraction is missing (i.e., orange pixels) and a very 
small fraction is wrongly classified (magenta pixels). The overall F1 score is 0.9271, which 
is even higher than the one obtained for the Kelud event (Figure 8C). This is because the 
fraction of false alarms is very small compared to the fraction visible in Figure 8C. 
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Figure 11. The Calbuco eruption on 23rd April 2015. (A) The volcanic cloud detected by using the 
MSD decision rule. (B) The volcanic cloud detected by the BTD decision rule. (C) The RF classifica-
tion, where purple pixels are correctly classified ash pixels, magenta pixels are false alarms and 
orange pixels represent missed ash pixels. 

Figure 12 displays the 𝑅𝑇𝑀  results for both the MW-MMW and TIR sensors. Figure 
12A displays the simulated arch curves for MW-MMW observations. The black points 
identify the detected MW-MMW pixels. The particle radius ranges in between 0.28 and 
0.85 mm. For the TIR observations we show the results in Figure 12B. Moreover, here, the 
black points highlight the MW-MMW detected pixels which were resampled on the TIR 
grid. As expected, many of these points lie outside the simulated TIR curves. At the time 
of the pass of the Soumi-NPP satellite, the volcano was erupting for the second time. In-
deed, the VIIRS sensor also detected a first event (22 April 2015 at 21:08 UTC) represented 
in Figure 12B by the yellow points. The orange points, instead, represent the pixels be-
longing to the near-source cloud (i.e., the second event at 05:09 UTC), the one detected 
also by the ATMS sensor. It is visible how the two events, observed in the TIR region, have 
particles with different sizes (from 2.00 to 4.00 μm for the first event and from 2.50 to 5.00 
μm for the second event). The reason is that bigger particles remain suspended in atmos-
phere for less time due to their bigger mass. 

 
Figure 12. The Calbuco eruption on 23rd April 2015. (A) The simulated arch curves for MW-MMW 
observation. (B) The simulated arch curves for TIR observation. The black points represent ash pix-
els identified using the MSD method. The orange points highlight the fraction of pixels identified 
near the volcano by the BTD. The yellow points represent the ash pixels belonging to the first erup-
tion (22nd April 2015 at 21:08 UTC) identified by the BTD as well. 

Associating each observation to its closest curve, the retrieval is, hence, performed. 
The MW-MMW masses obtained with the considered methods are EPR 4.21 ± 1.51 1010 kg; 
MLE 4.33 ± 1.56 1010 kg; and NN 4.17 ± 1.50 1010 kg, respectively. For all three methods, the 
higher mass is estimated on the west side of the volcano (yellow pixels), in proximity to 
the top of the umbrella at an altitude of ≈ 19 km [1], see Figure 13A–C. The smaller mass 
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is associated with the areas far from the volcanic crater (bright blue pixels). The estimated 
mass and the TCC maps, for both the MLE and the NN, are in good agreement with the 
one obtained using the parametric formula (EPR). The small changes between the esti-
mates can be explained with the different polarisation corrections and the ignored multi-
ple diffusion effects. For the TIR observations, the estimated masses are, respectively, 
MLE 1.48 ± 0.53 109 kg and NN 1.54 ± 0.55 109 kg. For consistency, we also report the 
estimates for the distal ash cloud, which are 2.37 ± 0.85 109 kg for MLE and 2.17 ± 0.78 109 
kg for NN. The TIR proximal and distal masses are reported in Figure 13 D, E with the 
acronyms 𝑀𝑎𝑠𝑠  and 𝑀𝑎𝑠𝑠 . For both MLE and NN TIR results, the highest mass load-
ing is associated with the centre of the cloud (yellow pixels) with values in the range of 
0.06–0.08 kg/m2, see Figure 13 D, E. However, the NN TCC map (Figure 13E) is more in 
line with the EPR map (Figure 13A). Indeed, Figure 13 A, C, E are in good agreement with 
each other (see yellow and blue pixels) in terms of mapping. Moreover, in this case, we 
conclude that the NN results are more in line with the EPR results and past studies [1,49]. 
If we sum the NN MW-MMW and TIR mass estimates, we obtain a mass of 4.32 ± 1.56 1010 
kg that is in line with previous studies on the deposit (3.33–4.71 1010 kg) [49]. 

