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Abstract: Since the appearance and evolution of earthquake ionospheric precursors are expected
to show a nonlinear and complex behaviour, the use of nonlinear predictor models seems more
appropriate. This paper proposes a new approach based on deep learning as a powerful tool for
extracting the nonlinear patterns from a time series of ionospheric precursors. A Long Short-Term
Memory (LSTM) network as a type of Recurrent Neural Network (RNN) was used to investigate
52 six-month time series, deduced from the three Swarm satellite (Alpha (A), Bravo (B) and Charlie
(C)) measurements, including electron density (Ne), electron temperature (Te), magnetic scalar and
vector (X, Y, Z) components, Slant and Vertical Total Electron Content (STEC and VTEC), for day
and night periods around the time and location of a seismic event. This new approach was tested
on a strong Mw = 7.1 earthquake in Japan on 13 February 2021, at 14:07:50 UTC by comparing
the results with two implemented methods, i.e., Median and LSTM methods. Furthermore, clear
anomalies are seen by a voting classification method 1, 6, 8, 13, 31 and 32 days before the earthquake.
A comparison with atmospheric data investigation is further provided, supporting the lithosphere–
atmosphere–ionosphere coupling (LAIC) mechanism as a suitable theory to explain the alteration
of upper geolayers in the earthquake preparation phase. In other words, using multi-method and
multi-precursor analysis applied to 52 time series and also to the orbit-by-orbit investigation, the
observed anomalies on the previous day and up to 32 days before the event in normal solar and quiet
geomagnetic conditions could be considered as a striking hint of the forthcoming Japan earthquake.

Keywords: earthquake precursor; ionosphere; swarm satellites; deep learning

1. Introduction

In this paper, we investigate the preparatory phase of a significant magnitude (M7.1)
earthquake in Japan that occurred on 13 February 2021. The problem of earthquake precur-
sors and the possibility to make a prediction have a long history with some examples of
success (for example, M7.3 Haicheng, China, 1975 earthquake), unfortunately, followed
by failures in the same country (for example, in China the highly deadly M7.5 Tangshan,
China, 1976, earthquake) [1]. To date, many papers and scientific reports indicate the occur-
rence of unusual changes in different layers of the earth system (lithosphere, atmosphere
and ionosphere) around the location and time of major earthquakes [2–10]. Furthermore,
several theories have been proposed to explain such “changes”; for example, Pulinets and
Ouzounov [6] proposed a chain of processes induced by the possible release of radon in
the atmosphere as found by several authors (e.g., Deb et al., [11] detected increase in radon
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counting before two Nepal 2015 strong earthquakes; see also Kojima et al., [12]). The decay
of the radon in the atmosphere can ionise the air that, in turn, can cause a drop in air hu-
midity and an increase in surface temperature and overall perturbations of the atmospheric
and ionospheric electric circuit [6]. Another source mechanism is based on the production
of positive-holes (or simply p-holes) in the rocks by the increase in stress on the crustal vol-
ume, including the fault before the earthquake [5,13]. These p-holes could then propagate
straight in the ionosphere as an ultra-low-frequency electromagnetic wave disturbance [3]
or by plasma bubbles [14], or even by the previously described chain [6] after the radon
release. However, the existence of complex and completely nonlinear behaviour in the time
series of precursors has caused high uncertainty in earthquake prediction. Therefore, the
use of machine learning methods that are able to model these nonlinear variations seems
particularly meaningful in studies of earthquake precursors. Artificial Neural Network
(ANN), Support Vector Regression (SVR), ensembles methods (Decision Tree, Bagging,
Boosting, Random Forest) and Optimisation algorithms are examples of efforts that have
been performed for this type of time series modelling of precursors [15]. In addition, the
importance of considering low Earth orbiting satellites in earthquake studies is undeni-
able, for their global coverage and sensitive payload measurement of some ionospheric
parameters. The use of powerful deep learning tools along with up-to-date satellite data
can hopefully provide the basis for the development of seismic warning systems with a
low uncertainty.

1.1. Case Study

A strong earthquake of Mw = 7.1 occurred at 14:07:50 UTC (LT = UTC + 09:00 = 23:07:50)
on 13 February 2021, near the east coast of Honshu, Japan, (37.727◦N, 141.775◦E, 44 km
depth) as the result of thrust faulting near the subduction zone interface plate boundary
between the Pacific and North America Plates (Figure 1a). This seismic event happened in
the vicinity of the rupture area of the 11 March 2011 M9.1 Tohoku earthquake; in fact, the
2021 earthquake epicentre is just 82 km farther and the fault rupture segment is inside the
one of the M9.1 event [16–18].
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Figure 1. M5+ earthquakes localised by the USGS (https://earthquake.usgs.gov/earthquakes ac-
cessed on 21 March 2022) in the Dobrovolsky area for the M7.1 13 February 2021 Japan event. (a) 
Map of the events. (b) Gutenberg–Richter distribution of the earthquakes (their number is 

Figure 1. M5+ earthquakes localised by the USGS (https://earthquake.usgs.gov/earthquakes ac-
cessed on 21 March 2022) in the Dobrovolsky area for the M7.1 13 February 2021 Japan event. (a) Map
of the events. (b) Gutenberg–Richter distribution of the earthquakes (their number is represented
by “#”). (c) Magnitude as a function of the time with an indication of the depth by the colour bar.
The events with M > 5.5 are highlighted by labels with indications of days with respect to the Japan
earthquake (negative days if occurring before the mainshock and positive if occurring after) and
their magnitude.

https://earthquake.usgs.gov/earthquakes
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We also report in Figure 1 the seismicity in the investigated area for the analysed time
period, i.e., from 1 September 2020 until 18 February 2021, checking for M5+ events recorded
in the USGS catalogue. As well known, the area is characterised by frequent seismicity,
mainly produced by the subduction of the Pacific Plate under the Japanese Plate with some
deep events. This is confirmed by the high a-value of Gutenberg–Richter’s earthquake
magnitude distribution [19] that corresponds to 6.93 annual a-value (see Figure 1b). The
b-value obtained is very close to one, as globally expected for seismic events. In Figure 1c,
we placed a dashed black line to focus attention on M5.5+ earthquakes, because previous
studies [20] found a statistical relationship that such events can show a pre-earthquake
ionosphere disturbance; therefore, we give attention to the time of occurrence of such
events. In particular, we have four events with M > 5.5 in the analysed period before the
M7.1 Japan earthquake that occurred on 12 September 2020 (−153.9 days) with M = 6.1,
on 3 October 2020 (−132.6 days) with M = 5.8, on 20 December 2020 (−54.3 days) with
M = 6.3 and on 12 January 2021 (−31.9 days) with M = 5.9 but at a depth of about 214 km. It
is interesting to note that in the days around the mainshock there are no M5.5+ earthquakes,
but several M5+ events are observed in particular after the main event.

1.2. Data

Swarm mission (launched on 22 September 2013) is a constellation of three identical
satellites, Alpha (A), Bravo (B) and Charlie (C), placed in quasi-polar orbits at an altitude
between 440 km (Alpha and Charlie) and 510 km (Bravo) [21]. These satellites include
magnetic and plasma sensors: (1) an Absolute Scalar Magnetometer (ASM), which measures
the strength of the magnetic field and provides scalar measurements of the magnetic field to
calibrate the vector field magnetometer (VFM) [22]; (2) a VFM, which makes high-precision
measurements of the intensity and direction of the magnetic field [23]; (3) the Electric Field
Instrument (EFI), which is composed of Langmuir probes and thermal ion imager [24].
Langmuir probes provide plasma data such as electron density Ne, electron temperature
Te and spacecraft electric potential V [25]; (4) a GPS (Global Position System) receiver that
helps together with laser retroreflectors to provide a Precise Orbit Determination (POD) [26].
From the two receiving frequencies of the GPS receiver, it is possible to estimate the Total
Electron Content (TEC) in the topside ionosphere above the Swarm satellites, and a recent
work has shown that this parameter from Swarm can in addition be used to search for
ionospheric pre-earthquake disturbances [27].

To date, several papers have investigated plasma and magnetic field parameters
around the time and location of some strong earthquakes using Swarm satellite data,
providing several pieces of evidence regarding the relationship between ionospheric distur-
bances recorded by Swarm satellites and earthquake occurrence. De Santis et al. [28] found
a common pattern in the cumulate of night-time Swarm alpha magnetic anomalies and
seismicity before and during the M7.8 Nepal 2015 earthquake. Akhoondzadeh et al. [29,30]
and Marchetti and Akhoondzadeh [31] provided examples of several Swarm Ne and mag-
netic anomalies and their temporal patterns possibly related to the M7.8 Ecuador 2016,
M7.3 Iraq–Iran border 2017 and M8.2 Mexico 2017 earthquakes, respectively. Marchetti
et al. [32,33] and De Santis et al. [34] identified a chain of processes in lithosphere atmo-
sphere and ionosphere before the M6.5 Italian seismic sequences 2016–2017, before the
M7.5 Indonesia 2018 earthquake and before the M7.1 Ridgecrest (USA) 2019 earthquake.
Finally, De Santis et al. [20] provided a statistical demonstration of significant correlation of
Swarm electron density and magnetic anomalies with M5.5+ earthquakes that occurred
during a period of about five years.

2. Methodology

The Long Short-Term Memory (LSTM) technique was proposed by Hochreiter and
Schmidhuber (1997), to overcome the lack of vanishing gradient in the Recurrent Neural
Network (RNN) [35]. This model can deduce dynamic temporal behaviour in time series
data by the use of shared parameters while running through time. The LSTM includes
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some units called memory blocks in the recurrent hidden layers that preserve the values of
short- and long-term, which use memory cells to store information with self-connections
and the temporal state of the network. The LSTM consists of three layers as RNN, but
a hidden layer of LSTM has three units (input, forget and output) to control the flow of
information to the memory cells. Based on the activation of units, the information residing
in memory is stored in the memory cell (if the input unit has high activation), will pass to
the next neuron (if the output unit has high activation) and will be cleared (if the forget
unit has high activation). The functions of the three units are mathematically formulated
as follows:

fu = sigmoid(W f xt + WH f Ht−1 + b f ) (1)

iu = sigmoid(Wixt + WHi Ht−1 + bi) (2)

ou = sigmoid(Woxt + WHo Ht−1 + bo) (3)

ct = ct−1 ⊗ ( fu)t + (iu)t ⊗ (tanh(Wcxt + WHc Ht−1 + bc) (4)

Ht = ot ⊗ tanh(ct−1) (5)

Equations (1)–(5) illustrate forget unit, input unit, output unit, current memory cell
and the hidden unit, respectively, at time step t. The kernel functions are represented by
tanh and sigmoid.