 
Figure 13. The Calbuco eruption on 23rd April 2015. (First row) The retrieval for the MW-MMW 
observations, where (A) the TCC map and the total mass estimates by the EPR; (B) the TCC map 
and the total mass estimates by the MLE; (C) the TCC map and the total mass estimates by the NN. 
(Second row) The retrieval for TIR observations, where (D) the TCC map and the total mass esti-
mates by the MLE; (E) the TCC map and the total mass estimates by the NN. 𝑀𝑎𝑠𝑠  and 𝑀𝑎𝑠𝑠  
refer to the proximal and distal clouds masses, respectively. 

5. Conclusions 
The aim of the work was to show the synergy given by the combination of the MW-

MMW and TIR observations to study volcanic clouds. The application on the Kelud and 
Calbuco case studies highlighted how the combination of these two spectral signatures 
can increase the quality of the detection and the mass retrieval. The proposed methodol-
ogies allow the study of the time evolution in terms of scene coverage and mass of the 
volcanic cloud. 

The RF model allows images to be automatically processed without the arbitrary 
threshold choice and has, in our opinion, promising results. Moreover, our results under-
line how it is possible to combine different spectral information, coming from different 
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platforms, to have a better characterisation of the volcanic cloud. The RF model is able to 
balance false alarms and the FN while classifying new images (see Figures 8C and 11C). 
Indeed, for the Kelud eruption the F1 score is 0.9049 and for the Calbuco is 0.9271. It is 
well known that the MW-MMW signatures between 90 and 183 GHz are more effective in 
identifying the near-source plume, even though they have a poorer spatial resolution, up 
to 32 km compared with 750 m of TIR observations. Instead, the TIR signatures perform 
better in identifying the edges of the proximal cloud, since, close to the crater, the signal 
tends to saturate due to the high optical extinction of the near-source volcanic cloud and 
the strong presence of water particles. The areas detected by both sensors (ATMS and 
VIIRS) highlight how some areas are contaminated by both bigger and finer volcanic par-
ticles. Further improvements in terms of detection should be considered, especially for the 
machine learning method. The RF results are promising but collecting more heterogene-
ous data should make the training dataset more statistically representative for this task. 
We know that using only a few images can affect the performance of the model. However, 
it is not easy to find cases where both MW-MMW and TIR signatures are available with a 
small difference in the time span. The absence of GEO MW-MMW sensors makes the ac-
quisition even harder. It is also worth mentioning that this was a first attempt to prove the 
possibility of combining different information without complex data manipulation (po-
larisation and scanning angle corrections). Furthermore, the RF model can be improved 
by moving from a binary to a multiclass classification problem by considering, for exam-
ple, “ash on meteorological cloud”, “ash on land” and “ash on water” as already tested 
for infrared signatures [31,34]. This could increase the performance of the model, in par-
ticular when the scene is significantly contaminated by meteorological clouds, as it is in 
the Kelud event. 

Concerning the retrieval, further improvements could also be achieved by making 
the radiative transfer model more realistic, for example, by considering the cloud as a 
multiplanar nonhomogeneous layer [51]. The mass loading and the mass estimates are 
valid until the particle spherical assumption holds. Indeed, volcanic ash particles are usu-
ally non-spherical [24]. Further works should also start to consider the particles of irregu-
lar shapes, since different shapes give different types of scattering [52]. Even so, the non-
spherical assumption is still under investigation, making this assumption a fair and con-
servative compromise to date in real-case applications [53,54]. In addition, the electrical 
charging can influence the spectral signature during the first instants of an eruption 
[10,39,55,56]. In this work, we are not considering the additional extinction caused by elec-
trostatic charging, but we plan to study how this component attenuates the signals in fu-
ture studies. Moreover, a single NN architecture could be implemented in the future to 
return estimates for both MW-MMW and TIR observations simultaneously. Lastly, we are 
also considering combining satellite estimates with ground-based radar measurements 
and lidar observations to improve the retrieval in terms of mapping and mass estimates. 
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Appendix A 
This appendix has the scope of summarising all the acronyms (see Table A1). 