Here, W and b indicate weight matrices and bias variables of three units and memory
cell units. Ht−1 shows the previously hidden unit, which is an element-wise addition to
weights of three units; ct denotes the current cell unit after processing. The element-wise
multiplication between the input unit, cell unit and output unit of hidden layers is indicated
by ⊗.

yn = f (yn−1, yn−2, yn−3, . . .) (6)

yn+1 = f (yn, yn−1, yn−2, . . .)

In the next step, LSTM learns on the base of the state matrix pattern and their parame-
ters are tuned. Processing is stopped until the Root Mean Square Error (RMSE) reaches the
set value after the defined iteration. In particular, the RMSE at the first run is high and then
rapidly decreases as the number of iterations increase; when the RMSE variations become
negligible, we consider that the algorithm has been well tuned, i.e., the convergence has
been reached.

Now, LSTM predicts the values during the testing data and the differences between
observed and predicted values are calculated. If these differences are outside the pre-
defined bounds M ± 1.25 × Iqr (M and Iqr are the Median and the Interquartile range,
respectively), an anomalous day is detected. This threshold corresponds to two standard
deviations for a Gaussian distribution of data and it has already been used successfully in
previous works on pre-earthquake satellite data investigations [9,15].

In this study, in order to implement the LSTM method, each time series is divided
into seventy percent (120 days) for training and thirty percent (51 days) for the purpose
of testing and anomaly detection of the proposed LSTM methodology. The method is
trained and applied to each time series separately. Such percentages have been selected
as a compromise to improve the predicted trend performances and obtain a sufficiently
long time to search for anomalies (one month or more); in fact, for example, fifty percent
for training and testing periods does not provide reasonable trends. The parameters used
in LSTM were selected as given in Table 1.

Table 1. Parameter setting of the LSTM method.

Parameter Value

Layers 3
No. of features in sequence input layer 1

No. of hidden units in LSTM layer 200



Remote Sens. 2022, 14, 1582 5 of 22

Table 1. Cont.

Parameter Value

No. of responses in fully connected layer 1
Max epochs 300

Initial learning rate 0.005
Solver Adam

Gradient threshold 1

3. Observations

The potential seismo-ionospheric anomalies are detected in quiet solar geomagnetic
conditions as defined by two geomagnetic indexes: ap that represents the global geomag-
netic activity of the planet [36], and Dst that is calculated around the geomagnetic equator
and very sensible to detect geomagnetic storms [37]. We also included the evaluation of the
level of solar activity, monitoring the solar radio flux at a wavelength of 10.7 cm, simply
denoted as F10.7. For our study, quiet conditions are defined as ap < 25 nT, |Dst|≤ 20 nT
and F10.7 < 120 SFU (Solar Flux Unit).

Figure 2 shows the variations of ap, Dst and F10.7 indices during the period from
1 September 2020 to 18 February 2021. An asterisk shows the earthquake occurrence time.
The x-axis illustrates the day relative to the earthquake day. The y-axis represents the
universal time in (a) and (b), the F10.7 (SFU) value in (c).
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Figure 2. The variations of ap, Dst and solar radio flux (F10.7) indices are shown in a–c, respectively,
during the period from 1 September 2020 to 18 February 2021. An asterisk indicates the earthquake
occurrence time in (a,b) ((a) vertical dashed line in (c)). The x-axis represents the day relative to the
earthquake day. In (a,b), the shaded scale is chosen such that white indicates calm magnetic periods,
while black stands for perturbed magnetic periods; the plot in (c) shows that F10.7 is always under
the threshold of 120 SFU.

Figure 3 shows the variations of magnetic field vector measured by the magnetometer
of the Kakioka (KAK) Observatory during the same period of time. The geographic
location of the observatory is 36.232◦N, 140.186◦E, being the closest working geomagnetic
observatory of the INTERMAGNET network to the earthquake epicentre. Figure 3c shows
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striking anomalies 11 days before the earthquake. The perturbed geomagnetic days were
indicated by “P” in the graph.
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Figure 3. KAK magnetometer (36.232◦N, 140.186◦E) measurements (a) x, (b) y and (c) z during the
period from 1 September 2020 to 18 February 2021. The dashed black vertical line indicates the
earthquake day. The symbol “P” indicates a perturbed value by a geomagnetic storm.

To detect the potential seismo-ionospheric anomalies, first during the period of study,
only the tracks inside the Dobrovolsky area (R = 100.43M, where R is the radius in
kilometres of the earthquake preparation zone and M is the earthquake magnitude [38]) at
every day are selected. For this earthquake, the Dobrovolsky area radius is equal to about
1130 km. All tracks are then divided in two groups, i.e., day and night. In the next step,
the median of each parameter, including the electron density and the electron temperature,
is calculated and finally, the time series of the median values are constructed. Since the
variations of the plasma parameters are affected by seasonal and nonlinear variations, a
polynomial of degree 3 is fitted to the time series and the differences between the two
curves as a new time series are considered.

Figure 4 shows the Swarm B satellite electron density residual variations during the
period of study. The natural logarithm was computed to better investigate this quantity,
and a 7-degree polynomial detrend has been applied to remove most seasonal variations.
The x-axis represents the days relative to the earthquake day. The dashed vertical line
indicates the earthquake date. Median and bounds are drawn as blue and green horizontal
lines, respectively. The pre-defined allowed ranges are defined as ±1.25 × Iqr, which m
and Iqr are the median and the inter-quartile range parameters, respectively. In this figure,
the days accompanied with high geomagnetic activities are depicted with the ”P” symbol
(that stands for “Perturbed”). It should be noted that the values of the median and the
limits were calculated only by using the quiet geomagnetic days.

In Figure 5a the red curve denotes the observed natural logarithm of night-time
electron density values measured by Swarm B, and the green curve shows the predicted
values using the LSTM method during the testing days. Figure 5b represents the differences
between the observed and predicted parameter values within the testing data. This figure
clearly shows striking anomalies at 1, 3 and 4, 16, 20, 31 and 32 days prior to the earthquake.
The deviation of the parameter from the allowed bounds on 1, 3 and 32 days before the
event is noticeable.
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value and the selected thresholds to detect the anomalies. If a day experiences some geomagnetic
perturbation, it is depicted with the letter “P” on the graph.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 21 
 

 

earthquake. The deviation of the parameter from the allowed bounds on 1, 3 and 32 days 
before the event is noticeable. 

 
Figure 4. Results of Swarm B electron density data analysis for the Japan earthquake (13 February 
2021) from 1 September 2020 to 18 February 2021 at night-time. The natural logarithm and 7-degree 
polynomial detrend have been applied to the time series. Blue and green lines represent the median 
value and the selected thresholds to detect the anomalies. If a day experiences some geomagnetic 
perturbation, it is depicted with the letter “P” on the graph. 

 
Figure 5. (a) Variations of the observed (red curve) and the predicted (green curve) night-time nat-
ural logarithm of the electron density measured by Swarm B and obtained by the LSTM method 
during testing days. (b) Variations of the differences between the observed and the predicted values 
of electron density obtained by the LSTM method during testing days. The green horizontal lines 

Figure 5. (a) Variations of the observed (red curve) and the predicted (green curve) night-time natural
logarithm of the electron density measured by Swarm B and obtained by the LSTM method during
testing days. (b) Variations of the differences between the observed and the predicted values of
electron density obtained by the LSTM method during testing days. The green horizontal lines
indicate the upper and lower bounds as m ± 1.25 × Iqr. The blue horizontal line indicates the
median value (M). In both figures, the x-axis represents the day relative to the earthquake day. The
geomagnetically “perturbed” days are highlighted by a “P”.

Since the two satellites A and C operate in close orbits of the same altitude, their
observed unusual variations in differences between their measurements could be con-
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sidered as potential pre-earthquake rapid ionospheric anomalies during the quiet solar
geomagnetic days.

Figure 6 shows the differences between the electron density values measured by
satellites A and C in day-time. Clear anomalies are detected 6, 8, 9, 13 and 15 days before
the earthquake. In Figure 7, using the LSTM method, striking anomalies are observed 6, 8,
12, 13 and 15 days before the event.
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Figure 7. (a) Variations of the observed (red curve) and the predicted (green curve) values of the
differences between the electron density (ED) values measured by satellites A and C obtained by the
LSTM method during testing days at day-time. (b) Variations of the differences between the observed
values of the electron density (ED) values measured by satellites A and C and predicted values
obtained by the LSTM method during testing days at day-time. The geomagnetically “perturbed”
days are highlighted by a “P”. Please note that here the values are not given as their natural logarithm.
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The other main anomalies detected in all measured plasma parameters using Swarm
A, B, and C satellites and deduced from the Median and LSTM methods are listed in
Tables 2 and 3. Column 4 in these tables shows the day of anomaly occurrence with respect
to the earthquake. All the anomalies are identified only during quiet geomagnetic times.

Table 2. The observed anomalies from 45 days before the earthquake using the Me-
dian/Interquartile method.

Detected Anomalies Using Median/Interquartile Method

Satellite Measured Parameter (D: Day, N: Night) Anomalous Day
Sorted by Voting

Day Rank

Swarm
Alpha

Electron Density
D −13 −32

−31
−6
−8
−1
−13
−18
−9
−15
−5
−20
−21
−23
−27
−30
−4
−11
−16
−24
−2
−12
−25
−26
−28
−33
−36
−3
−10
−14
−22
−29
−17
−34
−35

(13)
(12)
(11)
(9)
(8)
(8)
(7)
(6)
(6)
(5)
(5)
(5)
(5)
(5)
(5)
(4)
(4)
(4)
(4)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(2)
(2)
(2)
(2)
(2)
(1)
(1)
(1)

N −31, −32

Electron Temperature
D −12 to −16

N −−−

Magnetic Scalar
D −2, −4, −5, −6, −8, −9, −18

N −11, −22, −31 to −33

Magnetic Vector x
D −4, −5, −6, −8, −9, −18

N −11, −22, −31 to −33

Magnetic Vector y
D −6, −8, −9, −20, −27

N −1, −8, −13, −32

Magnetic Vector z
D −1, −34

N −3, −21, −31

Slant TEC
D −11, −13, −21

N −12, −16, −20, −31

Vertical TEC
D −21, −36

N −5, −20

Swarm
Bravo

Electron Density
D −24, −32

N −1, −4, −32

Electron Temperature
D −6, −18, −23, −27

N −15, −23

Magnetic Scalar
D −6, −18

N −1, −10, −31, −32

Magnetic Vector x
D −6, −18

N −10, −23, −31 to −33

Magnetic Vector y
D −−−−−
N −1, −8, −22, −23, −35

Magnetic Vector z
D −−−−−
N −−−−−

Slant TEC
D −30, −32

N −−−−−

Vertical TEC
D −20, −24, −30, −32

N −5, −8
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Table 2. Cont.