Table A1. Acronyms used in this paper. 

Acronyms Full Name 
ADAM Adaptive Moment Estimation 
ARIA Aerosol Refractive Index Archive 
ATMS Advanced Technology Microwave Sounder 
AVHRR Advanced Very High-Resolution Radiometer 
BT Brightness Temperature 
BTD Brightness Temperature Difference 
CV Cross-Validation 
EPR Empirical Parametric Retrieval 
FA Fine Ash 
FN False Negatives 
FP False Positives 
GEO Geosynchronous Earth Orbit 
LEO Low Earth Orbit 
MAP Maximum a Posteriori Probability 
MassD Mass Distal 
MassP Mass Proximal 
MHS Microwave Humidity Sounder 
MLE Maximum Likelihood Estimation 
MMW Millimetre-wave 
MSD Microwave Spectral Difference 
MSDA Microwave Spectral Difference Absorption 
MSDW Microwave Spectral Difference Window 
MSE Mean Squared Error 
MW Microwave 
NN Neural Network 
NOAA National Oceanic and Atmospheric Administration 
PSD Particle Size Distribution 
ReLu Rectified Linear unit 
RMSE Root Mean Squared Error 
RTM Radiative Transfer Model 
RTMA Radiative Transfer Model Algorithm 
SL Small Lapilli 
S-NPP Suomi-National Polar-orbiting Partnership 
TCC Total Columnar Content 
TIR Thermal-InfraRed 
TP True Positives 
VIIRS Visible Infrared Imaging Radiometer Suite 

Appendix B 
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This appendix deals with the water vapour correction for the TIR observation applied 
in our estimations. In the 8–14 µm range, the silicate particle absorption is greater around 
8–11 µm, whereas the water particle absorption is greater at higher wavelengths (12–14 
µm) [25,57]. The volcanic clouds are mainly composed of silicate particles but, if the pres-
ence of water particles is high in the atmosphere, the BT of the top atmosphere is higher 
at wavelength 11 µm than at 12 µm. This has the side effect of making the BTD positive. 
Prata et al. [25,30] proposed a semi-empirical water vapour correction: ∆𝑇 = 𝑒 ∗ 𝐾  (A1)

where BT* = BT10.8/BTmax. The denominator is a normalisation constant set at 320 K. The 
free parameter b governs the water vapour effect on the BTD at the maximum value of 𝐵𝑇 . . The free parameter is estimated as the difference of the maximum value of 𝐵𝑇 .  
and its corresponding value at 𝐵𝑇  [26]. The water vapour correction for the TIR obser-
vations is estimated for the Kelud and the Calbuco eruptions (Figure A1). 

 
Figure A1. The water vapour correction plots for TIR observations. Images (A,B) refer to the Kelud 
eruption on 13th February 2014 at 17:28 UTC; images (C,D) refer to the Calbuco eruption on 23rd 
April 2015 at 05:09 UTC event. 

The images A and C show the count corrections, whereas the images B and D show 
the lower and upper water vapour limit curves, as expressed in [26,30], where the points 
represent all the pixels associated with the volcanic clouds. The water vapour correction 
is applied for all the points that lie inside the two curves. The water vapour correction 
allows to detect, by using the BTD, 8982 more ash pixels for the Kelud near-source cloud 
(i.e. 30.57% more of the area) and of 5104 more pixels for the Calbuco near-source cloud 
(i.e. 33.72% more of the area). 
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