Detected Anomalies Using Median/Interquartile Method

Satellite Measured Parameter (D: Day, N: Night) Anomalous Day
Sorted by Voting

Day Rank

Swarm
Charlie

Electron Density
D −6, −13

N −31, −32, −36

Electron Temperature
D −1, −3, −8, −9, −13 to −18, −27 to −30

N −16, −23 to −30

Magnetic Scalar
D −2, −4, −5, −6, −8, −9, −18, −26

N −11, −24, −31, −32

Magnetic Vector x
D −5, −6, −8, −9, −18

N −31, −32

Magnetic Vector y
D −6, −20, −27

N −1, −10, −32

Magnetic Vector z
D −1, −6, −25, −31

N −21, −31

Slant TEC
D −33

N −15

Vertical TEC
D −21, −36

N −11

Swarm
Alpha-Charlie

Electron Density
D −6, −8, −9, −13, −15

N −2, −4, −31

Electron Temperature
D −12, −13, −15, −26, −30

N −25, −28

In order to detect potential seismo-magnetic anomalies, four magnetic field parameters
measured by satellites A, B, and C, i.e., total intensity and vector (X, Y, Z) magnetic field
components were analysed in the same conditions of electron density, i.e., during the same
period from 1 September 2020 to 18 February 2021, inside the Dobrovolsky area.

In order to achieve this aim, first the difference between the measured magnetic
parameter in nominal satellite conditions and the predicted value using the IGRF-12 (Inter-
national Geomagnetic Reference Field, [39]) model is computed. These two mathematical
operations permit removal of the main field, i.e., the core that is the main contribution
to Earth’s magnetic field; in fact, we expect that the possible seismo-induced ionospheric
disturbances could be very much smaller with respect to the core field, and so impossible to
detect without pre-processing the data. Afterward, the median of the residuals of magnetic
values of each track inside the Dobrovolsky area, separately for day and night, is calculated
and the time series of the magnetic field median values during the period of study, i.e.,
from 1 September 2020 to 18 February 2021, is finally created. Additionally, to remove the
seasonal and other long-term variations not predicted by the IGRF, a polynomial of degree
3 is fitted to the time series and the residual values are finally calculated. Additionally,
a threshold value is defined here as m ± 1.25 × Iqr. Therefore, we select those residual
values of each observed magnetic field parameter if they exceed the pre-defined threshold
in geomagnetically quiet conditions (|Dst| ≤ 20 nT, ap < 25 nT and F10.7 < 120).
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Table 3. The observed anomalies using LSTM method.

Detected Anomalies Using LSTM Method

Satellite Measured Parameter (D: Day, N: Night) Anomalous Day
Sorted by Voting

Day Rank

Swarm
Alpha

Electron Density D −6, −13 −31
−32
−8
−5
−13
−1
−23
−6
−21
−9
−22
−3
−12
−15
−18
−4
−24
−2
−14
−16
−17
−25
−20
−26
−30
−35
−10
−28
−29
−33

(18)
(14)
(13)
(12)
(11)
(10)
(10)
(9)
(8)
(7)
(7)
(6)
(5)
(5)
(5)
(4)
(4)
(4)
(4)
(3)
(3)
(3)
(3)
(2)
(2)
(2)
(1)
(1)
(1)
(1)

N −1, −4, −31, −32

Electron Temperature
D −12, −13, −15

N −1, −8, −24

Magnetic Scalar
D −2, 4, −5, −6, −8, −9, −26

N −11, −22, −31, −32

Magnetic Vector x
D −1, −3, −6

N −11, −18, −22, −31, −32

Magnetic Vector y
D −6, −8

N −1, −18, −32

Magnetic Vector z
D −5, −11, −35

N −3, −6, −18, −21, −29, −31

Slant TEC
D −3, −5, −11, −13, −21

N −5, −16, −20, −31

Vertical TEC
D −11, −21, −26

N −5, −13,

Swarm
Bravo

Electron Density
D −6, −11, −21, −22, −24, −32

N −1, −3, −4, −16,−20, −31, −32

Electron Temperature
D −6, −18, −23,−31, −32, −35

N −15, −16, −23

Magnetic Scalar
D −6, −17

N −1, −31, −32

Magnetic Vector x
D −6

N −1, −22, −23, −31, −32

Magnetic Vector y
D −12, −13, −25

N −1, −15, −20, −22, −23, −30, −31, −42

Magnetic Vector z
D −8, −13, −18

N −23

Slant TEC
D −21, −31, −32

N −5, −8, −11, −31

Vertical TEC
D −30, −32

N −5, −32
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Table 3. Cont.

Detected Anomalies Using LSTM Method

Satellite Measured Parameter (D: Day, N: Night) Anomalous Day
Sorted by Voting

Day Rank

Swarm
Charlie

Electron Density
D −8, −9,−13, −14, −22, −23

N −5, −8, −9, −31, −32

Electron Temperature
D −1, −3

N −16

Magnetic Scalar
D −4, −6, −8, −9

N −11, −24, −31, −32

Magnetic Vector x
D −1, −3, −22, −23, −24, −25

N −11, −22, −31, −32

Magnetic Vector y
D −8, −9

N −1, −10, −32

Magnetic Vector z
D −5, −8, −9, −13, −14

N −18, −31

Slant TEC
D −3, −5, −14, −21

N −15, −33

Vertical TEC
D −21, −31

N −2, −5, −8

Swarm
Alpha-Charlie

Electron Density
D 5, −9, −13, −15

N −23, −31

Electron Temperature
D −6, −8, −12, −13, −15, −34

N −25, −28

Figure 8 illustrates the night-time Y magnetic field values measured by satellite B
during the night-time of the period of study. Striking anomalies are seen 1, 8, 22, 23, and
35 days before the earthquake. The magnetic Y (east) component is usually less affected by
external magnetic field variations.

Figure 9a shows the observed night-time magnetic field Y component value measured
by Swarm B as a red curve and also denotes as a green curve the values predicted by using
the LSTM method for the testing days. Inspecting Figure 9b, clear anomalies are shown 1,
8, 21, 22, 23 and 35 days prior to the earthquake.

Figures 10 and 11 are similar to Figures 8 and 9, respectively, but show the variations
of magnetic field Y component data analysis from Swarm C at night-time. The striking
anomaly observed on 1 day before the earthquake acknowledges the results obtained from
the Swarm B data analysis.

The other main ionospheric anomalies detected in all measured magnetic and plasma
parameters using Swarms A, B and C satellites deduced from the Median and LSTM
methods are listed in Tables 2 and 3.
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field obtained by the LSTM method during testing days. The geomagnetically “perturbed” days are
highlighted by a “P”.
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A final investigation of atmospheric conditions in the same period previously ex-
plored with machine learning technique (i.e., the 45 days before the earthquake) has been 
applied to climatological datasets, in order to test and constrain better the lithosphere–
atmosphere–ionosphere coupling (LAIC) theories before the Mw = 7.1 Japan 2021 earth-
quake. In fact, even if in this paper we test and propose a new method to search for iono-
spheric anomalies, we know that to have a complete frame of the phenomena we need to 
analyse also the atmosphere through which the possible disturbances propagates from 
lithosphere to ionosphere. The ECMWF ERA-5 climatological dataset of Skin Temperature 
(SKT), NOAA MERRA2 climatological dataset [40] data of sulphur dioxide (SO2), carbon 
monoxide (CO) and dimethyl sulphide and AQUA-AIRS methane data [41] were ana-
lysed. The results of the investigated parameters are shown in Figures 12–16 with a red 
dashed curve for the value in the year of the earthquake, i.e., 2021, and a blue line is the 
mean of the same parameter calculated on the previous years for the same day and month, 
as described for the MEANS algorithm in Piscini et al. [42] and De Santis et al. [34]. The 
cyan, green and yellow bands are 1.0, 1.5 and 2.0 standard deviations, respectively, from 
the mean of the historical values for the specific day. In addition, due to the global warm-
ing phenomenon, the multi-year linear trend of skin temperature and methane was re-
moved in the pre-processing of the historical time series. These atmospheric investigations 
have always been conducted in a smaller area than the Dobrovolsky area to avoid that the 
possible pre-earthquake anomalies could vanish in an area that is too large (for the spatial 

Figure 11. (a) Variations of the observed (red curve) and the predicted (green curve) night-time
Y magnetic field measured by Swarm C and obtained by the LSTM method during testing day.
(b) Variations of the differences between the observed and the predicted values of Y magnetic field
obtained by the LSTM method during testing days. The geomagnetically “perturbed” days are
highlighted by a “P”.

A final investigation of atmospheric conditions in the same period previously explored
with machine learning technique (i.e., the 45 days before the earthquake) has been applied
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to climatological datasets, in order to test and constrain better the lithosphere–atmosphere–
ionosphere coupling (LAIC) theories before the Mw = 7.1 Japan 2021 earthquake. In fact,
even if in this paper we test and propose a new method to search for ionospheric anoma-
lies, we know that to have a complete frame of the phenomena we need to analyse also
the atmosphere through which the possible disturbances propagates from lithosphere to
ionosphere. The ECMWF ERA-5 climatological dataset of Skin Temperature (SKT), NOAA
MERRA2 climatological dataset [40] data of sulphur dioxide (SO2), carbon monoxide (CO)
and dimethyl sulphide and AQUA-AIRS methane data [41] were analysed. The results
of the investigated parameters are shown in Figures 12–16 with a red dashed curve for
the value in the year of the earthquake, i.e., 2021, and a blue line is the mean of the same
parameter calculated on the previous years for the same day and month, as described
for the MEANS algorithm in Piscini et al. [42] and De Santis et al. [34]. The cyan, green
and yellow bands are 1.0, 1.5 and 2.0 standard deviations, respectively, from the mean
of the historical values for the specific day. In addition, due to the global warming phe-
nomenon, the multi-year linear trend of skin temperature and methane was removed in the
pre-processing of the historical time series. These atmospheric investigations have always
been conducted in a smaller area than the Dobrovolsky area to avoid that the possible
pre-earthquake anomalies could vanish in an area that is too large (for the spatial mean).
The selection was based on the previous optimisation made for other earthquakes (e.g.,
Italian seismic sequence [32]) and on the parameter investigated, and is reported in the
caption of each figure. We highlight the anomalies with red circles, where a bold red circle
means a significant and more robust anomaly, to distinguish it with respect to weakly
significant anomalies, at the threshold limit of two standard deviations, which was chosen
for atmospheric data analyses.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

mean). The selection was based on the previous optimisation made for other earthquakes 
(e.g., Italian seismic sequence [32]) and on the parameter investigated, and is reported in 
the caption of each figure. We highlight the anomalies with red circles, where a bold red 
circle means a significant and more robust anomaly, to distinguish it with respect to 
weakly significant anomalies, at the threshold limit of two standard deviations, which 
was chosen for atmospheric data analyses. 

The skin temperature presents two anomalous values overcoming the threshold of 
two standard deviations, with one more significant than the other. We also noted that the 
long term trend for the 2021 (red dashed curve) from −33 days until the earthquake is 
higher (almost flat) than the historical mean that decreases during these weeks. We see 
that only one day (−24) is under the mean, while the others are always above, although 
inside the range between 1.0 and 1.5 standard deviations (that in standard conditions is 
expected to contain only about 9.2% of the values, while they are instead 35%). Even if 
this effect is small as the absolute value, we can hypothesise that it is due to the rapid 
increase in stress (and consequently the number and the velocity of formation of micro-
fractures) on the fault of the incoming earthquake as proposed and verified by several 
seismological analyses [43]. 

The other atmospheric parameters investigated show some single anomalous days: 
SO2 on days −26, −7, −3 and on the day of the earthquake; CO on days −23, −12 and a strong 
anomaly on the day of the earthquake; DMS on days −37 and −12; CH4 on days −43, −42, 
−41, −35, −34, −33, −25, −24, −18, −14 and −8 with respect to the earthquake day. The me-
thane in the year of the earthquake (red dashed line) was also found to be constantly above 
its historical mean for the region (blue curve) in a similar way to the skin temperature. 
Some days are not visualised due to a lack of satellite coverage of the area. Moreover, we 
noted that the two anomalies detected in CO and SO2 on the day of the earthquake are 
probably a co-seismic effect as the time of the atmospheric data (local midnight) follows 
the earthquake occurrence by about 52 min. 

 
Figure 12. Atmospheric analysis of Skin Temperature (SKT) concentration in the 45 days before the 
Mw = 7.1 Japan 13 February 2021 earthquake in a square area of 6° size centred on the epicentre. We 
highlight the anomalies with red circles, where a bold red circle means a significant and more robust 
anomaly, to distinguish it with respect to weakly significant anomalies, at the threshold limit of two 
standard deviations, which was chosen for atmospheric data analyses. 

Figure 12. Atmospheric analysis of Skin Temperature (SKT) concentration in the 45 days before the
Mw = 7.1 Japan 13 February 2021 earthquake in a square area of 6◦ size centred on the epicentre. We
highlight the anomalies with red circles, where a bold red circle means a significant and more robust
anomaly, to distinguish it with respect to weakly significant anomalies, at the threshold limit of two
standard deviations, which was chosen for atmospheric data analyses.
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Figure 13. Atmospheric analysis of sulphur dioxide (SO2) concentration in the 45 days before the
Mw = 7.1 Japan 13 February 2021 earthquake in a square area of 3◦ size centred on the epicentre. For
the estimation of the background values, the year 2001 was excluded due to its abnormal values. We
highlight the anomalies with red circles, where a bold red circle means a significant and more robust
anomaly.
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Figure 16. Atmospheric analysis of methane (CH4) concentration in the 45 days before the
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centre. Gaps in the 2021 time series (red dashed line) are due to unavailable values for some poor (or
even absent) satellite coverage in the area. We highlight the anomalies with red circles, where a bold
red circle means a significant and more robust anomaly.

The skin temperature presents two anomalous values overcoming the threshold of
two standard deviations, with one more significant than the other. We also noted that the
long term trend for the 2021 (red dashed curve) from −33 days until the earthquake is
higher (almost flat) than the historical mean that decreases during these weeks. We see
that only one day (−24) is under the mean, while the others are always above, although
inside the range between 1.0 and 1.5 standard deviations (that in standard conditions is
expected to contain only about 9.2% of the values, while they are instead 35%). Even if this
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effect is small as the absolute value, we can hypothesise that it is due to the rapid increase
in stress (and consequently the number and the velocity of formation of microfractures)
on the fault of the incoming earthquake as proposed and verified by several seismological
analyses [43].

The other atmospheric parameters investigated show some single anomalous days:
SO2 on days −26, −7, −3 and on the day of the earthquake; CO on days −23, −12 and a
strong anomaly on the day of the earthquake; DMS on days −37 and −12; CH4 on days
−43, −42, −41, −35, −34, −33, −25, −24, −18, −14 and −8 with respect to the earthquake
day. The methane in the year of the earthquake (red dashed line) was also found to be
constantly above its historical mean for the region (blue curve) in a similar way to the
skin temperature. Some days are not visualised due to a lack of satellite coverage of the
area. Moreover, we noted that the two anomalies detected in CO and SO2 on the day of
the earthquake are probably a co-seismic effect as the time of the atmospheric data (local
midnight) follows the earthquake occurrence by about 52 min.

4. Discussion and Conclusions

Tables 2 and 3 illustrate the detected anomalies using the Median and LSTM methods.
In the fifth column, all anomalous days detected are sorted according to their number of
occurrences in the 52 time series that were analysed. In this study, the anomalous days
detected were also checked by orbital analysis. It is shown that 1, 6, 8, 13, 31 and 32 days
before the event are the main candidates that could be potentially seismo-ionospheric
anomalies by running the two detectors of the Median and LSTM methods. In other words,
they are obtained via a simple fusion technique, namely a voting technique. Among them,
however, one day before the earthquake has an unusual deviation from the normal state
in the main time series. Another interesting point is that satellite B for magnetic field Y
component, Ne and Te at night-time show high sensitivity to seismic activity.

We noticed that the most anomalous values appeared 31 and 32 days before the
earthquake. We need to note that around this time (exactly 31.89 days before the mainshock)
an M5.9 was localised in the Dobrovolsky area (Figure 1), but its depth of more than 200 km
and its not-so-high magnitude makes us confident to exclude a co-seismic ionospheric
disturbance induced by this event and consider instead the recorded anomalies in this time
more likely to be a precursor of M7.1 of February 13, 2021. Furthermore, this anticipation
time is very close to the ones found for an increase in electron density before the M7.5
Indonesia 2018 (40 days) and M7.1 California Ridgecrest 2019 (33 days) earthquakes [33,34].
It is interesting to note that these events have a comparable earthquake magnitude with
the Japan earthquake, although the Ridgecrest earthquake occurred in a different region
and tectonic setting. Therefore, it would be compelling in future studies to verify further
whether the ionosphere could respond 30–40 days before earthquakes with this range
of magnitude. This fact would confirm the validity of Rikitake law [44], also recently
established for satellites by De Santis et al. [20].

To be certain that the anomalies detected in the ionosphere are not due to orbital
parameter changes of the Swarm satellites, we plotted the mean local time inside the
investigated area as a function of the time (Figure 17). In fact, the Swarm satellite has a
precession of the orbit which means that the tracks crossed every day at different longitude,
without an exact revisiting time, and with a gradual shift of the local time as well visible
in Figure 16. We note that there is a “jump” in local time from 18 LT to 6 LT for daytime
about 20 days before the earthquake for Swarm Bravo satellite and 10 days before the
earthquake for Swarm Alpha and Charlie satellites. Therefore, the anomalies extracted at
those times are suspicious and might be due to the apparent effect of orbital configuration
or result from sunlight irradiation change during the same orbit (light/shadow crossing
along the orbit).

Detected ionospheric and atmospheric anomalies could be linked by a “diffusion”
mechanism from the atmosphere to the ionosphere, with a time of about three days, as
found by Piscini et al. [45] for the transmission of anomalies from the bottom atmosphere to
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the upper atmosphere before the 2016–2017 Italian seismic sequence. Despite some anoma-
lies also occurring during the same day in the atmosphere and ionosphere, we consider
less probable a fast coupling that would imply a pure electromagnetic phenomenon or
pre-earthquake acoustic gravity wave, even if we cannot exclude at the present any other
possible mechanisms. Future studies and investigations will be necessary to understand
better this phenomenon and will provide, if possible, a physical/chemical interpretation of
the coupling; in fact, with the present theories we can suggest that if the atmospheric and
ionospheric anomalies one month and about 25 days before the event could be explained
by a diffusion model such as the one proposed by Pulinets and Ouzounov [6,46], with-
out excluding that some anomalies could occur at the same day, thus requiring a faster
coupling model such as the one proposed by Kuo et al. (2014) [14]. If this phenomenon
is found also in other case studies, we could even hypothesise that it evolves as a chain
of chemical/physical processes induced by air ionisation and after a certain time some
very low-frequency electromagnetic waves and/or direct electrical coupling between litho-
sphere, atmosphere and ionosphere circuits are nested. Additionally, in the case of the
Indonesia 2018 earthquake [33], there appears to be a pre-earthquake coupling with a cer-
tain delay between the atmosphere and ionosphere anomalies (but of 1 month of delay and
3.7 months before the seismic event) and more than two months before a direct coupling on
the same day for atmosphere and ionosphere (2 August 2018). The anticipation and delay
times of these two case studies are very different, but the longer anticipation time is found
for the event with a higher magnitude (Mw = 7.5 Indonesia) than the one described in this
paper (Mw = 7.1, Japan), thus in accordance with the Rikitake law [44] mentioned above.
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Figure 17. Swarm local time as a function of time during the period investigated in this study. The
two “borders” (i.e., the terminators) between night and day at 6 LT and 18 LT are underlined by black
dashed lines. Swarm Alpha and Charlie are represented by red dots (their local time is very close to
each other) while the local time of Swarm Bravo is shown by blue dots.

Given the low orbital separation between the Alpha and Charlie Swarm satellites, if an
anomaly was detected at the same time by both satellites, it was counted only once. Finally,
the results of this multi-method and multi-precursor analysis on 104 time series, during the
day and night, acknowledge the papers and reports already published, which used Swarm
data to detect potential seismo-ionospheric anomalies.
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